FEATURES

- Wide Supply Voltage Range: 1.8 V to 3.6 V
- Ultralow Power Consumption
 - CPU Active Mode: 200 µA/MHz at 2.2 V
 - Standby Mode (LPM3): 0.7 µA
 - Off Mode (LPM4): 0.1 µA
 - Power-Down Mode: 60 nA
- Microcontroller System and Peripherals
 - 16-Bit RISC Architecture, 125-ns Instruction Cycle Time
 - Wake-Up From Standby Mode in <6 µs
 - Basic Clock Module Configurations
 - Single External Resistor
 - 32-kHz Crystal
 - High-Frequency Crystal
 - Resonator
 - External Clock Source
 - 16-Bit Timer_A With Three Capture/Compare Registers
 - 10-Bit 200-kps Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan
 - 8KB + 256B Flash Memory
 - 256B RAM
 - 133-Byte EEPROM
 - Serial Onboard Programming, No External Programming Voltage Needed
 - Programmable Code Protection by Security Fuse
 - 80-Bit DST80 Security Authentication Coprocessor
 - 17 I/O Ports
- Low-Frequency (LF) Immobilizer Interface
 - Integrated Batteryless Immobilizer Interface
 - Half Duplex (HDX) Immobilizer Communication Achieves up to 4-in (10-cm) Read Range
 - Special Selective Addressing Mode Allows Reliable Learn-In Sequence
 - 80-Bit Authentication Key Length
 - Up to 8-kbit/s LF Uplink Data Rate
 - 5/-3-Byte Challenge/Response Algorithm
 - Fast Authentication Within 42 ms
 - Fast Mutual Authentication Within 65 ms
 - 133-Byte EEPROM
 - 91-Byte Free Available EEPROM User Memory
 - 32-Bit Unique Serial Number
 - High EEPROM Security and Flexibility
 - Write-Only Authentication Keys
 - Pages Are Irreversibly Lockable and Protectable
 - Protected Pages Programmable Only Through Mutual Authentication
 - Battery Check and Charge Functions
 - Each User Page is Lockable
 - Resonant Frequency: 134.2 kHz
 - Integrated Resonant Frequency Trimming
- Low-Frequency 3D Wakeup Receiver
 - Highest Communication Range of More Than Three Meters
 - High Input Sensitivity: 4.2 mVpp (Typ)
 - High Q System
 - Integrated Resonant Circuit Trimming Compensates for Component Offsets
 - Received Signal Strength Indicator (RSSI) Output for Each Channel
 - Resonant Circuit Usable as Clock Reference for Microcontroller (134.2 kHz)
 - Frequency Range: 120 kHz to 140 kHz
 - Ultra-Low Standby Current: 3.9 µA (Typ) With All Three Channels Active for Wake Pattern Detection
 - Interface to up to Three External Antennas
 - Two Different Programmable Wake Patterns
 - Selectable Wake Pattern Length: 0, 4, 8 or 16 Bits
 - Two Separate Adjustable Wake-Up Levels
 - Digital Channel Sensitivity Adjustment for Each Antenna

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
DESCRIPTION

The Controller Remote Access Identification Device (CRAID) combines three functions in one device:

- Low-power 16-bit microcontroller based on the MSP430F1232 core
- 3D wakeup receiver
- DST80 immobilizer interface

With these three functions, it is ideally suited for state-of-the-art passive entry and passive start applications. The low-power microcontroller MSP430™ core offers a 16-bit RISC architecture, 8KB program memory, and 17 user-accessible I/O ports. The 3D low-frequency (LF) wakeup receiver offers high sensitivity to receive LF signals between 120 kHz and 140 kHz and has several other features such as RSSI measurement and bidirectional LF signaling.

The embedded DST80 immobilizer interface offers a high level of security through its hardware encryption coprocessor and can also handle mutual authentication schemes. The immobilizer interface operates without battery support. Power management features include battery charge and check as well as a battery backup function allowing operation of all functions (including the microcontroller) with low or even no battery as long as there is sufficient energy from the LF field.

The passive entry device manages the immobilizer communication, push-button interaction, and LF wake reception. The special high-Q design achieves communication ranges up to 3 m for the passive entry link with outstanding low standby current on the receiver side. The front end offers flexible configuration of two different wake patterns lengths of 0, 4, 8, or 16 bits. Each channel can be adjusted in sensitivity and resonance frequency, which results in reproducible system designs. By sensing the pressing of a push button, the device wakes up and controls an external UHF transmitter or transceiver. Security keys and rolling codes can be stored in the integrated EEPROM memory. This memory is accessible over the LF interface without support from the battery in the keyfob. The passive entry device offers a special battery backup mode to operate the microcontroller without battery support. The external resonant circuit with an LF coil and a resonant capacitor can be trimmed to the correct resonant frequency with the integrated trimming capability, eliminating part tolerances.

Ordering Information

<table>
<thead>
<tr>
<th>T_A</th>
<th>PACKAGE(R)</th>
<th>ORDERABLE PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>−40°C to 85°C</td>
<td>TSSOP – DBT</td>
<td>TMS37F128D3IDBTRG4</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Figure 1. Application Diagram
Figure 2. Application Schematic
Operating Characteristics

<table>
<thead>
<tr>
<th>Part Number</th>
<th>TMS37F128D3IDBTRG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Immobilizer plus microcontroller with integrated power management</td>
</tr>
<tr>
<td>DST80 authentication logic</td>
<td>80-bit key length, 5-byte challenge, 3-byte signature</td>
</tr>
<tr>
<td>DST80 authentication time</td>
<td>Mutual authentication: 65 ms, Fast authentication: 42 ms</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>16-bit RISC ultra-low power based on MSP430F1232 core</td>
</tr>
<tr>
<td>Supply voltage (VBAT)</td>
<td>1.8 V to 3.6 V</td>
</tr>
<tr>
<td>Active current consumption</td>
<td>300 μA (typ) (V<sub>CC</sub> = 2.2 V, f<sub>osc</sub> = 1 MHz, microcontroller active)</td>
</tr>
<tr>
<td>Standby current consumption</td>
<td>3.9 μA (typ) (three channels wake pattern active, microcontroller in LPM4, V<sub>CC</sub> = 3 V, T<sub>A</sub> = 25°C)</td>
</tr>
<tr>
<td>Transponder</td>
<td></td>
</tr>
<tr>
<td>Transmission Principle</td>
<td>HDX (half-duplex telegram protocol)</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>134.2 kHz</td>
</tr>
<tr>
<td>Security</td>
<td>Challenge/response, mutual authentication</td>
</tr>
<tr>
<td>Downlink</td>
<td>100% AM, PPM Bit coding with 2 kbit/s (typ)</td>
</tr>
<tr>
<td>Uplink</td>
<td>FSK modulation with 7.9 kbit/s (typ)</td>
</tr>
<tr>
<td>EEPROM memory</td>
<td>133 bytes</td>
</tr>
<tr>
<td>Battery charge</td>
<td>Integrated battery charge functionality</td>
</tr>
<tr>
<td>Key learn-in</td>
<td>Special selective addressing to provide secure learn-in procedure</td>
</tr>
<tr>
<td>3D Wakeup Receiver</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>4.2 mV<sub>pp</sub> (typ), 2.7 mV<sub>pp</sub> (min), 5.1 mV<sub>pp</sub> (max) (V<sub>CC</sub> = 2.8 V, T<sub>A</sub> = 25°C)</td>
</tr>
<tr>
<td>Sensitivity tuning</td>
<td>Separate for each channel</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>120 kHz to 140 kHz</td>
</tr>
<tr>
<td>Resonant frequency trimming</td>
<td>Separate for each channel</td>
</tr>
<tr>
<td>Wake pattern</td>
<td>Two independent wake patterns with selectable length: 0, 4, 8 or 16 bits</td>
</tr>
<tr>
<td>Microcontroller</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>8KB program memory, 256-byte RAM</td>
</tr>
<tr>
<td>User data flash memory</td>
<td>256-byte information memory</td>
</tr>
<tr>
<td>Flash program and erase endurance</td>
<td>100 000 cycles (typ) (T<sub>A</sub> = 25°C)</td>
</tr>
<tr>
<td>Flash data retention</td>
<td>10 years (min) (T<sub>A</sub> = 25°C)</td>
</tr>
<tr>
<td>Program, erase, read supply voltage</td>
<td>2.7 V (min)</td>
</tr>
<tr>
<td>I/O ports</td>
<td>17</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>Package</td>
<td>44-pin TSSOP (DBT)</td>
</tr>
</tbody>
</table>
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS37F128D3IDBTRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>DBT</td>
<td>44</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td></td>
<td>37F128D3</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

- **TBD**: The Pb-Free/Green conversion plan has not been defined.

- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET OR OTHER INTELLECTUAL PROPERTY RIGHTS OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.