5-A, 20-V High-Current Load Switch
Check for Samples: TPS2590

FEATURES
- Integrated Pass MOSFET
- Up to 20-V Bus Operation
- Programmable Fault Timer
- Programmable Fault Current
- Programmable Hard Current-Limit
- Fast Disable
- Thermal Shutdown
- Load Fault Alert
- Latching and Auto-retry Operation
- 4-mm x 4-mm QFN
- –40°C to 125°C Junction Temperature Range
- UL2367 Recognized - File Number E169910

APPLICATIONS
- RAID Arrays
- Telecommunications
- Plug-In Circuit Boards
- Disk Drives
- SSDs
- PCIE
- Fan Control
- Notebooks and Netbooks

DESCRIPTION
The TPS2590 device provides highly integrated hot-swap power management and superior protection in applications where the load is powered by busses up to 20 V. The maximum UV turn-on threshold of 2.9 V makes the TPS2590 device well suited to standard bus voltages as low as 3.3 V. This device is intended for systems where a voltage bus must be protected to prevent load shorts from interrupting or damaging other system components. The TPS2590 device is in a 16-pin QFN package.

The TPS2590 device has multiple programmable protection features. Load protection is accomplished by a non-current-limiting fault threshold, a hard current-limit threshold, and a fault timer. The dual current thresholds allow the system to draw high current for short periods without causing a voltage droop at the load. An example of this is a disk drive startup. This technique is ideal for loads that experience brief high demand, but benefit from protection levels consistent with average current draw.

Hotswap MOSFET protection is provided by power limit circuitry which protects the internal MOSFET against SOA related failures.

The TPS2590 device provides a fault indicator output and allows latch off or retry on fault.

12-V, 3.5-A APPLICATION

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

**ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)  

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range IN, OUT</td>
<td>–0.3</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Voltage range FLT</td>
<td>–0.3</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Output sink current FLT</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Input voltage range, EN</td>
<td>–0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Input current, RTRY (RTRY internally clamped to 3 V) RTRY = 0 V</td>
<td>35</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Voltage range CT(3), IFLT(3), IILM(3), RTRY</td>
<td>–0.3</td>
<td>3</td>
<td>V</td>
</tr>
<tr>
<td>ESD rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human body model (HBM)</td>
<td>2.5</td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td>Charged device model (CDM)</td>
<td>400</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature range, $T_J$</td>
<td>Internally Limited</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range, $T_{stg}$</td>
<td>–65</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under **absolute maximum ratings** may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under **recommended operating conditions** is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND.

(3) Do not apply voltage to pin.

**DISSIPATION RATINGS**

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>$\theta_{JA}$ LOW K, °C/W</th>
<th>$\theta_{JA}$ HIGH K, °C/W</th>
<th>$\theta_{JA}$ BEST 4, °C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>211</td>
<td>55</td>
<td>50</td>
</tr>
</tbody>
</table>

(1) Tested per JEDEC JESD51, natural convection. The definitions of high-k and low-k are per JESD 51-7 and JESD 51-3.

(2) Low-k (2 signal - no plane, 3-inch by 3-inch board, 0.062-inch thick, 1-oz copper) test board with the pad soldered, and an additional 0.12 inch. 2 of top-side copper added to the pad.

(3) High-k is a (2 signal – 2 plane) test board with the pad soldered.

(4) The best case thermal resistance is obtained using the recommendations per SLMA002A (2 signal - 2 plane with the pad connected to the plane).

**RECOMMENDED OPERATING CONDITIONS**

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range IN, OUT</td>
<td>3</td>
<td>20</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Voltage range EN</td>
<td>0</td>
<td>5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Voltage range FLT</td>
<td>0</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output sink current FLT</td>
<td>0</td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Voltage range RTRY</td>
<td>0</td>
<td>3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>CCT</td>
<td>0.1</td>
<td></td>
<td></td>
<td>nF</td>
</tr>
<tr>
<td>Output current, IOUT</td>
<td>0</td>
<td>5.5</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>$R_{NFLT}$</td>
<td>49.9</td>
<td>200</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>$R_{NILM}$</td>
<td>40.2</td>
<td>100</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>–40</td>
<td>125</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
### ELECTRICAL CHARACTERISTICS

Over operating free-air temperature range, \( V_{\text{IN}} = 3 \text{ V} - 20 \text{ V}, \ \text{EN} = 0 \text{ V}, \ \text{FLT} = \text{open}, \ \text{RTRY} = \text{open}, \ \text{CT} = \text{open}, \ \text{R}_{\text{RLIM}} = 40.2 \ \text{kΩ}, \ \text{R}_{\text{RFLT}} = 49.9 \ \text{kΩ}. \) No external capacitor connected to OUT (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>IN</strong></td>
<td>( V_{\text{IN}} \uparrow ) 2.6 2.85 2.9  V</td>
<td>( \text{UVLO} )</td>
<td>( \text{Hysteresis} ) 150 mV</td>
<td>( \text{Bias current} ) ( \text{EN} = 2.4 \ \text{V} ) EN = 0 V 3 9 5 μA</td>
<td>( \text{EN} = 0 \ \text{V} ) 25 100 μA</td>
</tr>
<tr>
<td><strong>OUT</strong></td>
<td>( R_{\text{IN-OUT}}: \begin{align*} &amp; I_{\text{OUT}} &lt; 4.5 \ \text{A} \end{align*} ) 29.5 42 mΩ</td>
<td>( I_{\text{OUT}} ) ( V_{\text{IN}} = 12 \ \text{V}, \ \text{C}_{\text{LOAD}} = 1000 \ \mu\text{F}, \ \text{EN} = 3 \ \text{V} \rightarrow 0 \ \text{V} ) 3 5 7.5 W</td>
<td>( \text{Reverse diode voltage} ) ( V_{\text{OUT}} &gt; V_{\text{IN}}, \ \text{EN} = 5 \ \text{V}, \ \text{I}_{\text{IN}} = -1 \ \text{A} ) 0 77 1 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>IFLT</strong></td>
<td>( I_{\text{FAULT}} ) Fault current threshold ( I_{\text{OUT}} \uparrow: \begin{align*} &amp; I_{\text{CT}}: \text{sinking} \rightarrow \text{sourcing}, \ \text{pulsed test} (R_{\text{RFLT}} = 200 \ \text{kΩ}) \end{align*} ) 0.8 1 1.2 A</td>
<td>( I_{\text{OUT}} \uparrow: \begin{align*} &amp; I_{\text{CT}}: \text{sinking} \rightarrow \text{sourcing}, \ \text{pulsed test} (R_{\text{RFLT}} = 100 \ \text{kΩ}) \end{align*} ) 1.8 2 2.2 A</td>
<td>( I_{\text{OUT}} \uparrow: \begin{align*} &amp; I_{\text{CT}}: \text{sinking} \rightarrow \text{sourcing}, \ \text{pulsed test} (R_{\text{RFLT}} = 49.9 \ \text{kΩ}) \end{align*} ) 3.6 4 4.4 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ILIM</strong></td>
<td>Current-limit program ( R_{\text{RLIM}} = 100 \ \text{kΩ} ) 1.6 2 2.4 A</td>
<td>( R_{\text{RLIM}} = 66.5 \ \text{kΩ} ) 2.6 3 3.4 A</td>
<td>( R_{\text{RLIM}} = 40.2 \ \text{kΩ} ) 4.6 5 5.4 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>CT</strong></td>
<td>Charge/discharge current ( I_{\text{CT}} ) ( V_{\text{CT}} = 1 \ \text{V} ) 29 35 41 μA</td>
<td>( I_{\text{CT}} ) ( V_{\text{CT}} = 1 \ \text{V}, \ \text{RTRY} = 0 \ \text{V} ) 1 1.4 1.8</td>
<td>( V_{\text{CT}} ) ( \downarrow ) 0.1 0.16 0.3 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EN</strong></td>
<td>( V_{\text{EN}} \downarrow ) 0.8 1 1.5 V</td>
<td>( \text{Hysteresis} ) 50 150 250 mV</td>
<td>( V_{\text{EN}} = 2.4 \ \text{V} ) ( \text{sinking} ) -1.5 0 0.5 μA</td>
<td>( V_{\text{EN}} = 0.2 \ \text{V} ) ( \text{sourcing} ) 2 1 0.5 μA</td>
<td>( \text{Turn on propagation delay} ) ( V_{\text{IN}} = 3.3 \ \text{V}, \ \text{I}<em>{\text{LOAD}} = 1 \ \text{A}, \ \text{V}</em>{\text{EN}} : 2.4 \ \text{V} \rightarrow 0.2 \ \text{V}, \ \text{V}<em>{\text{OUT}}: \uparrow 90% \times V</em>{\text{IN}} ) 350 500 μs</td>
</tr>
<tr>
<td><strong>FLT</strong></td>
<td>( V_{\text{OUT LOW}} ) ( V_{\text{CT}} = 1.8 \ \text{V}, \ I_{\text{IFLT}} = 1 \ \text{mA} ) 0.2 0.4 V</td>
<td>( \text{Leakage current} ) ( V_{\text{IFLT}} = 18 \ \text{V} ) 0.2 0.4 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RTRY</strong></td>
<td>Low threshold voltage ( V_{\text{RTRY}} = 3 \ \text{V} ) 0.8 V</td>
<td>( \text{High threshold} ) ( V_{\text{RTRY}} = 2 \ \text{V} ) 2.0 V</td>
<td>( V_{\text{RTRY}} = 0.2 \ \text{V} ) 0.8 V</td>
<td>( V_{\text{RTRY}} = 0.2 \ \text{V} ) 0.8 V</td>
<td></td>
</tr>
<tr>
<td><strong>THERMAL SHUTDOWN</strong></td>
<td>( T_{\text{J}} ) 160 °C</td>
<td>( \text{Hysteresis} ) 10 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TPS2590 PINOUT

TERMINAL FUNCTIONS

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>TPS2590</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>16</td>
<td>Device is enabled when this pin is pulled low.</td>
</tr>
<tr>
<td>IN</td>
<td>1-4</td>
<td>Power In and control supply voltage.</td>
</tr>
<tr>
<td>RTRY</td>
<td>6</td>
<td>If low, the TPS2590 will attempt to restart after an overcurrent fault. If floating (high) the device will latch off after an overcurrent fault and will not attempt to restart until EN or Vin is cycled off and on.</td>
</tr>
<tr>
<td>ILIM</td>
<td>7</td>
<td>A resistor to ground sets the current-limit level.</td>
</tr>
<tr>
<td>IFLT</td>
<td>8</td>
<td>A resistor to ground sets the fault current level.</td>
</tr>
<tr>
<td>CT</td>
<td>9</td>
<td>A capacitor to ground sets the fault time.</td>
</tr>
<tr>
<td>GND</td>
<td>5, 13, 14</td>
<td>GND</td>
</tr>
<tr>
<td>OUT</td>
<td>10, 11, 12</td>
<td>Output to the load.</td>
</tr>
<tr>
<td>FLT</td>
<td>15</td>
<td>Fault low indicated the fault time has expired and the FET is switched off.</td>
</tr>
</tbody>
</table>

PIN DESCRIPTION

CT: Connect a capacitor from CT to GND to set the fault time. The fault timer starts when I_{OUT} exceeds I_{FAULT} or when SOA protection mode is active, charging the capacitor with 35 μA from GND towards an upper threshold of 1.4 V. If the capacitor reaches the upper threshold, the internal pass MOSFET is turned off. If RTRY > 2 V, the MOSFET remains off until EN is cycled. If RTRY ≤ 0.8 V, the capacitor will discharge at 1.4 μA to 0.16 V and then re-enable the pass MOSFET. If the upper threshold is not crossed, the capacitor will discharge at 40 μA to 0.16 V and then to 0 V at 1.4 μA. When the device is disabled, CT is pulled to GND through a 50-kΩ resistor.

The timer period must be chosen long enough to allow the external load capacitance to charge. The nominal (not including component tolerances) fault timer period is selected using Equation 1 where T_{FAULT} is the minimum timer period in seconds and C_{CT} is in Farads.

\[
C_{CT} = \frac{T_{FAULT}}{40 \times 10^3} \tag{1}
\]

If RTRY < 0.8 V, the second and subsequent retry timer periods will be slightly shorter than the first retry period. CT nominal (not including component tolerances) discharge time, t_{SD} from 1.4 V to 0.16 V is shown in Equation 2, where C_{CT} is in Farads and t_{SD} is in seconds.

\[
t_{SD} = 885.7 \times 10^3 \times C_{CT} \tag{2}
\]

The nominal ratio of on-to-off times represents about a 3.7% duty cycle when a hard fault is present on the output.
**FLT**: Open-drain output that pulls low on any condition that causes the output to open. These conditions are either an overload with a fault time-out, or a thermal shutdown. FLT becomes operational before UV, when IN is greater than 1 V. $I_{\text{FAULT}}$ may not be set below 1 A to maintain the Fault Current-Limit threshold accuracy listed in Electrical Characteristics. FLT will pulse low momentarily prior to the onset of OUT ramp up during IN or EN based start-up.

**GND**: This is the most negative voltage in the circuit and is used as reference for all voltage measurements unless otherwise specified.

**IFLT**: A resistor connected from this pin to ground sets the fault current threshold ($I_{\text{FAULT}}$). Currents between the fault current threshold and the current-limit are permitted to flow unimpeded for the period set by the fault timer programmed on CT. This permits loads to draw momentary surges while maintaining the protection provided by a lower average-current-limit.

The fault timer described in the CT section starts when $I_{\text{OUT}}$ exceeds $I_{\text{FAULT}}$. The fault current resistor is set using Equation 3 where $I_{\text{FAULT}}$ is in Amperes and $R_{\text{RFLT}}$ is in Ohms.

$$R_{\text{RFLT}} = \frac{200 \text{ kΩ}}{I_{\text{FAULT}}}$$  \hspace{1cm} (3)

**ILIM**: A resistor connected from this pin to ground sets $I_{\text{LIM}}$. The TPS2590 device limits current to $I_{\text{LIM}}$. If the current doesn’t drop below the $I_{\text{FAULT}}$ level before the timer times out then the output will be shut off. $R_{\text{RLIM}}$ is set by Equation 4:

$$R_{\text{RLIM}} = \frac{201 \text{ kΩ}}{I_{\text{LIM}}}$$  \hspace{1cm} (4)

$I_{\text{LIM}}$ must be set sufficiently larger than $I_{\text{FAULT}}$ to ensure that $I_{\text{LIM}}$ could never be less than $I_{\text{FAULT}}$, even after taking tolerances into account.

**EN**: When this pin is pulled low, the IC is enabled. The input threshold is hysteretic, allowing the user to program a startup delay with an external RC circuit. EN is pulled to IN with a 10 MΩ resistor and to GND with a 16.8 MΩ resistor. Because high impedance pullup/down resistors are used to reduce current draw, any external FET controlling this pin should be low leakage.

**IN**: Input voltage to the TPS2590 device. The recommended operating voltage range is 3 V to 20 V. All IN pins should be connected together and to the power source.

**OUT**: Output connection for the TPS2590 device. $V_{\text{OUT}}$ in the ON condition considering the ON resistance of the internal MOSFET, RON is shown in Equation 5.

$$V_{\text{OUT}} = V_{\text{IN}} - R_{\text{ON}} \times I_{\text{OUT}}$$  \hspace{1cm} (5)

All OUT pins should be connected together and to the load.

**RTRY**: When pulled low the TPS2590 device attempts to restart after a fault. If left floating or pulled high the TPS2590 device latches off after a fault. This pin is internally clamped at 3 V and is pulled to the internal 3-V supply by a diode in series with a 100-kΩ resistor.
**TYPICAL CHARACTERISTICS**

**Figure 1.**

**CURRENT-LIMIT**

**JUNCTION TEMPERATURE**

\[ I_{\text{LOAD}} = 1 \, \text{A} \]

\[ R_{\text{MAX}} = 100 \, \text{k}\Omega \]

**Figure 3.**

**POWER LIMIT**

**JUNCTION TEMPERATURE**

\[ I_{\text{LOAD}} = 1 \, \text{A} \]

**Figure 2.**

**FAULT CURRENT**

**JUNCTION TEMPERATURE**

\[ I_{\text{FAULT}} = \text{A} \]

\[ R_{\text{FLT}} = 100 \, \text{k}\Omega \]

**Figure 4.**

**SLEEP-MODE SUPPLY CURRENT**

(VCC = 12 V)

**JUNCTION TEMPERATURE**

\[ I_{\text{SUPPLY}} = \text{A} \]

\[ R_{\text{MAX}} = 100 \, \text{k}\Omega \]
Figure 5. 12-V Startup into 15-Ω, 700-μF Load

Figure 6. 12-V Input Added to an 8-Ω Load

Figure 7. Failed Startup into a 4-Ω Load

Figure 8. 12-V Soft Overload, 3-A to 4.2-A, Power Limit Not Tripped

Figure 9. Firm Overload, 3-A to 5.4 A, Power Limit Tripped

Figure 10. 12-V Hard Overload, 3.6-A Load then Short
TYPICAL CHARACTERISTICS (continued)

Figure 11. Power Dissipation During 12-V Startup into a 60-Ω, 660-μF Load

Figure 12. Power Dissipation During 12-V Startup into a 15-Ω, 110-μF Load

Figure 13. Startup into a 1-Ω Load

Figure 14. Firm Overload, Load Stepped From 3.8 A to 5.5 A

Figure 15. Hard Overload, Load Stepped from 3.8 A to 7.1 A
APPLICATION INFORMATION

Startup

Large inrush current occurs when power is applied to discharged capacitors and load. During the inrush period, the TPS2590 device operates in power limit (or SOA protect mode) managing the current as $V_{OUT}$ rises. In SOA protect mode, the internal MOSFET power dissipation ($[V_{IN} - V_{OUT}] \times I_{OUT}$) is regulated at 5 W typical while the fault timer starts and $C_{CT}$ ramps up. As the charge builds on $C_{LOAD}$, the current increases towards $I_{LIMIT}$. When the capacitor is fully charged, $I_{OUT}$ drops to the dc load value, the fault timer stops, and $C_{CT}$ ramps down. In order for the TPS2590 device to start properly, the fault timer duration must exceed $C_{LOAD}$ startup time, $t_{ON}$. Startup time without additional dc loading can be determined using Equation 6 where $P_{LIMIT} = 5$ W (typical).

$$t_{ON} = \frac{C_{LOAD} \times P_{LIMIT} + C_{LOAD} \times V_{IN}^2}{2 \times I_{LIMIT}^2}$$

When the load has a resistive component in addition to $C_{LOAD}$, the fault time must be extended because the resistive load current is unavailable to charge $C_{LOAD}$. Table 1 and Table 2 can be used to predict start-up time in the presence of resistive dc loading.

Refer to the TPS2590 Design Calculator Tool (SLUC398) for assistance with design calculations.

<table>
<thead>
<tr>
<th>$R_{LOAD} (\Omega)$</th>
<th>$C_{LOAD} = 100 \ \mu F$</th>
<th>$C_{LOAD} = 220 \ \mu F$</th>
<th>$C_{LOAD} = 470 \ \mu F$</th>
<th>$C_{LOAD} = 1000 \ \mu F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.43</td>
<td>0.95</td>
<td>2.03</td>
<td>4.33</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>1.11</td>
<td>2.36</td>
<td>5.03</td>
</tr>
<tr>
<td>5</td>
<td>0.61</td>
<td>1.34</td>
<td>2.87</td>
<td>6.1</td>
</tr>
<tr>
<td>3</td>
<td>0.91</td>
<td>2</td>
<td>4.28</td>
<td>9.11</td>
</tr>
<tr>
<td>2.5</td>
<td>1.31</td>
<td>2.88</td>
<td>6.14</td>
<td>13.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$R_{LOAD} (\Omega)$</th>
<th>$C_{LOAD} = 100 \ \mu F$</th>
<th>$C_{LOAD} = 220 \ \mu F$</th>
<th>$C_{LOAD} = 470 \ \mu F$</th>
<th>$C_{LOAD} = 1000 \ \mu F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>2.46</td>
<td>5.41</td>
<td>11.56</td>
<td>24.59</td>
</tr>
<tr>
<td>100</td>
<td>2.67</td>
<td>5.87</td>
<td>12.55</td>
<td>26.69</td>
</tr>
<tr>
<td>50</td>
<td>2.93</td>
<td>6.45</td>
<td>13.79</td>
<td>29.34</td>
</tr>
<tr>
<td>15</td>
<td>6.7</td>
<td>14.74</td>
<td>31.5</td>
<td>67.01</td>
</tr>
<tr>
<td>13</td>
<td>11.68</td>
<td>25.69</td>
<td>54.87</td>
<td>116.75</td>
</tr>
</tbody>
</table>

Maximum Allowable Load to Ensure Successful Start-Up

The power limiting function of the TPS2590 device provides very effective protection for the internal FET. Expectedly, there is a supply voltage dependent maximum allowable load required for successful startup. Loads above this can cause the output to shut off because of CT timeout or thermal shutdown because $V_{OUT}$ hangs at an intermediate voltage below $V_{IN}$. The equation for maximum load (or $R_{MIN}$) is derived using the circuit equations for $V_{OUT}$ as a function of $V_{IN}$, $R_{LOAD}$, $P_{LIMIT}$, and the result is quadratic in form.

$$R_{MIN} \times I^2 - V_{IN} \times I + P_{LIMIT} = 0$$

$$I = \frac{V_{IN} \pm \sqrt{V_{IN}^2 - 4 \times R_{MIN} \times P_{LIMIT}}}{2 \times R_{MIN}}$$

$$R_{MIN} \times I = V_{OUT} = \frac{V_{IN} \pm \sqrt{V_{IN}^2 - 4 \times R_{MIN} \times P_{LIMIT}}}{2}$$

When $R_{LOAD} < R_{MIN}$, the numerical result for $V_{OUT}$ is real ($V_{IN}^2 - 4 \times R_{LOAD} \times P_{LIMIT} > 0$) and less than $V_{IN}$ meaning the circuit will not start (CT or thermal shutdown). When $R_{LOAD} > R_{MIN}$, the numerical result for $V_{OUT}$ is imaginary ($V_{IN}^2 - 4 \times R_{LOAD} \times P_{LIMIT} < 0$) and the circuit will start ($V_{OUT} = V_{IN}$). Ensure that $R_{LOAD}$ is > $R_{MIN}$ per Equation 11.
Enable Pin Considerations

For the case when \( \overline{\text{EN}} \) is simply connected to GND, TPS2590 device begins ramping the voltage on OUT as IN rises above UVLO (~2.85 V typical). If IN does not ramp monotonically, the TPS2590 device can momentarily turn off then on during startup if IN falls below approximately 2.7 V. To avoid this problem, \( \overline{\text{EN}} \) assertion can be delayed until IN is sufficiently above UVLO. A simple approach is shown in Figure 16. The 100-kΩ pullup resistor de-asserts \( \overline{\text{EN}} \) when IN is above approximately 1.75 V maximum which is well below the minimum UVLO of approximately 2.6 V. The Zener diode ensures that \( \overline{\text{EN}} \) remains below 5 V. User control to enable the TPS2590 device can be applied at the ON node to turn on the FET once IN has risen sufficiently above UVLO.

Fault Timer

The fault timer is active when the TPS2590 device is in SOA protect mode or the current is above \( I_{\text{FAULT}} \). Figure 17 illustrates operation during non-faulted start-up (\( C_{\text{LOAD}} = 470 \mu\text{F} \) and \( I_{\text{OUT}} = 1 \text{ A} \) in a 12-V system). \( C_{\text{CT}} \) charges at approximately 35 \( \mu\text{A} \) until the TPS2590 device exits SOA-protect mode, discharges quickly (approximately 40 \( \mu\text{A} \)) to approximately 0.16 V, and then decays slowly (approximately 1.4 \( \mu\text{A} \)) towards zero.

\[
4 \times R_{\text{MIN}} \times P_{\text{LIM_MIN}} > V_{\text{IN}}^2
\]

\[
R_{\text{LOAD}} > R_{\text{MIN}} = \frac{V_{\text{IN}}^2}{4 \times P_{\text{LIM_MIN}}} = \frac{V_{\text{IN}}^2}{12}
\]
$C_{\text{CT}}$ can be chosen for fault-free start-up including expected $C_{\text{LOAD}}$ and $C_{\text{CT}}$ capacitance tolerance as shown in Equation 12.

$$C_{\text{CT}} = \frac{(1 + C_{\text{LOAD,TOL}} + C_{\text{CT,TOL}}) \times t_{\text{ON}}}{40000}$$

(12)

**Normal Operation**

When load current exceeds $I_{\text{FAULT}}$ during normal operation the fault timer starts. If load current drops below $I_{\text{FAULT}}$ before the fault timer expires, normal operation continues. If load current stays above the $I_{\text{FAULT}}$ threshold the fault timer expires and a fault is declared. When a fault is declared a device operating in latched mode ($RTRY > 2 \text{ V}$) turns off and can be restarted by cycling power or toggling the $\text{EN}$ signal. A device operating in retry mode ($RTRY < 0.8 \text{ V}$) attempts to turn on at a 3.7% duty cycle until the fault is cleared. When $I_{\text{LIM}}$ is reached during a fault the device goes into current-limit and the fault timer keeps running.

**Start-Up into a Short**

The controller attempts to power on into a short for the duration of the timer. Figure 13 shows a small current resulting from power limiting the internal MOSFET. This happens only once in latched mode. In Retry mode, the cycle repeats at a 3.7% duty cycle.

**Shutdown Modes**

**Hard Overload - Fast Trip**

When a hard overload causes the load current to exceed approximately $1.6 \times I_{\text{LIM}}$ the TPS2590 device immediately shuts off current to the load without waiting for the fault timer to expire. After such a shutoff the TPS2590 device enters startup mode and attempts to apply power to the load. If the hard overload was caused by a transient, then normal startup can be expected. If the hard overload is caused by a persistent, continuous failure then the TPS2590 device goes into current-limit during the restart attempt and either latches off or attempts retry depending on the state of the $RTRY$ input.
Overcurrent Shutdown

Overcurrent shutdown occurs when the output current exceeds $I_{\text{FAULT}}$ for the duration of the fault timer. Figure 8 shows a step rise in output current which exceeds the $I_{\text{FAULT}}$ threshold but not the $I_{\text{LIM}}$ threshold. The increased current is on for the duration of the timer. When the timer expires, the output is turned off.

Programming the Fault ($I_{\text{FAULT}}$) and Current-limit ($I_{\text{LIM}}$) Thresholds

The $I_{\text{FAULT}}$ and $I_{\text{LIM}}$ thresholds are user programmable with an external resistor. The TPS2590 device uses an internal regulation loop to provide a regulated voltage on the IFLT and ILIM pins. The current-limit thresholds are proportional to the current sourced out of IFLT and ILIM. The recommended 1% resistor range is $49.9 \, \Omega \leq R_{\text{RFLT}} \leq 200 \, \Omega$ and $40.2 \, \Omega \leq R_{\text{RLIM}} \leq 100 \, \Omega$ to ensure the rated accuracy. Many applications require that minimum fault and current-limits are known or that maximum current-limit is bounded. It is important to consider the tolerance of the fault and current-limit thresholds, as well as $R_{\text{RFLT}}$ and $R_{\text{RLIM}}$ when selecting values. See the ELECTRICAL CHARACTERISTICS table for specific fault and current-limit settings.

Using the data for $I_{\text{FAULT}}$ and $I_{\text{LIM}}$ from the ELECTRICAL CHARACTERISTICS table, equations can be generated and used for other set points. Equation 13 and Equation 14 are used to calculate minimum and maximum $I_{\text{FAULT}}$ where $R_{\text{RFLT, max}}$ and $R_{\text{RFLT, min}}$ include $R_{\text{RFLT}}$ tolerances. Equation 15 and Equation 16 calculate $R_{\text{RFLT, max}}$ and $R_{\text{RFLT, min}}$ where $R_{\text{TOL}}$ is the 1% resistor tolerance.

$$I_{\text{FAULT, min}} = \frac{185.58}{R_{\text{RFLT, max}}} - 0.13$$  \hspace{1cm} (13)

$$I_{\text{FAULT, max}} = \frac{213.68}{R_{\text{RFLT, min}}} + 0.13$$  \hspace{1cm} (14)

$$R_{\text{RFLT, min}} = (1 + R_{\text{TOL}}) \times \frac{213.68}{I_{\text{FAULT, max}} - 0.13}$$  \hspace{1cm} (15)

$$R_{\text{RFLT, max}} = (1 - R_{\text{TOL}}) \times \frac{185.58}{I_{\text{FAULT, min}} + 0.13}$$  \hspace{1cm} (16)

Equation 17 and Equation 18 are used to calculate minimum and maximum $I_{\text{LIM}}$ where $R_{\text{RLIM, max}}$ and $R_{\text{RLIM, min}}$ include $R_{\text{RLIM}}$ tolerances. Equation 19 and Equation 20 calculate $R_{\text{RLIM, max}}$ and $R_{\text{RLIM, min}}$ where $R_{\text{TOL}}$ is the 1% resistor tolerance.

$$I_{\text{LIM, min}} = \frac{201.9}{R_{\text{RLIM, max}}} - 0.44$$  \hspace{1cm} (17)

$$I_{\text{LIM, max}} = \frac{201.9}{R_{\text{RLIM, min}}} + 0.38$$  \hspace{1cm} (18)

$$R_{\text{RLIM, min}} = (1 + R_{\text{TOL}}) \times \frac{201.9}{I_{\text{LIM, max}} - 0.38}$$  \hspace{1cm} (19)

$$R_{\text{RLIM, max}} = (1 - R_{\text{TOL}}) \times \frac{201.9}{I_{\text{LIM, min}} + 0.44}$$  \hspace{1cm} (20)

Design Example

A typical design is shown in Figure 18 with the following requirements:

- Nominal input voltage, $V_{IN}$: 12 V
- Maximum expected load current, $I_{\text{OUT}}$: 3.7 A
- Load capacitance, $C_{\text{LOAD}}$: 100 µF
- Expected resistive load, $R_{\text{LOAD}}$ during start-up: 13 Ω
- Current-limit, $I_{\text{LIM, min}}$: $I_{\text{FAULT, max}}$
- Example calculations are shown in the TPS2590 Design Calculator Tool (SLUC398).
1. Calculate maximum $R_{RFLT}$ to ensure that minimum $I_{FAULT}$ is above maximum operating load current using Equation 16 as shown below in Equation 21.

$$R_{RFLT,max} = 0.99 \times \frac{185.58}{3.7 + 0.13} = 47.97\,\Omega$$

- Choose a standard 1% value below $R_{RFLT,max}$ for $R_{RFLT} = 47.5\,\Omega$
- $I_{FAULT,min} = 3.738\,A$ using Equation 13 and meets the maximum operating current requirement of 3.7 A without starting the fault timer during maximum steady state operation for $R_{RFLT} = 47.5\,\Omega$, 1%.
- $I_{FAULT,max} = 4.674\,A$ using Equation 14 for $R_{RFLT} = 47.5\,\Omega$, 1%.

2. Based on maximum $I_{FAULT} = 4.674\,A$, choose minimum $I_{LIM} = 4.7\,A$.
- Calculate $R_{RLIM,max} = 38.9\,\Omega$ using Equation 20 and 1% tolerance.
- Choose a standard 1% value below $R_{RLIM,max}$ for $R_{RLIM} = 38.3\,\Omega$.
- $I_{LIM,min} = 4.779\,A$ and $I_{LIM,max} = 5.705\,A$ using Equation 17 and Equation 18 for $R_{RLIM} = 38.3\,\Omega$, 1%.

3. Minimum $R_{LOAD}$ at start-up using Equation 11 is 12 $\Omega$. Because $R_{LOAD} = 13\,\Omega$ is present during circuit start-up, use $t_{ON} = 12\,\text{ms}$ from Table 2 for $C_{LOAD} = 100\,\mu\text{F}$ and $R_{LOAD} = 13\,\Omega$.
- Calculate $C_{CT} = 0.39\,\mu\text{F}$ including $C_{LOAD}$ and $C_{CT}$ tolerances ($C_{LOAD\_TOL} = 20\%$ and $C_{CT\_TOL} = 10\%$) using Equation 22.

$$C_{CT} = \frac{(1 + C_{LOAD\_TOL} + C_{T\_TOL}) \times t_{ON}}{40000} = \frac{(1 + 0.2 + 0.1) \times 0.012}{40000} = 0.39\mu\text{F}$$

**Transient Protection**

The need for transient protection in conjunction with hot-swap controllers should always be considered. When the TPS2590 device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. Such transients can easily exceed twice the supply voltage if steps are not taken to address the issue. Typical methods for addressing transients include:

- Minimizing lead length/inductance into and out of the device.
- Transient Voltage Suppressors (TVS) on the input to absorb inductive spikes.
- Schottky diode across the output to absorb negative spikes.
- A combination of ceramic and electrolytic capacitors on the input and output to absorb energy.

The following equation estimates the magnitude of these voltage spikes:
Where:

\[ V_{SPIKE(absolute)} = V_{NOM} + I_{LOAD} \times \frac{L}{\sqrt{C}} \]

- \( V_{NOM} \) equals the nominal supply voltage
- \( I_{LOAD} \) equals the load current
- \( C \) equals the capacitance present at the input or output of the TPS2590
- \( L \) equals the effective inductance seen looking into the source or the load

The inductance because of a straight length of wire equals approximately.

Where:

\[ L_{straightwire} \approx 0.2 \times L \times \ln \left( \frac{4 \times L}{D} - 0.75 \right) \text{ (nH)} \]

- \( L \) equals the length of the wire
- \( D \) equals wire diameter

Some applications may require the addition of a TVS to prevent transients from exceeding the absolute ratings if sufficient capacitance cannot be included.

### Layout

#### Support Components

Locate all TPS2590 support components, \( R_{RFLT}, R_{RLIM}, C_{CT} \), or any input or output voltage clamps, close to their connection pin. Connect the other end of the component to the inner layer GND without trace length. The traces routing the \( R_{RFLT} \) and \( R_{RLIM} \) resistors to the TPS2590 device must be as short as possible to reduce parasitic effects on fault and current-limit accuracy.

#### PowerPad™

When properly mounted the PowerPad package provides significantly greater cooling ability than an ordinary package. To operate at rated power the Power Pad must be soldered directly to the PC board GND plane directly under the device. The PowerPad is at GND potential and can be connected using multiple vias to inner layer GND. Other planes, such as the bottom side of the circuit board can be used to increase heat sinking in higher current applications. Refer to *Technical Briefs: PowerPAD™ Thermally Enhanced Package* (TI Literature Number SLMA002) and *PowerPAD™ Made Easy* (TI Literature Number SLMA004) for more information on using this PowerPad package. These documents are available at [www.ti.com](http://www.ti.com) (Search by Keyword).
REVISION HISTORY

Changes from Original (July 2009) to Revision A

- Changed the Application diagram ......................................................................................................................... 1

Changes from Revision A (July 2010) to Revision B

- Added Feature: UL Listed - File Number E169910 .............................................................................................................. 1
- Changed the Application diagram ......................................................................................................................... 1

Changes from Revision B (August 2010) to Revision C

- Added the IFLT description ........................................................................................................................................ 6
- Changed current-limit vs Junction Temperature graph .............................................................................................. 7

Changes from Revision C (September 2011) to Revision D

- Changed Figure 5 through Figure 15. ........................................................................................................................ 7

Changes from Revision D (October 2011) to Revision E

- Changed the RECOMMENDED OPERATING CONDITIONS table .................................................................................. 2
- Changed the ELECTRICAL CHARACTERISTICS table .............................................................................................. 3
- Changed the PIN DESCRIPTION, CT section ........................................................................................................... 5
- Changed the PIN DESCRIPTION, ILIM section ......................................................................................................... 6
- Changed the PIN DESCRIPTION, EN section ........................................................................................................... 6
- Changed the PIN DESCRIPTION, VIN section: 18 V to 20 V and VIN to IN ............................................................... 6
- Changed the PIN DESCRIPTION, OUT section ....................................................................................................... 6
- Changed the APPLICATION INFORMATION SECTION. Deleted the Maximum Load at Startup section. .......... 10
- Changed the Transient Protection section ................................................................................................................ 14

Changes from Revision E (April 2013) to Revision F

- Deleted Voltage IFAULT, ILIM from the ABSOLUTE MAXIMUM RATINGS table ............................................................... 2

Changes from Revision F (May 2013) to Revision G

- Deleted the minimum voltage from the voltage range listed in the document title, features list and description ..... 1
- Added 5-A to document title ...................................................................................................................................... 1
- Changed listed to recognized in last Features bullet. Also added 2367 to UL number .............................................. 1
- Added SSDs, PCIE, and Fan Control list items to the APPLICATIONS list ............................................................. 1
- Added UV turn-on threshold and bus voltage text to the first paragraph of the DESCRIPTION .............................. 1
- Deleted ORDERING INFORMATION table .............................................................................................................. 2
# PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS2590RSAR</td>
<td>ACTIVE</td>
<td>QFN</td>
<td>RSA</td>
<td>16</td>
<td>3000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TPS 2590</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS2590RSAT</td>
<td>ACTIVE</td>
<td>QFN</td>
<td>RSA</td>
<td>16</td>
<td>250</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TPS 2590</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check [http://www.ti.com/productcontent](http://www.ti.com/productcontent) for the latest availability information and additional product content details.
- **TBD:** The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

---

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
## TAPE AND REEL INFORMATION

### TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Sprocket Holes**
- **User Direction of Feed**
- **Pocket Quadrants**

*All dimensions are nominal.*

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS2590RSAR</td>
<td>QFN</td>
<td>RSA</td>
<td>16</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>4.25</td>
<td>4.25</td>
<td>1.15</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS2590RSAT</td>
<td>QFN</td>
<td>RSA</td>
<td>16</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>4.25</td>
<td>4.25</td>
<td>1.15</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
### TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS2590RSAR</td>
<td>QFN</td>
<td>RSA</td>
<td>16</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS2590RSAT</td>
<td>QFN</td>
<td>RSA</td>
<td>16</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal
RSA (S-PVQFN-N16)  PLASTIC QUAD FLATPACK NO-LEAD

**NOTES:**

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES:
A. All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com (http://www.ti.com).
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties of the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers agree that, with respect to their applications, Designers have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agrees that prior to using or distributing any applications that include TI products, Designers will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designers are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET OR OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designers will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated