TPS61042 Constant Current LED Driver

1 Features
- Current Source With Overvoltage Protection
- Input Voltage Range: 1.8 V to 6 V
- Internal 30 V Switch
- Up to 85% Efficiency
- Precise Brightness Control Using PWM Signal or Analog Signal
- Switching Frequency: Up to 1 MHz
- Internal Power MOSFET Switch: 500 mA
- Operates With Small Output Capacitors Down to 100 nF
- Disconnects LEDs During Shutdown
- No Load Quiescent Current: 38 µA Typ
- Shutdown Current: 0.1 µA Typ
- Available in a Small 3 mm × 3 mm QFN Package

2 Applications
- White LED Supply for Backlight/Sidelight Displays
  - PDA, Pocket PC, Smart Phones
  - Handheld Devices
  - Cellular Phones

3 Description
The TPS61042 is a high frequency boost converter with constant current output that drives white LEDs or similar. The LED current is set with the external sense resistor (R_s) and is directly regulated by the feedback pin (FB) that regulates the voltage across the sense resistor R_s to 252 mV (typ). To control LED brightness, the LED current can be pulsed by applying a PWM (pulse width modulated) signal with a frequency range of 100 Hz to 50 kHz to the control pin (CTRL). To allow higher flexibility, the device can be configured where the brightness can be controlled by an analog signal as well, as described in the application information section. To avoid possible leakage currents through the LEDs during shutdown, the control pin (CTRL) disables the device and disconnects the LEDs from ground. For maximum safety during operation, the output has integrated overvoltage protection that prevents damage to the device in case of a high impedance output (e.g. faulty LED).

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61042</td>
<td>SON (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Typical Application

![Diagram of the TPS61042 circuit](image)

† Larger output capacitor values of 1 µF and larger, reduce the LED ripple current and improve line regulation.
Table of Contents

1 Features ................................................................. 1
2 Applications ........................................................... 1
3 Description ............................................................. 1
4 Typical Application .................................................... 1
5 Revision History ....................................................... 2
6 Pin Configuration and Functions ................................. 3
7 Specifications .......................................................... 3
   7.1 Absolute Maximum Ratings ................................. 3
   7.2 ESD Ratings ........................................................ 4
   7.3 Recommended Operating Conditions ....................... 4
   7.4 Thermal Information ............................................ 4
   7.5 Electrical Characteristics ..................................... 5
   7.6 Typical Characteristics ........................................ 6
8 Detailed Description .................................................. 8
   8.1 Overview .......................................................... 8
   8.2 Functional Block Diagram ...................................... 8
9 Application and Implementation .................................. 11
   9.1 Application Information ........................................ 11
   9.2 Typical Application ............................................. 16
10 Power Supply Recommendations ............................... 21
11 Layout ................................................................. 21
   11.1 Layout Guidelines .............................................. 21
   11.2 Layout Example ................................................ 21
12 Device and Documentation Support ............................ 22
   12.1 Device Support .................................................. 22
   12.2 Documentation Support ...................................... 22
   12.3 Trademarks ...................................................... 22
   12.4 Electrostatic Discharge Caution ............................ 22
   12.5 Glossary ........................................................ 22
13 Mechanical, Packaging, and Orderable Information ........... 22

5 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (March 2007) to Revision D

Page

• Added Device Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ............................................................... 1
• Added the equation number to all the equations ............................................................. 9
6 Pin Configuration and Functions

The exposed thermal die pad is connected to GND.

### Pin Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>5</td>
<td>Combined enable and PWM control pin. If CTRL is constantly pulled high, the device is enabled and the internal LED switch (Q2) is constantly turned on. When CTRL is pulled to GND, the device is disabled. Apply a PWM signal (100 Hz to 50 kHz) to this pin to control the brightness of the LEDs.</td>
</tr>
<tr>
<td>FB</td>
<td>4</td>
<td>Feedback. FB regulates the LED current through the sense resistor by regulating the voltage across Rs to 252 mV.</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>LED</td>
<td>1</td>
<td>Input of the LED switch (Q2). Connect the LEDs to this pin.</td>
</tr>
<tr>
<td>OVP</td>
<td>7</td>
<td>Overvoltage protection. OVP is connected to the output capacitor of the converter.</td>
</tr>
<tr>
<td>RS</td>
<td>2</td>
<td>Output of the internal LED switch. The sense resistor that programs the LED current is connected to RS.</td>
</tr>
<tr>
<td>SW</td>
<td>8</td>
<td>Drain of the integrated switch (Q1)</td>
</tr>
<tr>
<td>VIN</td>
<td>3</td>
<td>Input supply pin.</td>
</tr>
</tbody>
</table>

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(IN) (VIN)</td>
<td></td>
<td>−0.3</td>
<td>7 V</td>
</tr>
<tr>
<td>V(Rs), V(CTRL), V(FB) (V(Rs), V(CTRL), V(FB))</td>
<td>−0.3</td>
<td>Vin + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>V(SW), V(LED) (V(SW), V(LED))</td>
<td>30</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(OVP) (V(OVP))</td>
<td></td>
<td>30</td>
<td>V</td>
</tr>
</tbody>
</table>

Continuous power dissipation

Operating junction temperature range

Storage temperature, T(STG)

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.
7.2 ESD Ratings

<table>
<thead>
<tr>
<th>$V_{(ESD)}$</th>
<th>Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001$^1$</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101$^2$</td>
<td>±750</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_I$</td>
<td>Input voltage range</td>
<td>1.8</td>
<td>6</td>
</tr>
<tr>
<td>$V_S$</td>
<td>Output voltage range</td>
<td>$V_{IN}$</td>
<td>27.5</td>
</tr>
<tr>
<td>$V_{SW}$</td>
<td>Switch voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>$I_{(LED)}$</td>
<td>Maximum LED switch current</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>$L$</td>
<td>Inductor$^1$</td>
<td>4.7</td>
<td>µH</td>
</tr>
<tr>
<td>$f$</td>
<td>Switching frequency$^1$</td>
<td>1</td>
<td>MHz</td>
</tr>
<tr>
<td>$C_I$</td>
<td>Input capacitor$^1$</td>
<td>4.7</td>
<td>µF</td>
</tr>
<tr>
<td>$C_O$</td>
<td>Output capacitor$^1$</td>
<td>100</td>
<td>nF</td>
</tr>
<tr>
<td>$T_A$</td>
<td>Operating ambient temperature</td>
<td>–40</td>
<td>85</td>
</tr>
<tr>
<td>$T_J$</td>
<td>Operating junction temperature</td>
<td>–40</td>
<td>125</td>
</tr>
</tbody>
</table>

(1) See application section for further information.

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC$^1$</th>
<th>TPS61042</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{JA}$</td>
<td>Junction-to-ambient thermal resistance</td>
<td>48.6</td>
</tr>
<tr>
<td>$R_{JUC(top)}$</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>66.9</td>
</tr>
<tr>
<td>$R_{JB}$</td>
<td>Junction-to-board thermal resistance</td>
<td>23.8</td>
</tr>
<tr>
<td>$\Psi_{JT}$</td>
<td>Junction-to-top characterization parameter</td>
<td>1.5</td>
</tr>
<tr>
<td>$\Psi_{JB}$</td>
<td>Junction-to-board characterization parameter</td>
<td>23.9</td>
</tr>
<tr>
<td>$R_{JUC(bot)}$</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>5.2</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
7.5 Electrical Characteristics

\( V_I = 3.6 \text{ V}, \ \text{CTRL} = V_I, \ T_A = -40^\circ\text{C} \text{ to } + 85^\circ\text{C} \), typical values are at \( T_A = 25^\circ\text{C} \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SUPPLY CURRENT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_I ) Input voltage range</td>
<td></td>
<td>1.8</td>
<td>6.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( I_{O} ) Operating quiescent current into ( V_I )</td>
<td>( I_O = 0 \ \text{mA}, \text{not switching} )</td>
<td>38</td>
<td>65</td>
<td></td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td>( I_{O(sd)} ) Shutdown current</td>
<td>( \text{CTRL} = \text{GND} )</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td>( V_{UVLO} ) Under-voltage lockout threshold</td>
<td>( V_I ), falling</td>
<td>1.5</td>
<td>1.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td><strong>CTRL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{IH} ) CTRL high level input voltage</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( V_{IL} ) CTRL low level input voltage</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( I_{kg} ) CTRL input leakage current</td>
<td>( \text{CTRL} = \text{GND or VIN} )</td>
<td>0.1</td>
<td></td>
<td></td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td>( t_{on} ) Minimum CTRL pulse width to enable</td>
<td>( \text{CTRL} = \text{low to high} )</td>
<td>50</td>
<td></td>
<td></td>
<td>( \mu\text{s} )</td>
</tr>
<tr>
<td>( t_{off} ) Minimum CTRL pulse width to disable</td>
<td>( \text{CTRL} = \text{high to low} )</td>
<td>10</td>
<td>32</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>( f_{(CTRL)} ) PWM switching frequency applied to CTRL</td>
<td></td>
<td>0.1</td>
<td>50</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>( D_{(CTRL)} ) PWM duty cycle applied to CTRL</td>
<td></td>
<td>1%</td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>POWER SWITCH AND CURRENT LIMIT (SW)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_S ) Maximum switch voltage</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( r_{ds(ON)} ) MOSFET on-resistance</td>
<td>( V_I = 3.6 \ \text{V}; \ I_{SW} = 200 \ \text{mA} )</td>
<td>300</td>
<td>600</td>
<td></td>
<td>m( \Omega )</td>
</tr>
<tr>
<td>( I_{kg} ) MOSFET leakage current</td>
<td>( V_{(SW)} = 28 \ \text{V} )</td>
<td>0.1</td>
<td>10</td>
<td></td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td>( I_{\text{LIM}} ) MOSFET current limit</td>
<td></td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>mA</td>
</tr>
<tr>
<td><strong>LED SWITCH AND CURRENT LIMIT (LED)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_S ) Maximum switch voltage</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( r_{ds(ON)} ) MOSFET on-resistance</td>
<td>( V_I = 3.6 \ \text{V}; \ I_S = 20 \ \text{mA} )</td>
<td>1</td>
<td>2</td>
<td></td>
<td>( \Omega )</td>
</tr>
<tr>
<td>( I_{kg} ) MOSFET leakage current</td>
<td>( V_{(LED)} = 28 \ \text{V} )</td>
<td>0.1</td>
<td></td>
<td></td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td><strong>OUTPUT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_O ) Output voltage range</td>
<td>( V_I )</td>
<td>27.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( I_{(FB)} ) Feedback input bias current(^1)</td>
<td>( V_{(FB)} = 0.252 \ \text{V} )</td>
<td>100</td>
<td></td>
<td></td>
<td>n( \text{A} )</td>
</tr>
<tr>
<td>( V_{FB} ) Feedback trip point voltage</td>
<td>( 1.8 \ \text{V} \leq V_I \leq 6 \ \text{V} )</td>
<td>244</td>
<td>252</td>
<td>260</td>
<td>m( \text{V} )</td>
</tr>
<tr>
<td>( V_{(OVP)} ) Output overvoltage protection</td>
<td>( V_O ), rising</td>
<td>27.5</td>
<td>29</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>( I_{\text{hys(OVP)}} ) Output overvoltage protection hysteresis</td>
<td></td>
<td>5</td>
<td>7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>( I_{(OVP)} ) OVP input current</td>
<td>( V_O = 15 \ \text{V} )</td>
<td>9</td>
<td>12</td>
<td></td>
<td>( \mu\text{A} )</td>
</tr>
</tbody>
</table>

\(^1\) The feedback input is high impedance MOSFET Gate input.
7.6 Typical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta$</td>
<td>Efficiency</td>
<td>vs LED current</td>
</tr>
<tr>
<td>$I_Q$</td>
<td>Operating Quiescent Current into $V_{IN}$</td>
<td>vs Input voltage and Temperature</td>
</tr>
<tr>
<td>$V_{(FB)}$</td>
<td>Feedback voltage</td>
<td>vs Temperature</td>
</tr>
<tr>
<td>$I_{(FB)}$</td>
<td>Feedback current</td>
<td>vs Temperature</td>
</tr>
<tr>
<td>$r_{ds(on)}$</td>
<td>Main switch Q1</td>
<td>vs Temperature</td>
</tr>
<tr>
<td>$I_{LED}$</td>
<td>Average LED current</td>
<td>vs PWM duty cycle on CTRL pin</td>
</tr>
</tbody>
</table>

Table 1. Table of Graphs

**Figure 1. Efficiency vs Output Current**

**Figure 2. Efficiency vs Input Voltage**

**Figure 3. Operating Quiescent Current into $V_{IN}$ vs Input Voltage and Temperature**

**Figure 4. Feedback Voltage vs Temperature**
**Figure 5. Feedback Current vs Temperature**

- Input Voltage - V
- On-State Resistance - Ω
- TA = 25°C

**Figure 6. r_{ds(on)} Main Switch (Q1) vs Temperature**

- Free-Air Temperature - °C
- TA = 27°C

**Figure 7. r_{ds(ON)} Main Switch (Q1) vs Input Voltage**

- TA = 25°C

**Figure 8. r_{ds(on)} LED Switch (Q2) vs Temperature**

- TA = 27°C

**Figure 9. r_{ds(on)} LED Switch (Q2) vs Input Voltage**

- TA = 25°C

**Figure 10. Average LED Current vs PWM Duty Cycle on CTRL Pin**

- Duty Cycle - %
- VCC = 3.6 V
- f_{PWM} = 100 Hz
- f_{PWM} = 50 kHz
- f_{PWM} = 25 kHz

Copyright © 2002–2014, Texas Instruments Incorporated
8 Detailed Description

8.1 Overview

The TPS61042 operates like a standard boost converter but regulates the voltage across the sense resistor (RS) instead of the output voltage. This gives an accurate regulated LED current independent of the input voltage and number of LEDs connected. With integrated overvoltage protection (OVP) the TPS61042 is configured as a current source with overvoltage protection ideally suited to drive LEDs. With the 30V internal switch, the device can generate output voltages of up to 27.5 V and has an internal 500mA MOSFET switch (Q1). This allows several LEDs to be connected in series to the output. The internal LED switch (Q2) in series with the LEDs has a maximum current rating of 60 mA and disconnects the LEDs from ground during shutdown. The LED switch is driven by a PWM signal applied to the control pin (CTRL), which directly controls the LED brightness. With this control method the LED brightness depends on the PWM duty cycle only and is independent of the PWM frequency and amplitude.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Boost Converter

The boost converter operates in a pulse frequency modulation (PFM) scheme with constant peak current control. This control scheme maintains high efficiency over the entire load current range and with a switching frequency of up to 1 MHz, enables the use of small external components. The converter monitors the sense voltage across RS with the feedback pin (FB) and, when the feedback voltage falls below the reference voltage (252 mV typ), the main switch turns on and the current ramps up. The main switch turns off when the inductor current reaches the internally set peak current of 500 mA (typ). Refer to the peak current control section for more information. The second criteria that turns off the main switch is the maximum on-time of 6 µs (typ). This limits the maximum on-time of the converter in extreme conditions. As the switch is turned off the external Schottky diode is forward biased, delivering the stored inductor energy to the output. The main switch remains off until the minimum off time of 400 ns (typ) has passed and the feedback voltage is below the reference voltage again. Using this PFM peak current control scheme, the converter operates in discontinuous conduction mode (DCM) where the switching frequency depends on the inductor, input and output voltage, and LED current. Lower LED currents reduce the switching frequency, which results in high efficiency over the entire LED current range. This regulation scheme is inherently stable, allowing a wide range for the selection of the inductor and output capacitor.

8.3.2 Peak Current Control (Boost Converter)

The internal switch is turned on until the inductor current reaches the DC current limit \( I_{\text{LIM}} \) of 500 mA (typ). Due to the internal current limit delay of 100 ns (typ) the actual current exceeds the DC current limit threshold by a small amount. The typical peak current limit can be calculated:

\[
I_{\text{P(typ)}} = I_{\text{(LIM)}} + \frac{V}{L} \times 100 \text{ ns}
\]

\[
I_{\text{P(typ)}} = 500 \text{ mA} + \frac{V}{L} \times 100 \text{ ns}
\]

The higher the input voltage and the lower the inductor value, the greater the current limit overshoot.

8.3.3 Softstart

All inductive step-up converters exhibit high in-rush current during start-up if no special precautions are taken. This can cause voltage drops at the input rail during start-up, which may result in an unwanted or premature system shutdown.

The TPS61042 limits this in-rush current during start-up by increasing the current limit in two steps starting from \( I_{\text{LIM}}/4 \) for 256 switch cycles to \( I_{\text{LIM}}/2 \) for the next 256 switch cycles and then full current limit. See Figure 23 for typical start-up behavior.

8.3.4 Control (CTRL)

The CTRL pin serves two functions. One is the enable and disable of the device. The other is the PWM control of the internal LED switch (Q2). If no PWM signal is applied to the CTRL pin, then the CTRL pin can be used as a standard enable pin for the device. To enable the device, the CTRL pin must be pulled high for time period of at least 50 µs. The device starts with the Softstart cycle. Pulling the CTRL pin to GND for a time period \( \geq 32 \text{ ms} \) disables the device, disconnecting the LEDs from GND by opening the LED switch (Q2) to avoid any LED leakage current. See Figure 11 for the CTRL pin timing.

The internal LED switch (Q2) is driven by the PWM signal when applied to the CTRL pin. Applying a PWM signal in the range of 100 Hz to 50 kHz allows the LED current to be pulsed with the duty cycle of the PWM signal. The CTRL pin accepts a PWM duty cycle from \( D = 1\% \) to 100%. Duty cycles below 1% are also possible with the restriction that the device is forced into shutdown as the off time of the applied PWM signal exceeds 10 ms.

When a PWM signal is applied to the CTRL pin the LED switch (Q2) turns on immediately. The internal error comparator is disabled for 400 ns. This 400 ns delay time is required to establish the correct voltage level across the sense resistor \( R_S \) after the LED switch (Q2) is closed.

To achieve good LED current accuracy and linearity, the switching frequency of the converter must be higher than the PWM frequency applied to the CTRL pin.
The CTRL timing diagram is shown in Figure 11. To enable the device, the CTRL signal must be high for 50 \( \mu \text{s} \). The PWM signal can then be applied with a pulse width \( (t_p) \) greater or smaller than \( t_{ON} \). To force the device into shutdown mode, the CTRL signal must be low for at least 32 ms. Requiring the CTRL pin to be low for 32 ms before the device enters shutdown allows for PWM dimming frequencies as low as 100 Hz. The device is enabled again when a CTRL signal is high for a period of 50 \( \mu \text{s} \) minimum. See Figure 10 for the PWM duty cycle versus LED current characteristic.

This CTRL pin must be terminated.

8.3.5 Applying a PWM Signal to the CTRL Pin with an On-Time \( t_p \leq 2.5 \mu \text{s} \)

In such a case the on-time of the PWM signal, \( t_p \), must be \( >2.5 \mu \text{s} \) until the softstart is completed. The softstart is completed after 512 switching cycles. To simply, estimate the softstart time, multiply the period of the PWM signal times 512, and add 50 \( \mu \text{s} \) to it. For a 50-kHz signal this would be 10.3 ms as a minimum softstart time period. After the softstart time is completed the PWM on time can be reduced to \( t_p >400 \text{ns} \).

8.4 Device Functional Modes

8.4.1 Overvoltage Protection (OVP)

As with any current source, the output voltage rises as the output impedance increases or is disconnected. To prevent the output voltage from exceeding the maximum main switch (Q1) voltage rating of 30 V, an overvoltage protection circuit is integrated. When the output voltage exceeds the OVP threshold voltage, (Q1) turns off. The converter switch remains off until the output voltage falls below the OVP threshold voltage. As long as the output voltage is below the OVP threshold the converter continues its normal operation, until the output voltage exceeds the OVP threshold again.

8.4.2 Undervoltage Lockout

An undervoltage lockout feature prevents mis-operation of the device at input voltages below 1.5 V (typ). As long as the input voltage is below the undervoltage threshold the device remains off, with the main MOSFET switch (Q1) and the LED switch (Q2) open.

8.4.3 Thermal Shutdown

An internal thermal shutdown is implemented in the TPS61042 that shuts down the device if the typical junction temperature of 160°C is exceeded. If the device is in thermal shutdown mode, the main MOSFET switch (Q1) and the LED switch (Q2) are open.
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Efficiency
The overall efficiency of the application depends on the specific application conditions and mainly on the selection of the inductor. A lower inductor value increases the switching frequency and switching losses yielding in a lower efficiency. A lower inductor dc resistance has lower copper losses, giving a higher efficiency. Therefore, the efficiency can typically vary ±5% depending on the selected inductor. Figure 1 and Figure 2 can be used as a guideline for the application efficiency. These curves show the typical efficiency powering four LEDs using a 4.7 µH inductor with just 1.2 mm height. The efficiency curve in Figure 1 and Figure 2 show the efficiency delivering the power to the LEDs rather than the overall converter efficiency and is calculated as:

\[
\eta = \frac{V_{\text{LED}} \times I_{\text{LED}}}{V_I \times I_I}
\]

(3)

9.1.2 Setting The LED Current
The converter regulates the LED current by regulating the voltage across the current sense resistor (R_S). The voltage across the sense resistor is regulated to the internal reference voltage of V_{(FB)} = 252 mV.

The LED current can be calculated:

\[
I_{LED} = \frac{V_{FB}}{R_S} = \frac{0.252 \text{ V}}{R_S}
\]

(4)

The current programming method is used when the brightness of the LEDs is fixed or controlled by a PWM signal applied to the CTRL pin. When using a PWM signal on the CTRL pin, the LED brightness is only dependent on the PWM duty cycle, independent of the PWM frequency, or amplitude, which simplifies the system.

Alternatively, an analog voltage can be used as well to control the LED brightness.
In Figure 13 the LED current is determined by the voltage applied to R2 ($V_{\text{adj}}$) and the selection of R1, R2 and the sense resistor ($R_s$). In this configuration, the LED current is linear controlled instead of pulsed as in the configuration before. To select the resistor values following steps are required.

1. Select the voltage $V_{\text{adj,max}}$ to turn the LEDs off. → $V_{\text{adj,max}}$ (e.g. 3.3 V)
2. Select the voltage $V_{\text{adj,min}}$ to turn the LEDs fully on. → $V_{\text{adj,min}}$ (e.g. 0.0 V)
3. Select the maximum and minimum LED current $I_{O(max)}$ and $I_{O(min)}$. → (e.g. $I_{O(max)} = 20$ mA, $I_{O(min)} = 0$ mA)
4. Calculate R2 to achieve a feedback current in the range of $I_1 = 3$ µA to $10$ µA as the LEDs are fully turned on:

$$R_2 = \frac{V_{\text{ref}} - V_{\text{adj,min}}}{I_1}$$

5. Calculation of R1

$$R_1 = \frac{V_{\text{ref}} \times I_{O(max)} \times R_2 + V_{\text{adj,min}} - I_{O(min)} \times R_2 - V_{\text{adj,max}}}{V_{\text{adj,max}} \times I_{O(max)} + V_{\text{ref}} \times I_{O(min)} - V_{\text{adj,min}} \times I_{O(min)} - V_{\text{ref}} \times I_{O(max)}}$$

6. Calculation of the sense voltage ($V_S$) at maximum LED current

$$V_S = V_{\text{ref}} \times \left(1 + \frac{R_1}{R_2}\right) - \frac{R_1}{R_2} \times V_{\text{adj,min}}$$

7. Calculation of the required sense resistor ($R_S$)

$$R_S = \frac{V_S}{I_{O(max)}}$$

9.1.3 PWM Control With Separate Enable

The control pin (CTRL) combines the enable function as well as the PWM brightness control function in one pin. For some systems an independent enable function is required. One way to implement this is to use the brightness control configuration as shown in the previous section Figure 13.

Other possible solutions are shown in Figure 14, Figure 15, Figure 16.
Application Information (continued)

![Diagram of PWM Brightness Control and Enable (EN)](image)

**Figure 14. Separate Enable and PWM Control Using a Schottky Diode**

![Diagram of PWM Brightness Control and Enable (EN)](image)

**Figure 15. Separate Enable and PWM Control Using a Transistor**

![Diagram of PWM Brightness Control and Enable (EN)](image)

**Figure 16. Separate Enable and PWM Control Using an AND Gate**

9.1.4 Example Schematics

![Diagram of TPS61042 with Low LED Ripple Current and Higher Accuracy Using a 4.7 μF Output Capacitor](image)

**Figure 17. TPS61042 With Low LED Ripple Current and Higher Accuracy Using a 4.7 μF Output Capacitor**
Application Information (continued)

Figure 18. TPS61042 Powering 6 LEDs, Efficiency = 84% @ $V_i = 3.6\, V/19\, mA$

Figure 19. TPS61042 Powering 8 LEDs, Efficiency = 81% @ $V_i = 3.6\, V/18.6\, mA$
Application Information (continued)

Figure 20. Adjustable Brightness Control Using an Analog Voltage

Figure 21. Alternative Adjustable Brightness Control Using PWM Signal
9.2 Typical Application

Figure 22. TPS61042 With 1.0 mm Total System Height. Efficiency = 82.7%@V\textsubscript{i} = 3.0 V/19 mA

9.2.1 Design Requirements

Table 2. Design Parameters

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>Typical VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>1.8 V to 6 V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V\textsubscript{IN} to 27.5 V</td>
</tr>
<tr>
<td>Dimming frequency</td>
<td>0.1 to 50 kHz</td>
</tr>
</tbody>
</table>

9.2.2 Detailed Design Procedure

9.2.2.1 Inductor Selection, Maximum Load Current, and Switching Frequency

The PFM peak current control scheme of the TPS61042 is inherently stable. The inductor value does not affect the stability of the regulator. The selection of the inductor together with the nominal LED current, input, and output voltage of the application determines the switching frequency of the converter.

The first step is to calculate the maximum load current the converter can support using the selected inductor. The inductor value has less effect on the maximum available load current and is only of secondary order. A good inductor value to start with is 4.7 µH. Depending on the application, inductor values down to 1.0 µH can be used.

The maximum inductor value is determined by the maximum on time of the switch of 6 µs (typ). The peak current limit of 500 mA (typ) must be reached within this 6 µs for proper operation. The maximum load current of the converter is determined at the operation point where the converter starts to enter the continuous conduction mode. The converter must always operate in discontinuous conduction mode to maintain regulation.

Depending on the time period of the inductor current fall time being larger or smaller compared to the minimum off time of the converter (400ns typ), the maximum load current can be calculated.

Inductor fall time:

\[ t_{\text{fall}} = \frac{ip \times L}{V_{\text{OUT}} - V_{\text{IN}}} \]  

(9)

For \( t_{\text{fall}} \geq 400 \) ns

\[ I_{\text{load max}} = \eta \frac{ip \times V_{\text{IN}}}{2 \times V_{\text{OUT}}} \]  

(10)
for \( t_{\text{fall}} \leq 400 \text{ ns} \)

\[
I_{\text{LOAD MAX}} = \eta \times \frac{ip^2 \times L \times V_{\text{in}}}{(V_{\text{out}} - V_{\text{in}}) \times (2 \times ip \times L + 2 \times 400 \text{ ns} \times V_{\text{in}})}
\]  

(11)

with:

- \( L = \) selected inductor value
- \( \eta = \) expected converter efficiency. Typically between 70% to 85%
- \( ip = 500 \text{ mA} + \frac{V_{\text{IN}}}{L} \times 100 \text{ ns} \)

(Peak inductor current as described in the peak current control section)

The above formula contains the expected converter efficiency that allows calculating the expected maximum load current the converter can support. The efficiency can be taken out of the efficiency graphs shown in Figure 1 and Figure 2 or 80% can be used as an accurate estimation.

If the converter can support the desired LED current, the next step is to calculate the converter switching frequency at the operation point, which must be \( \leq 1 \text{ MHz} \). Also the converter switching frequency should be much higher than the applied PWM frequency at the CTRL pin to avoid non-linear brightness control. Assuming the converter shows no double pulses or pulse bursts (Figure 24, Figure 25) on the switch node (SW) the switching frequency at the operation point can be calculated as:

\[
J_{S(\text{LOAD})} = \frac{2 \times I_{\text{LOAD}} (V_{O} - V_{I} + V_{F})}{(I_{(\text{LIM})} + \frac{V_{\text{IN}}}{L} \times 100 \text{ ns})^2 \times L}
\]

(13)

with:

- \( I_{(\text{LIM})} = \) minimum switch current limit (500 mA typ)
- \( L = \) selected inductor value
- \( I_{(\text{LOAD})} = \) nominal load or LED current
- \( V_{F} = \) Rectifier diode forward voltage (typically 0.3 V)

The smaller the inductor value, the higher the switching frequency of the converter but the lower the efficiency.

The selected inductor must have a saturation current that meets the maximum peak current of the converter as calculated in the peak current control section. Use the maximum value for \( I_{(\text{LIM})} \) (600mA) for this calculation.

Another important inductor parameter is the DC resistance. The lower the DC resistance the higher the efficiency of the converter. See Table 3 and Figure 22 to Figure 21 for inductor selection.

### Table 3. Possible Inductor(1)

<table>
<thead>
<tr>
<th>INDUCTOR VALUE</th>
<th>COMPONENT SUPPLIER</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µH</td>
<td>muRata LQH43CN100K01</td>
<td>4.5 mm×3.2 mm×2.6 mm</td>
</tr>
<tr>
<td>4.7 µH</td>
<td>muRata LQH32CN4R7M11</td>
<td>3.2 mm×2.5 mm×2.0 mm</td>
</tr>
<tr>
<td>10 µH</td>
<td>Coilcraft DO1605T-103MX</td>
<td>5.5 mm×4.1 mm×1.8 mm</td>
</tr>
<tr>
<td>4.7 µH</td>
<td>Sumida CDRH3D16-4R7</td>
<td>3.8 mm×3.8 mm×1.8 mm</td>
</tr>
<tr>
<td>3.3 µH</td>
<td>Sumida CMD4D11-3R3</td>
<td>3.5 mm×5.3 mm×1.2 mm</td>
</tr>
<tr>
<td>4.7 µH</td>
<td>Sumida CMD4D11-4R7</td>
<td>3.5 mm×5.3 mm×1.2 mm</td>
</tr>
<tr>
<td>3.3 µH</td>
<td>Sumida CMD4D11-3R3</td>
<td>3.5 mm×5.3 mm×1.2 mm</td>
</tr>
<tr>
<td>4.7 µH</td>
<td>Coiltronics SD12-4R7</td>
<td>5.2 mm×5.2 mm×1.2 mm</td>
</tr>
<tr>
<td>3.3 µH</td>
<td>Coilcraft LPO1704-332M</td>
<td>6.6 mm×5.5 mm×1.0 mm</td>
</tr>
<tr>
<td>4.7 µH</td>
<td>Coilcraft LPO1704-472M</td>
<td>6.6 mm×5.5 mm×1.0 mm</td>
</tr>
</tbody>
</table>

(1) See Third-Party Products Disclaimer
9.2.2.2 Output Capacitor Selection and Line Regulation

For better output voltage filtering, a low ESR output capacitor is recommended. Ceramic capacitors have a low ESR value, but depending on the application, tantalum capacitors can be used.

The selection of the output capacitor value directly influences the output voltage ripple of the converter which also influences line regulation. The larger the output voltage ripple, the larger the line regulation, which means that the LED current changes if the input voltage changes. If a certain change in LED current gives a noticeable change in LED brightness, depends on the LED manufacturer and on the application. Applications requiring good line regulation \( \leq 1\% / V \) (typ) must use output capacitor values \( \geq 1 \mu F \).

See Table 3 and Figure 22 to Figure 21 for the selection of the output capacitor.

Assuming the converter does not show double pulses or pulse bursts on the switch node (SW), the output voltage ripple is calculated as (see Figure 24, Figure 25):

\[
\Delta V_O = \frac{I_O}{C_O} \left[ \frac{1}{f_S(Load)} - \frac{I_(LIM) + V_T / L \times 100 \text{ ns}}{V_O + V_F - V_I} \right] \times L + I_P \times ESF
\]

with:

- \( I_(LIM) = \) minimum switch current limit (400 mA typ)
- \( L = \) selected inductor value
- \( I_(LOAD) = \) nominal load current
- \( f_S = \) switching frequency at the nominal load current as calculated before.
- \( V_F = \) rectifier diode forward voltage (0.3 V typ)
- \( C_O = \) selected output capacitor
- \( ESR = \) output capacitor ESR value
9.2.2.3 Input Capacitor Selection

For good input voltage filtering, low ESR ceramic capacitors are recommended. A 4.7 µF ceramic input capacitor is sufficient for most applications. For better input voltage filtering the capacitor value can be increased. Refer to Table 2 and Figure 22 to Figure 21 for input capacitor selection.

<table>
<thead>
<tr>
<th>CAPACITOR</th>
<th>VOLTAGE RATING</th>
<th>COMPONENT SUPPLIER</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 µF/X5R/0805</td>
<td>6.3 V</td>
<td>Tayo Yuden JMK212BY475MG</td>
<td>C_i</td>
</tr>
<tr>
<td>10 µF/X5R/0805</td>
<td>6.3 V</td>
<td>Tayo Yuden JMK212BJ106MG</td>
<td>C_i</td>
</tr>
<tr>
<td>100 nF</td>
<td>Any</td>
<td>Any</td>
<td>C_O</td>
</tr>
<tr>
<td>220 nF</td>
<td>Any</td>
<td>Any</td>
<td>C_O</td>
</tr>
<tr>
<td>470 nF</td>
<td>Any</td>
<td>Any</td>
<td>C_O</td>
</tr>
<tr>
<td>1.0 µF/X7R/1206</td>
<td>25 V</td>
<td>Tayo Yuden TMK316BJ105KL</td>
<td>C_O</td>
</tr>
<tr>
<td>1.0 µF/X7R/1206</td>
<td>35 V</td>
<td>Tayo Yuden GMK316BJ105KL</td>
<td>C_O</td>
</tr>
<tr>
<td>4.7 µF/X5R/1210</td>
<td>25 V</td>
<td>Tayo Yuden TMK325BJ475MG</td>
<td>C_O</td>
</tr>
</tbody>
</table>

(1) See Third-Party Products Disclaimer

9.2.2.4 Diode Selection

To achieve high efficiency, a Schottky diode must be used. The current rating of the diode must meet the peak current rating of the converter as it is calculated in the peak current control section. Use the maximum value for I_{(Lim)} for this calculation. See Table 5 and Figure 22 to Figure 21 for the Schottky diode selection.

<table>
<thead>
<tr>
<th>COMPONENT SUPPLIER</th>
<th>REVERSE VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON Semiconductor MBR0530</td>
<td>30 V</td>
</tr>
<tr>
<td>ON Semiconductor MBR0520</td>
<td>20 V</td>
</tr>
<tr>
<td>Toshiba CRS02</td>
<td>30 V</td>
</tr>
<tr>
<td>Zetex ZHCS400</td>
<td>40 V</td>
</tr>
</tbody>
</table>

(1) See Third-Party Products Disclaimer
9.2.3 Application Curves

Figure 23. Softstart

Figure 24. PFM Operation

Figure 25. Bust Mode Operation

Figure 26. PWM Dimming
10 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 1.8 V and 6 V. The input power supply's output current needs to be rated according to the supply voltage, output voltage and output current of TPS61042.

11 Layout

11.1 Layout Guidelines

In all switching power supplies the layout is an important step in the design, especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might show noise problems and duty cycle jitter.

The input capacitor should be placed as close as possible to the input pin for good input voltage filtering. The inductor and diode must be placed as close as possible to the switch pin to minimize noise coupling into other circuits. Since the feedback pin and network is a high impedance circuit, the feedback network should be routed away from the inductor.

11.2 Layout Example

11.2.1 Thermal Considerations

The TPS61042 comes in a thermally enhanced QFN package. The package includes a thermal pad improving the thermal capabilities of the package. See the QFN/SON PCB Attachment application note (SLUA271).

The thermal resistance junction to ambient $R_{JA}$ of the QFN package greatly depends on the PCB layout. Using thermal vias and wide PCB traces improves the thermal resistance $R_{JA}$. Under normal operation conditions no PCB vias are required for the thermal pad. However, the thermal PowerPAD™ must be soldered to the PCB.
12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

QFN/SON PCB Attachment application note (SLUA271)

12.3 Trademarks

PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
### PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61042DRBR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BHS</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS61042DRBRG4</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BHS</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS61042DRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BHS</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS61042DRBTG4</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>BHS</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check [http://www.ti.com/productcontent](http://www.ti.com/productcontent) for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
## TAPE AND REEL INFORMATION

### REEL DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61042DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
<tr>
<td>TPS61042DRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.*

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

---

Pack Materials-Page 1
## TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal*

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61042DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS61042DRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Small Outline No-Lead (SON) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

PIN 1 ORIENTATION FEATURE MAY VARY

Bottom View

Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA27L, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

| Audio       | www.ti.com/audio |
| Amplifiers  | amplifier.ti.com |
| Data Converters | dataconverter.ti.com |
| DLP® Products | www.dlp.com |
| DSP         | dsp.ti.com |
| Clocks and Timers | www.ti.com/clocks |
| Interface   | interface.ti.com |
| Logic       | logic.ti.com |
| Power Mgmt  | power.ti.com |
| Microcontrollers | microcontroller.ti.com |
| RFID        | www.ti-rfid.com |
| OMAP Applications Processors | www.ti.com/omap |
| Wireless Connectivity | www.ti.com/wirelessconnectivity |

Applications

| Automotive and Transportation | www.ti.com/automotive |
| Communications and Telecom   | www.ti.com/communications |
| Computers and Peripherals    | www.ti.com/computers |
| Consumer Electronics         | www.ti.com/consumer-apps |
| Energy and Lighting          | www.ti.com/energy |
| Industrial                   | www.ti.com/industrial |
| Medical                      | www.ti.com/medical |
| Security                     | www.ti.com/security |
| Space, Avionics and Defense  | www.ti.com/space-avionics-defense |
| Video and Imaging            | www.ti.com/video |
| TI E2E Community             | e2e.ti.com |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated