ULTRALOW QUIESCENT CURRENT 250-mA
LOW DROPOUT VOLTAGE REGULATORS

FEATURES

- 250-mA Low Dropout Voltage Regulator
- Available in 1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V, 5.0 V Fixed Output and Adjustable Versions
- Dropout Voltage to 140 mV (Typ) at 250 mA (TPS76650)
- Ultralow 35-µA Typical Quiescent Current
- 3% Tolerance Over Specified Conditions for Fixed Output Versions
- Open-Drain Power Good
- 8-Pin SOIC Package
- Thermal Shutdown Protection

DESCRIPTION

This device is designed to have an ultralow quiescent current and be stable with a 4.7-µF capacitor. This combination provides high performance at a reasonable cost. Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 230 mV at an output current of 250 mA for the TPS76650) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (typically 35 µA over the full range of output current, 0 mA to 250 mA). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to EN (enable) shuts down the regulator, reducing the quiescent current to less than 1 µA (typ).

Power good (PG) is an active high output that can be used to implement a power-on reset or a low-battery indicator.

The TPS766xx is offered in 1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V and 5.0 V fixed voltage versions and in an adjustable version (programmable over the range of 1.25 V to 5.5 V). Output voltage tolerance is specified as a maximum of 3% over line, load, and temperature ranges. The TPS766xx family is available in an 8-pin SOIC package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999–2009, Texas Instruments Incorporated
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>V<sub>OUT</sub><sup>(2)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS766xyz</td>
<td>XX is nominal output voltage (for example, 28 = 2.8V, 01 = Adjustable).<sup>(3)</sup> Y is package designator. Z is package quantity.</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
(2) Output voltages from 1.5 V to 5.0 V in 50-mV increments are available through the use of innovative factory EEPROM programming; minimum order quantities may apply. Contact factory for details and availability.
(3) The TPS76601 is programmable using an external resistor divider (see Application Information).

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted).⁽¹⁾

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TPS766xx</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>i</sub></td>
<td>Input voltage range<sup>(2)</sup></td>
<td>–0.3 to 13.5</td>
</tr>
<tr>
<td>Voltage range at EN</td>
<td>–0.3 to 16.5</td>
<td>V</td>
</tr>
<tr>
<td>Maximum PG voltage</td>
<td>16.5</td>
<td>V</td>
</tr>
<tr>
<td>Peak output current</td>
<td>Internally limited</td>
<td></td>
</tr>
<tr>
<td>Continuous total power dissipation</td>
<td>See Dissipation Ratings Table</td>
<td></td>
</tr>
<tr>
<td>V<sub>O</sub></td>
<td>Output voltage (OUT, FB)</td>
<td>7</td>
</tr>
<tr>
<td>T<sub>J</sub></td>
<td>Operating virtual junction temperature range</td>
<td>–40 to +125</td>
</tr>
<tr>
<td>T<sub>stg</sub></td>
<td>Storage temperature range</td>
<td>–65 to +150</td>
</tr>
<tr>
<td>ESD rating, HBM</td>
<td>2</td>
<td>kV</td>
</tr>
</tbody>
</table>

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) All voltage values are with respect to network terminal ground.

DISSIPATION RATINGS

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>AIR FLOW (CFM)</th>
<th>T<sub>A</sub> < +25°C POWER RATING</th>
<th>DERATING FACTOR ABOVE T<sub>A</sub> = +25°C</th>
<th>T<sub>A</sub> = +70°C POWER RATING</th>
<th>T<sub>A</sub> = +85°C POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0</td>
<td>568 mW</td>
<td>5.68 mW/°C</td>
<td>312 mW</td>
<td>227 mW</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>904 mW</td>
<td>9.04 mW/°C</td>
<td>497 mW</td>
<td>361 mW</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>i</sub></td>
<td>2.7</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>O</sub></td>
<td>1.2</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>O</sub></td>
<td>0</td>
<td>250</td>
<td>mA</td>
</tr>
<tr>
<td>T<sub>J</sub></td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) To calculate the minimum input voltage for your maximum output current, use the following equation: V_(min) = V_D(max) + V_O(max load)
(2) Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.
ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range, $V_i = V_{O\text{typ}}$ + 1 V, $I_O = 10$ µA, $EN = 0$ V, $C_O = 4.7$ µF (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (10 µA to 250 mA load)$^{(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS76601</td>
<td>$5.5 , V \geq V_O \geq 1.25 , V$, $T_J = +25^\circ C$</td>
<td>V_O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS76615</td>
<td>$5.5 , V \geq V_O \geq 1.25 , V$, $T_J = -40^\circ C$ to +125$^\circ C$</td>
<td>$0.97 , V_O$, $1.03 , V_O$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS76618</td>
<td>$T_J = +25^\circ C$, $2.7 , V < V_{IN} < 10 , V$</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS76625</td>
<td>$T_J = -40^\circ C$ to +125$^\circ C$, $2.7 , V < V_{IN} < 10 , V$</td>
<td>$1.455 , V$, $1.545 , V$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS76627</td>
<td>$T_J = +25^\circ C$, $2.8 , V < V_{IN} < 10 , V$</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS76630</td>
<td>$T_J = -40^\circ C$ to +125$^\circ C$, $2.8 , V < V_{IN} < 10 , V$</td>
<td>$1.746 , V$, $1.854 , V$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent current (GND current) $EN = 0$ V$^{(1)}$</td>
<td>$10 , \mu A < I_O < 250 , mA$, $T_J = +25^\circ C$</td>
<td>35</td>
<td>50</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>$I_O = 10 , \mu A$ to 250 mA</td>
<td>0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>$BW = 300$ Hz to 50 kHz, $C_O = 4.7 , \mu F$, $T_J = +25^\circ C$</td>
<td>200</td>
<td>μVRms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current limit</td>
<td>$V_O = 0$ V</td>
<td>0.8</td>
<td>1.2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Thermal shutdown junction temperature</td>
<td></td>
<td>150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby current</td>
<td>$EN = V_i$, $T_J = +25^\circ C$, $2.7 , V < V_I < 10 , V$</td>
<td>1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB input current</td>
<td>TPS76601</td>
<td>$FB = 1.5$ V</td>
<td>2</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>High level enable input voltage</td>
<td></td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level enable input voltage</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-supply ripple rejection$^{(1)}$</td>
<td>$f = 1$ kHz, $I_O = 10$ µA, $C_O = 4.7 , \mu F$, $T_J = +25^\circ C$</td>
<td>63</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ Minimum IN operating voltage is 2.7 V or $V_{O\text{typ}}$ + 1 V, whichever is greater. Maximum IN voltage is 10 V.

$^{(2)}$ If $V_O \geq 1.8$ V then $V_{\text{min}} = 2.7$ V, $V_{\text{max}} = 10$ V.

- **Line Reg. (mV) = (V/O) x $V_O(V_{\text{max}} - 2.7 \, V) / 100$ x 1000**
- **Line Reg. (mV) = (V/O) x $V_O(V_{\text{max}} - (V_O + 1 \, V)) / 100$ x 1000**

Copyright © 1999–2009, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Link(s): TPS76615 TPS76618 TPS76625 TPS76627 TPS76628 TPS76630 TPS76633 TPS76650 TPS76601
ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating free-air temperature range, \(V_i = V_{O\text{Typ}} + 1 \) V, \(I_o = 10 \) µA, \(EN = 0 \) V, \(C_O = 4.7 \) µF (unless otherwise noted).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td>Minimum input voltage for valid PG (I_{O(PG)} = 300) µA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip threshold voltage (V_O) decreasing</td>
<td>92</td>
<td></td>
<td>98%</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Hysteresis voltage (V_O) decreasing</td>
<td>0.5</td>
<td></td>
<td></td>
<td>%V_O</td>
</tr>
<tr>
<td></td>
<td>Output low voltage (V_i = 2.7) V, (I_{O(PG)} = 1) mA</td>
<td>0.15</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Leakage current (V_{(PG)} = 5) V</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

| Input current (\(EN \)) | \(EN = 0 \) V | -1 | | 0 | 1 µA |
| | \(EN = V_i \) | -1 | | 1 | 1 µA |

Dropout voltage

TPS76628	\(I_o = 250 \) mA, \(T_J = +25^\circ \)C	310			mV
	\(I_o = 250 \) mA, \(T_J = -40^\circ \)C to +125^\circ \)C	540			
TPS76630	\(I_o = 250 \) mA, \(T_J = +25^\circ \)C	270			
	\(I_o = 250 \) mA, \(T_J = -40^\circ \)C to +125^\circ \)C	470			
TPS76633	\(I_o = 250 \) mA, \(T_J = +25^\circ \)C	230			
	\(I_o = 250 \) mA, \(T_J = -40^\circ \)C to +125^\circ \)C	400			
TPS76650	\(I_o = 250 \) mA, \(T_J = +25^\circ \)C	140			
	\(I_o = 250 \) mA, \(T_J = -40^\circ \)C to +125^\circ \)C	250			

\(^{(3)}\) IN voltage equals \(V_{O(Typ)} - 100 \) mV; TPS76601 output voltage set to 3.3 V nominal with external resistor divider. TPS76615, TPS76618, TPS76625, and TPS76627 dropout voltage limited by input voltage range limitations (that is, TPS76630 input voltage must drop to 2.9 V for purpose of this test).

(1) See Applications Information section for capacitor selection details.

Figure 1. Typical Application Configuration for Fixed Output Options
FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSION

FUNCTIONAL BLOCK DIAGRAM—FIXED-VOLTAGE VERSION
TPS766xx

<table>
<thead>
<tr>
<th>NAME</th>
<th>NO.</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>4</td>
<td>I</td>
<td>Enable input.</td>
</tr>
<tr>
<td>FB/NC</td>
<td>1</td>
<td>I</td>
<td>Feedback input voltage for adjustable device (not connected for fixed options).</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td></td>
<td>Regulator ground.</td>
</tr>
<tr>
<td>IN</td>
<td>5, 6</td>
<td>I</td>
<td>Input voltage.</td>
</tr>
<tr>
<td>OUT</td>
<td>7, 8</td>
<td>O</td>
<td>Regulated output voltage.</td>
</tr>
<tr>
<td>PG</td>
<td>2</td>
<td>O</td>
<td>Power good output.</td>
</tr>
</tbody>
</table>

Table 1. Table of Graphs

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage vs Load current</td>
<td>Figure 2, Figure 3</td>
</tr>
<tr>
<td>Output voltage vs Free-air temperature</td>
<td>Figure 4, Figure 5</td>
</tr>
<tr>
<td>Ground current vs Load current</td>
<td>Figure 6, Figure 7</td>
</tr>
<tr>
<td>Ground current vs Free-air temperature</td>
<td>Figure 8, Figure 9</td>
</tr>
<tr>
<td>Power-supply ripple rejection vs Frequency</td>
<td>Figure 10</td>
</tr>
<tr>
<td>Output spectral noise density vs Frequency</td>
<td>Figure 11</td>
</tr>
<tr>
<td>Output impedance vs Frequency</td>
<td>Figure 12</td>
</tr>
<tr>
<td>Dropout voltage vs Free-air temperature</td>
<td>Figure 13, Figure 14</td>
</tr>
<tr>
<td>Line transient response</td>
<td>Figure 15, Figure 17</td>
</tr>
<tr>
<td>Load transient response</td>
<td>Figure 16, Figure 18</td>
</tr>
<tr>
<td>Output voltage vs Time</td>
<td>Figure 19</td>
</tr>
<tr>
<td>Dropout voltage vs Input voltage</td>
<td>Figure 20</td>
</tr>
<tr>
<td>Equivalent series resistance (ESR) vs Output current</td>
<td>Figure 21 to Figure 24</td>
</tr>
<tr>
<td>Equivalent series resistance (ESR) vs Added ceramic capacitance</td>
<td>Figure 25, Figure 26</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

TPS76615
TPS76618
TPS76625
TPS76627, TPS76628, TPS76630
TPS76633, TPS76650, TPS76601

TPS76633
TPS76615

OUTPUT VOLTAGE

VS

LOAD CURRENT

Figure 2.

V_T = 4.3 V
T_A = 25°C

V_T = 2.7 V
T_A = 25°C

Figure 3.

TPS76633
TPS76615

OUTPUT VOLTAGE

VS

FREE-AIR TEMPERATURE

Figure 4.

V_T = 4.3 V
I_O = 10 μA

I_O = 250 mA

V_T = 2.7 V
I_O = 10 μA

I_O = 250 mA

Figure 5.
TPS76633
GROUND CURRENT
vs
LOAD CURRENT

$V_O = 3.3 \text{ V}$
$T_A = 25^\circ \text{C}$

$\text{I}_{GND} - \text{Ground Current} - \mu\text{A}$
$I_L - \text{Load Current} - \text{mA}$

Figure 6.

TPS76615
GROUND CURRENT
vs
LOAD CURRENT

$V_O = 1.5 \text{ V}$
$T_A = 25^\circ \text{C}$

$\text{I}_{GND} - \text{Ground Current} - \mu\text{A}$
$I_L - \text{Load Current} - \text{mA}$

Figure 7.

TPS76633
GROUND CURRENT
vs
FREE-AIR TEMPERATURE

$V_O = 3.3 \text{ V}$
$I_O = 250 \text{ mA}$

$\text{I}_{GND} - \text{Ground Current} - \mu\text{A}$
$T_A - \text{Free-Air Temperature} - ^\circ \text{C}$

Figure 8.

TPS76615
GROUND CURRENT
vs
FREE-AIR TEMPERATURE

$V_O = 1.5 \text{ V}$
$I_O = 250 \text{ mA}$

$\text{I}_{GND} - \text{Ground Current} - \mu\text{A}$
$T_A - \text{Free-Air Temperature} - ^\circ \text{C}$

Figure 9.
TPS76633
POWER-SUPPLY RIPPLE REJECTION
vs
FREQUENCY

\[V_I = 4.3 \, \text{V} \]
\[C_O = 10 \, \mu\text{F} \]
\[I_O = 250 \, \text{mA} \]
\[T_A = 25^\circ\text{C} \]

Figure 10.

TPS76633
OUTPUT SPECTRAL NOISE DENSITY
vs
FREQUENCY

\[V_I = 4.3 \, \text{V} \]
\[C_O = 10 \, \mu\text{F} \]
\[T_A = 25^\circ\text{C} \]

Figure 11.

TPS76633
OUTPUT IMPEDANCE
vs
FREQUENCY

\[V_I = 4.3 \, \text{V} \]
\[C_O = 10 \, \mu\text{F} \]
\[T_A = 25^\circ\text{C} \]

\[I_O = 1 \, \text{mA} \]

\[I_O = 250 \, \text{mA} \]

Figure 12.

TPS76650
DROPOUT VOLTAGE
vs
FREE-AIR TEMPERATURE

\[V_I = 4.9 \, \text{V} \]
\[I_O = 250 \, \text{mA} \]
\[I_O = 150 \, \text{mA} \]
\[I_O = 50 \, \text{mA} \]
\[I_O = 10 \, \text{mA} \]

Figure 13.
TYPICAL CHARACTERISTICS (continued)

TPS76633
DROP OUT VOLTAGE
VS FREE-AIR TEMPERATURE

10
10
10

V = 3.2 V
I = 250 mA
I = 150 mA
I = 50 mA
I = 10 mA

T - Free-Air Temperature - °C

Figure 14.

TPS76615
LINE TRANSIENT RESPONSE

100
10
0

ΔV - Change in Output Voltage - mV

C = 4.7 μF
T = 25°C

Figure 15.

TPS76633
LOAD TRANSIENT RESPONSE

400
200
0

ΔV - Change in Output Voltage - mV

C = 4.7 μF
T = 25°C

Figure 16.

TPS76633
LINE TRANSIENT RESPONSE

100
50
0

ΔV - Change in Output Voltage - mV

C = 4.7 μF
T = 25°C

Figure 17.
Figure 18. TPS76633 LOAD TRANSIENT RESPONSE

Figure 19. TPS76633 OUTPUT VOLTAGE VS TIME (AT STARTUP)

Figure 20. TPS76601 DROPOUT VOLTAGE VS INPUT VOLTAGE
Figure 21.

TYPICAL REGION OF STABILITY
EQUIVALENT SERIES RESISTANCE\(^{(1)}\)
VS
OUTPUT CURRENT

Figure 22.

TYPICAL REGION OF STABILITY
EQUIVALENT SERIES RESISTANCE\(^{(1)}\)
VS
OUTPUT CURRENT

Figure 23.

TYPICAL REGION OF STABILITY
EQUIVALENT SERIES RESISTANCE\(^{(1)}\)
VS
OUTPUT CURRENT

Figure 24.

TYPICAL REGION OF STABILITY
EQUIVALENT SERIES RESISTANCE\(^{(1)}\)
VS
OUTPUT CURRENT

\(^{(1)}\) Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to \(C_0\).
TYPICAL CHARACTERISTICS (continued)

Figure 25. TYPICAL REGION OF STABILITY
EQUIVALENT SERIES RESISTANCE\(^{(1)}\)

\[V_I = 4.3 \text{ V} \]
\[C_O = 4.7 \mu\text{F} \]
\[V_O = 3.3 \text{ V} \]
\[I_O = 250 \text{ mA} \]
\[T_A = 25^\circ \text{C} \]

Region of Stability

Minimum ESR

Region of Instability

\[10^{-2} \]
\[0.0 \]
\[1.0 \]
\[0.4 \]
\[0.6 \]
\[0.8 \]
\[10^{-1} \]
\[10^0 \]
\[10^1 \]

Added Ceramic Capacitance – \(\mu\text{F} \)

Figure 26. TYPICAL REGION OF STABILITY
EQUIVALENT SERIES RESISTANCE\(^{(1)}\)

\[V_I = 4.3 \text{ V} \]
\[C_O = 10 \mu\text{F} \]
\[V_O = 3.3 \text{ V} \]
\[I_O = 250 \text{ mA} \]
\[T_A = 25^\circ \text{C} \]

Region of Stability

Minimum ESR

Region of Instability

\[10^{-2} \]
\[0.0 \]
\[1.0 \]
\[0.4 \]
\[0.6 \]
\[0.8 \]
\[10^{-1} \]
\[10^0 \]
\[10^1 \]

Added Ceramic Capacitance – \(\mu\text{F} \)

\(^{(1)}\) Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to \(C_O \).

Figure 27. Test Circuit for Typical Regions of Stability (Figure 21 through Figure 24) (Fixed Output Options)
APPLICATION INFORMATION

The TPS766xx family includes eight fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V, and 5.0 V), and an adjustable regulator, the TPS76601 (adjustable from 1.25 V to 5.5 V).

DEVICE OPERATION

The TPS766xx features very low quiescent current that remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator (I_B = I_C/β). The TPS766xx uses a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariant over the full load range.

Another pitfall associated with the pnp pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in I_B to maintain the load. During power up, this increase in I_B translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS766xx quiescent current remains low even when the regulator drops out, eliminating both problems.

The TPS766xx family also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 1 μA (typ). If the shutdown feature is not used, EN should be tied to ground. Response to an enable transition is quick; regulated output voltage is reestablished in typically 160 μs.

MINIMUM LOAD REQUIREMENTS

The TPS766xx family is stable even at zero load; no minimum load is required for operation.

FB—PIN CONNECTION (ADJUSTABLE VERSION ONLY)

The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option. The output voltage is sensed through a resistor divider network to close the loop as shown in Figure 29. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance, wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize or avoid noise pickup is essential.

EXTERNAL CAPACITOR REQUIREMENTS

An input capacitor is not usually required; however, a ceramic bypass capacitor (0.047 μF or larger) improves load transient response and noise rejection if the TPS766xx is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

Like most low dropout regulators, the TPS766xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 4.7 μF and the ESR (equivalent series resistance) must be between 300 mΩ and 20 Ω. Capacitor values 4.7 μF or larger are acceptable, provided the ESR is less than 20 Ω. Solid tantalum electrolytic and aluminum electrolytic capacitors are all suitable, provided they meet the requirements described previously. Ceramic capacitors, with series resistors that are sized to meet the previously described requirements, may also be used.
The output voltage of the TPS76601 adjustable regulator is programmed using an external resistor divider as shown in Figure 29. The output voltage is calculated using:

\[V_O = V_{\text{ref}} \times \left(1 + \frac{R_1}{R_2}\right) \]

Where:
- \(V_{\text{ref}} = 1.224 \, \text{V typ} \) (the internal reference voltage)

Resistors \(R_1 \) and \(R_2 \) should be chosen for approximately 7-\(\mu \)A divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided because leakage currents at FB increase the output voltage error. The recommended design procedure is to choose \(R_2 = 169 \, \text{k}\Omega \) to set the divider current at 7 \(\mu \)A, and then calculate \(R_1 \) using:

\[R_1 = \left(\frac{V_O}{V_{\text{ref}}} - 1\right) \times R_2 \]
POWER-GOOD INDICATOR

The TPS766xx features a power-good (PG) output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator.

REGULATOR PROTECTION

The TPS766xx PMOS-pass transistor has a built-in back diode that conducts reverse currents when the input voltage drops below the output voltage (for example, during power down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS766xx also features internal current limiting and thermal protection. During normal operation, the TPS766xx limits output current to approximately 0.8 A (typ). When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds +150°C (typ), thermal-protection circuitry shuts it down. Once the device has cooled below +130°C (typ), regulator operation resumes.

POWER DISSIPATION AND JUNCTION TEMPERATURE

Specified regulator operation is assured to a junction temperature of +125°C; the maximum junction temperature should be restricted to +125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, \(P_{\text{D(max)}} \), and the actual dissipation, \(P_D \), which must be less than or equal to \(P_{\text{D(max)}} \).

The maximum-power-dissipation limit is determined using the following equation:

\[
P_{\text{D(max)}} = \frac{T_j^{\text{max}} - T_A}{R_{\theta JA}}
\]

Where:

- \(T_j^{\text{max}} \) is the maximum allowable junction temperature;
- \(R_{\theta JA} \) is the thermal resistance junction-to-ambient for the package (that is, 176°C/W for the 8-terminal SOIC); and
- \(T_A \) is the ambient temperature.

The regulator dissipation is calculated using:

\[
P_D = (V_I - V_O) \times I_O
\]

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation triggers the thermal protection circuit.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS76601D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76601</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76601DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76601</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76601DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76601</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76615D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76615</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76615DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76615</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76615DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76615</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76618D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76618</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76618DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76618</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76625D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76625</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76625DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76625</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76625DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76625</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76628D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76628</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76628DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76628</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76630D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76630</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76633D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76633</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76633DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76633</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76633DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>76633</td>
<td>Samples</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan</td>
<td>Lead/Ball Finish</td>
<td>MSL Peak Temp</td>
<td>Op Temp (°C)</td>
<td>Device Marking</td>
<td>Samples</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>TPS76650D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>76650</td>
<td></td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76650DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>76650</td>
<td></td>
<td>Samples</td>
</tr>
<tr>
<td>TPS76650DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>76650</td>
<td></td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

*All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS76601DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76615DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76618DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76625DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76628DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76633DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76633DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPS76650DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS76601DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TPS76615DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TPS76618DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TPS76625DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TPS76628DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TPS76633DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>TPS76633DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS76650DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

\[\Delta\] Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

\[\Delta\] Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS-012 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET, TRADE NAME, TRADEMARK OR OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated