TPS768xx-Q1 Fast-Transient-Response 1-A Low-Dropout Voltage Regulators

1 Features
- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: −40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H2
 - Device CDM ESD Classification Level C4B
- 1-A Low-Dropout (LDO) Voltage Regulator
- Available in 1.8-V, 2.5-V, 3.3-V, and 5-V Fixed-Output and an Adjustable Version
- Dropout Voltage Down to 230 mV at 1 A (TPS76850-Q1)
- Ultralow 85-μA Typical Quiescent Current
- Fast Transient Response
- 2% Tolerance Over Specified Conditions for Fixed-Output Versions
- Open-Drain Power Good (See TPS767xx-Q1 for Power-On Reset With 200-ms Delay Option)
- 20-Pin TSSOP (PWP) Package
- Thermal Shutdown Protection

2 Applications
- Automotive
- Power Train
- Cluster
- ADAS

3 Description
This device is designed to have a fast transient response and be stable with 10 μF capacitors. This combination provides high performance at a reasonable cost.

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 230 mV at an output current of 1 A for the TPS76850-Q1) and is directly proportional to the output current. Additionally, because the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (typically 85 μA over the full range of output current, 0 mA to 1 A). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a shutdown mode; applying a TTL high signal to the enable (EN) input shuts down the regulator, reducing the quiescent current to less than 1 μA at T_J = 25°C.

Power good (PG) is an active-high output, which can be used to implement a power-on reset or a low-battery indicator.

The TPS768xx-Q1 is offered in 1.8-V, 2.5-V, 3.3-V, and 5-V fixed-voltage versions and in an adjustable version (programmable over the range of 1.2 V to 5.5 V). Output voltage tolerance is specified as a maximum of 2% over line, load, and temperature ranges. The TPS768xx-Q1 family is available in a 20-pin PWP package.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS768xx-Q1</td>
<td>HTSSOP (20)</td>
<td>6.50 mm × 4.40 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Circuit

Load Transient Response

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics 6
7 Parameter Measurement Information 9
8 Detailed Description ... 10
 8.1 Overview ... 10
 8.2 Functional Block Diagrams 10
 8.3 Feature Description 11
8.4 Device Functional Modes 11
9 Application and Implementation 13
 9.1 Application Information 13
 9.2 Typical Application 13
10 Power Supply Recommendations 15
11 Layout ... 15
 11.1 Layout Guidelines .. 15
 11.2 Layout Example .. 16
 11.3 Power Dissipation and Junction Temperature 16
12 Device and Documentation Support 17
 12.1 Receiving Notification of Documentation Updates 17
 12.2 Community Resources 17
 12.3 Trademarks .. 17
 12.4 Electrostatic Discharge Caution 17
 12.5 Glossary .. 17
13 Mechanical, Packaging, and Orderable Information ... 17

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (September 2008) to Revision B Page

• Added AEC-Q100 qualifications .. 1
• Deleted Ordering Information table .. 1
• Added Applications section, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section...... 1
• Deleted 1.5-V, 2.7-V, and 3-V versions throughout the data sheet.. 1
• Changed Pin Configuration and Functions section .. 3
• Deleted the "Continuous total power dissipation" row from the Absolute Maximum Ratings table.............................. 4
• Changed TA to Tj in the Recommended Operating Conditions table.. 4
• Deleted Dissipation Ratings table .. 4
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>EN</td>
<td>5</td>
<td>Enable input</td>
</tr>
<tr>
<td>FB/NC</td>
<td>15</td>
<td>Feedback input voltage for adjustable device (no connect for fixed options)</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>LDO ground</td>
</tr>
<tr>
<td>GND/HSINK</td>
<td>1, 2, 9, 10, 11, 12, 19, 20</td>
<td>Ground and heatsink</td>
</tr>
<tr>
<td>IN</td>
<td>6, 7</td>
<td>Input</td>
</tr>
<tr>
<td>NC</td>
<td>4, 8, 17, 18</td>
<td>No connect</td>
</tr>
<tr>
<td>OUT</td>
<td>13, 14</td>
<td>Regulated output voltage</td>
</tr>
<tr>
<td>PG</td>
<td>16</td>
<td>Power-good output</td>
</tr>
<tr>
<td>NC</td>
<td>17</td>
<td>No connect</td>
</tr>
<tr>
<td>Thermal pad</td>
<td>—</td>
<td>Solder the thermal pad to the board.</td>
</tr>
</tbody>
</table>

NC – No internal connection

Not to scale

TPS768-Q1

www.ti.com

Submit Documentation Feedback

Copyright © 2003–2016, Texas Instruments Incorporated

Product Folder Links: **TPS768-Q1**
6 Specifications

6.1 Absolute Maximum Ratings\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, (V_i) (^{(2)})</td>
<td>(-0.3)</td>
<td>13.5</td>
<td>V</td>
</tr>
<tr>
<td>Voltage at EN</td>
<td>(-0.3)</td>
<td>(V_i + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Maximum PG voltage</td>
<td>16.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, (V_o) (OUT, FB)</td>
<td>7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature, (T_J)</td>
<td>(-40)</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td>(-65)</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network terminal ground.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)}) Electrostatic discharge</td>
<td></td>
</tr>
<tr>
<td>Human-body model (HBM), per AEC Q100-002(^{(1)})</td>
<td>±2000 V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per AEC Q100-011</td>
<td>All pins ±500 V</td>
</tr>
<tr>
<td>Corner pins (1, 4, 5, and 8)</td>
<td>±750 V</td>
</tr>
</tbody>
</table>

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i) Input voltage(^{(1)})</td>
<td>2.7</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>(V_o) Voltage at OUT</td>
<td>1.2</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(I_o) Output current(^{(2)})</td>
<td>0</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>(T_A) Operating ambient temperature(^{(2)})</td>
<td>(-40)</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) To calculate the minimum input voltage for the maximum output current, use the following equation: \(V_{(min)} = V_{(O(max)} + V_{(DO,max_load)}\), where \(V_{(DO,max_load)}\) is the dropout voltage at maximum load.

(2) Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TPS768xx-Q1 PWP (HTSSOP)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{UA}) Junction-to-ambient thermal resistance</td>
<td>39.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{UJC(top)}) Junction-to-case (top) thermal resistance</td>
<td>25.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{UB}) Junction-to-board thermal resistance</td>
<td>22.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>0.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>21.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{UJC(bot)}) Junction-to-case (bottom) thermal resistance</td>
<td>1.7</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics

over recommended operating ambient temperature range, \(V_I = V_{O(typ)} + 1 \) V, \(I_O = 1 \) mA, \(EN = 0 \) V, \(C_O = 10 \) μF (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (10-μA to 1-A load)</td>
<td>T(_J) = 25°C</td>
<td>5.5 V ≥ (V_O) ≥ 1.5 V</td>
<td>(V_O)</td>
<td>0.98 (V_O)</td>
<td>1.02 (V_O)</td>
</tr>
<tr>
<td></td>
<td>T(_J) = –40°C to 125°C</td>
<td>(V_O)</td>
<td>1.8</td>
<td>1.836</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T(_J) = 25°C</td>
<td>2.7 V</td>
<td>2.5</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T(_J) = –40°C to 125°C</td>
<td>3.3</td>
<td>3.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent current (GND current), (EN = 0) V</td>
<td>T(_J) = 25°C (10) μA < (I_O) < 1 A, T(_J) = 25°C</td>
<td>85</td>
<td>125 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T(_J) = –40°C to 125°C (I_O) = 1 A, T(_J) = –40°C to 125°C</td>
<td>(V_O)</td>
<td>(V_O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage line regulation ((\Delta V/O))</td>
<td>T(_J) = 25°C (V_O) + 1 V < (V_I) ≤ 10 V, T(_J) = 25°C</td>
<td>0.01</td>
<td>%V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td></td>
<td>3</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output noise voltage</td>
<td>T(_J) = 25°C BW = 200 Hz to 100 kHz, (C_O = 10) μF, (I_C = 1) A, T(_J) = 25°C</td>
<td>55</td>
<td>μVrms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current limit</td>
<td>(V_O = 0) V</td>
<td>1.7</td>
<td>2 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal shutdown junction temperature</td>
<td></td>
<td>150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby current</td>
<td>EN = (V_I), (2.7) V < (V_I) < 10 V</td>
<td>T(_J) = 25°C (EN) = 1</td>
<td>T(_J) = –40°C to 125°C (EN) = 10 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB input current</td>
<td>TPS76801-Q1</td>
<td>(V_{FB} = 1.5) V</td>
<td>2</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>High-level enable input voltage</td>
<td></td>
<td>1.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-level enable input voltage</td>
<td></td>
<td>0.9</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-supply ripple rejection ((1))</td>
<td>T(_J) = 25°C (I = 1) kHz, (C_O = 10) μF, T(_J) = 25°C</td>
<td>(60)</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td>Minimum input voltage for valid PG</td>
<td>(I_{OPG} = 300) μA</td>
<td>1.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trip threshold voltage</td>
<td>(V_O) decreasing</td>
<td>92</td>
<td>98 %V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hysteresis voltage</td>
<td>Measured at (V_O)</td>
<td>0.5</td>
<td>%V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output low voltage</td>
<td>(V_I = 2.7) V, (I_{OPG} = 1) mA</td>
<td>0.15</td>
<td>0.4 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leakage current</td>
<td>(V_{PG} = 5) V</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>EN input current</td>
<td>EN = (V_I), (EN = 0) V</td>
<td>T(_J) = 25°C (EN) = –1</td>
<td>T(_J) = –40°C to 125°C (EN) = 1 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropout voltage ((3))</td>
<td>TPS76833-Q1</td>
<td>(I_O = 1) A</td>
<td>T(_J) = 25°C (I_O = 1) A</td>
<td>(350)</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>TPS76850-Q1</td>
<td>T(_J) = –40°C to 125°C (I_O = 1) A</td>
<td>(575)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T(_J) = 25°C</td>
<td>(230)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T(_J) = –40°C to 125°C</td>
<td>(380)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Minimum IN operating voltage is 2.7 V or \(V_{O(typ)} + 1 \) V, whichever is greater. Maximum IN voltage 10 V.

(2) If \(V_O \leq 1.8 \) V then \(V_{(max)} = 10 \) V, \(V_{(min)} = 2.7 \) V: Line Reg. (mV) = (\% / V) \(\times \) \(V_O \) \(\times \) \(V_{max} - 2.7 \) V \(\times \) 1000

If \(V_O \geq 2.5 \) V then \(V_{(max)} = 10 \) V, \(V_{(min)} = V_O + 1 \) V: Line Reg. (mV) = (\% / V) \(\times \) \(V_O \) \(\times \) \(V_{max} - (V_O + 1) \) \(\times \) 1000

(3) IN voltage equals \(V_{O(typ)} - 100 \) mV.
6.6 Typical Characteristics

Figure 1. TPS76833-Q1 Output Voltage vs Output Current

![Graph showing output voltage vs output current for TPS76833-Q1](image1)

Figure 2. TPS76825-Q1 Output Voltage vs Output Current

![Graph showing output voltage vs output current for TPS76825-Q1](image2)

Figure 3. TPS76833-Q1 Output Voltage vs Ambient Temperature

![Graph showing output voltage vs ambient temperature for TPS76833-Q1](image3)

Figure 4. TPS76825-Q1 Output Voltage vs Ambient Temperature

![Graph showing output voltage vs ambient temperature for TPS76825-Q1](image4)

Figure 5. TPS76833-Q1 Ground Current vs Ambient Temperature

![Graph showing ground current vs ambient temperature for TPS76833-Q1](image5)

Figure 6. TPS76833-Q1 Power-Supply Ripple Rejection vs Frequency

![Graph showing power-supply ripple rejection vs frequency for TPS76833-Q1](image6)
Typical Characteristics (continued)

Figure 7. TPS7683-Q1 Output Spectral Noise Density vs Frequency

Figure 8. Input Voltage (Min.) vs Output Voltage

Figure 9. TPS7683-Q1 Output Impedance vs Frequency

Figure 10. TPS7683-Q1 Dropout Voltage vs Ambient Temperature

Figure 11. TPS7683-Q1 Line Transient Response

Figure 12. TPS7683-Q1 Load Transient Response
Typical Characteristics (continued)

Figure 13. TPS76833-Q1 Output Voltage vs Time (at Startup)

Figure 14. TPS76801-Q1 Dropout Voltage vs Input Voltage

Figure 15. Typical Region of Stability Equivalent Series Resistance \(^{(4)}\) vs Output Current

Figure 16. Typical Region of Stability Equivalent Series Resistance \(^{(4)}\) vs Output Current

Figure 17. Typical Region of Stability Equivalent Series Resistance \(^{(4)}\) vs Output Current

Figure 18. Typical Region of Stability Equivalent Series Resistance \(^{(4)}\) vs Output Current

(4) Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to \(C_O\).

Submit Documentation Feedback

Copyright © 2003–2016, Texas Instruments Incorporated

Product Folder Links: TPS768-Q1
7 Parameter Measurement Information

![Test Circuit Diagram](image)

Figure 19. Test Circuit for Typical Regions of Stability (Figure 15 to Figure 18) (Fixed-Output Options)
8 Detailed Description

8.1 Overview

The TPS768xx-Q1 family includes four fixed-output voltage regulators (1.8 V, 2.5 V, 3.3 V, and 5 V), and offers an adjustable version, the TPS76801-Q1 (adjustable from 1.2 V to 5.5 V).

8.1.1 Device Operation

The TPS768xx-Q1 device features very low quiescent current, which remains virtually constant even with varying loads. Conventional LDO regulators use a PNP pass element, the base current of which is directly proportional to the load current through the regulator (I_B = I_C / \beta). The TPS768xx-Q1 device uses a PMOS transistor to pass current. Because the gate of the PMOS is voltage-driven, operating current is low and invariable over the full load range.

Another pitfall associated with the PNP pass element is its tendency to saturate when the device goes into dropout. The resulting drop in \beta forces an increase in I_B to maintain the load. During power up, this translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS768xx-Q1 quiescent current remains low even when the regulator drops out, eliminating both problems.

The TPS768xx-Q1 family also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 2 \mu A. If the shutdown feature is not used, EN should be tied to ground.

8.2 Functional Block Diagrams

![Functional Block Diagram—Adjustable Version](image-url)

Figure 20. Functional Block Diagram—Adjustable Version
8.3 Feature Description

8.3.1 Power-Good Indicator

The TPS768xx-Q1 device features a power-good (PG) output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, the PG pin can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator. PG does not assert itself when the regulated output voltage falls out of the specified 2% tolerance, but instead reports an output voltage low, relative to its nominal regulated value.

8.3.2 Regulator Protection

The TPS768xx-Q1 PMOS-pass transistor has a built-in back diode that conducts reverse currents when the input voltage drops below the output voltage (for example, during power-down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS768xx-Q1 device also features internal current limiting and thermal protection. During normal operation, the TPS768xx-Q1 device limits output current to approximately 1.7 A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 150°C (typ), thermal-protection circuitry shuts it down. Once the device has cooled below 130°C (typ), regulator operation resumes.

8.4 Device Functional Modes

8.4.1 Shutdown

The enable pin (EN) is active-low. The device is enabled when the voltage at the EN pin goes below 0.9 V. The device is turned off when the EN pin is held above 1.7 V. When shutdown capability is not required, EN can be connected directly to GND.
Device Functional Modes (continued)

8.4.2 Operation With V_{IN} Less Than 2.7 V

The TPS768xx-Q1 family of devices operates with input voltages above 2.7 V. When input voltage falls below 2.7 V, the device shuts down.

8.4.3 Operation With V_{IN} Greater Than 2.7 V

When V_{IN} is greater than 2.7 V, if the input voltage is higher than the desired output voltage plus dropout voltage, the output voltage is equal to the desired value. Otherwise, output voltage will be V_{IN} minus the dropout voltage.
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
The TPS768xx-Q1 device is offered in 1.8-V, 2.5-V, 3.3-V, and 5-V fixed-voltage versions and in an adjustable version (programmable over the range of 1.2 V to 5.5 V). Output voltage tolerance is specified as a maximum of ±2% over line, load, and temperature ranges.

9.2 Typical Application

![Figure 22. Typical Application Configuration (for Fixed-Output Options)](image)

9.2.1 Design Requirements
For this design example use, the parameters listed in the following table as the input parameters.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>2.7 V to 10 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Fixed: 1.8 V, 2.5 V, 3.3 V, and 5 V</td>
</tr>
<tr>
<td></td>
<td>Adjustable: 1.2 V to 5.5 V</td>
</tr>
<tr>
<td>Output current rating</td>
<td>1 A</td>
</tr>
<tr>
<td>Output capacitor range</td>
<td>>10 µF</td>
</tr>
<tr>
<td>Output capacitor ESR range</td>
<td>50 mΩ to 1.5 Ω</td>
</tr>
</tbody>
</table>

9.2.2 Detailed Design Procedure

9.2.2.1 Minimum Load Requirements
The TPS768xx-Q1 family is stable even at zero load; no minimum load is required for operation.

9.2.2.2 FB Pin Connection (Adjustable Version Only)
The FB pin is an input pin to sense the output voltage and close the loop for the adjustable version. The output voltage is sensed through a resistor-divider network to close the loop as shown in Figure 23. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance wide-bandwidth amplifier, and noise pickup feeds through to the regulator output. Routing the FB connection to minimize or avoid noise pickup is essential.
9.2.2.3 Programming the TPS76801-Q1 Adjustable LDO Regulator

The output voltage of the TPS76801-Q1 adjustable regulator is programmed using an external resistor divider as shown in Figure 23. The output voltage is calculated using Equation 1:

\[V_O = V_{ref} \times \left(1 + \frac{R1}{R2} \right) \]

(1)

where:

\[V_{ref} = 1.1834 \text{ V (typ)} \] (the internal reference voltage)

Resistors R1 and R2 should be chosen for approximately 50-μA divider current. Lower-value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided, as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose \(R2 = 30.1 \text{ kΩ} \) to set the divider current at 50 μA and then calculate R1 using Equation 2:

\[R1 = \left(\frac{V_O}{V_{ref}} - 1 \right) \times R2 \]

(2)

Figure 23. TPS76801-Q1 Adjustable LDO Regulator Programming

9.2.2.4 External Capacitor Requirements

An input capacitor is not usually required; however, a ceramic bypass capacitor (0.047 μF or larger) improves load transient response and noise rejection if the TPS768xx-Q1 is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

Like all LDO regulators, the TPS768xx-Q1 requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 10 μF, and the equivalent series resistance (ESR) must be between 50 mΩ and 1.5 Ω. Capacitor values 10 μF or larger are acceptable, provided the ESR is less than 1.5 Ω. Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements previously described. Most of the commercially available 10-μF surface-mount ceramic capacitors meet the ESR requirements previously stated.
9.2.3 Application Curve

![Application Curve Diagram]

Figure 24. Power-Up Waveform of TPS7683-Q1

10 Power Supply Recommendations

The device is designed to operate from an input-voltage supply range between 2.7 V and 10 V. This input supply must be well regulated. If the input supply is located more than a few inches from the device, TI recommends adding a capacitor with a value of 0.1 µF and a ceramic bypass capacitor at the input.

11 Layout

11.1 Layout Guidelines

Input and output capacitors should be placed as close to the device pins as possible. To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the board be designed with separate ground planes for IN and OUT, with the ground planes connected only at the GND pin of the device. In addition, the ground connection for the output capacitor should be connected directly to the GND pin of the device. High-ESR capacitors may degrade PSRR performance.
11.2 Layout Example

![Layout Example Diagram]

Figure 25. TPS768xx-Q1 Layout Example

11.3 Power Dissipation and Junction Temperature

Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D,max}$, and the actual dissipation, P_D, which must be less than or equal to $P_{D,max}$.

The maximum power dissipation limit is determined using Equation 3:

$$P_{D,max} = \frac{T_{j,max} - T_A}{R_{JJA}}$$

where:

- $T_{j,max}$ = maximum allowable junction temperature
- R_{JJA} = junction-to-ambient thermal resistance for the package; that is, 32.6°C/W for the 20-pin TSSOP (PWP) with no airflow
- T_A = ambient temperature

The regulator dissipation is calculated using Equation 4:
Power Dissipation and Junction Temperature (continued)

\[P_D = (V_I - V_O) \times I_O \] (4)

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation triggers the thermal protection circuit.

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS76801QPWRG4Q1</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>20</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>76801Q1</td>
<td></td>
</tr>
<tr>
<td>TPS76818QPWRQ1</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>20</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>76818Q1</td>
<td></td>
</tr>
<tr>
<td>TPS76825QPWRQ1</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>20</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>76825Q1</td>
<td></td>
</tr>
<tr>
<td>TPS76833QPWRQ1</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>20</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>76833Q1</td>
<td></td>
</tr>
<tr>
<td>TPS76850QPWRQ1</td>
<td>ACTIVE</td>
<td>HTSSOP</td>
<td>PWP</td>
<td>20</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td>-40 to 125</td>
<td>76850Q1</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **Eco Plan** - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **Eco Plan** - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS768-Q1, TPS76828-Q1:
- Catalog: TPS768, TPS76828

NOTE: Qualified Version Definitions:
- Catalog - TI's standard catalog product
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SMPA002 for information regarding recommended board layout. This document is available at www.ti.com.</p>http://www.ti.com>
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions](image)

NOTE: A. All linear dimensions are in millimeters
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

⚠️ Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated