ULTRA LOW-POWER, 10 mA, LDO LINEAR REGULATORS WITH POWER GOOD OUTPUT

FEATURES

- Controlled Baseline
 - One Assembly Site
 - One Test Site
 - One Fabrication Site
- Extended Temperature Performance of
 −55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree(1)
- 10 mA Low-Dropout Regulator
- Ultralow 1.2 μA Quiescent Current at 10 mA
- 5-Pin SC70/SOT-323 (DCK) Package
- Integrated Power Good Output
- Stable With Any Capacitor (> 0.47 μF)
- Dropout Voltage Typically 105 mV at 10 mA (TPS79733)
- Overcurrent Limitation

(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

APPLICATIONS

- Battery-Powered Microcontrollers and Microprocessors

DESCRIPTION/ORDERING INFORMATION

The TPS797xx family of low-dropout (LDO) voltage regulators offers the benefits of low-dropout voltage and ultralow-power operation. The device is stable with any capacitor (> 0.47 μF). Therefore, implementations of this device require little board space due to the miniaturized packaging and potentially small output capacitor. In addition, the family includes an integrated open drain active-high power good (PG) output. Intended for use in microcontroller based, battery-powered applications, the TPS797xx family’s low dropout and ultralow-powered operation results in a significant increase in system battery operating life. The small packaging minimizes consumption of board space.

The device is enabled when the applied voltage exceeds the minimum input voltage. The usual PNP pass transistor has been replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the dropout voltage is low, 125 mV (typ) at 10 mA of load current and is directly proportional to the load current. The quiescent current is ultralow (1.2 μA typ) and is stable over the entire range of output load current (0 mA to 10 mA). When properly configured with a pullup resistor, the PG output can be used to implement a power-on reset or low battery indicator. The TPS797xx is offered in 1.8 V, 3 V, and 3.3 V fixed options.

ORDERING INFORMATION(1)

<table>
<thead>
<tr>
<th>T_A</th>
<th>VOLTAGE</th>
<th>PACKAGE(2)</th>
<th>PART NUMBER</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>−55°C to 125°C</td>
<td>1.8 V</td>
<td>SC70/SOT-323 (DCK)</td>
<td>TPS79718MDCKREP</td>
<td>CKW</td>
</tr>
<tr>
<td></td>
<td>3 V</td>
<td></td>
<td>TPS79730MDCKREP</td>
<td>BUA</td>
</tr>
<tr>
<td></td>
<td>3.3 V</td>
<td></td>
<td>TPS79733MDCKREP(3)</td>
<td>TBD</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(3) Product Preview. Parameters in electrical characteristics are subject to change.

DCK PACKAGE (TOP VIEW)

PG 1 5 OUT
GND 2
NC 3 4 IN

GROUND CURRENT vs FREE-AIR TEMPERATURE

TA °C -40 -15 10 35 60

0.50 0.75 1 1.25 1.50 2

Ground Current - A

V_I = 4.3 V
V_O = 3.3 V
C_o = 1 µF
I_O = 10 mA

DEVICE INFORMATION
FUNCTIONAL BLOCK DIAGRAM

TERMINAL FUNCTIONS

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>4</td>
<td>I</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OUT</td>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>PG</td>
<td>1</td>
<td>O</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS\(^{(1)}\)
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range (^{(2)})</td>
<td>0.3 to 6</td>
<td>V</td>
</tr>
<tr>
<td>Maximum dc output voltage</td>
<td>4.9</td>
<td>V</td>
</tr>
<tr>
<td>Peak output current</td>
<td>Internally limited</td>
<td></td>
</tr>
<tr>
<td>ESD rating, HBM</td>
<td>3</td>
<td>kV</td>
</tr>
<tr>
<td>ESD rating, CDM</td>
<td>1</td>
<td>kV</td>
</tr>
<tr>
<td>Continuous total power dissipation</td>
<td>See Dissipation Rating Table</td>
<td></td>
</tr>
<tr>
<td>(T_J) Operating junction temperature range</td>
<td>–55 to 145</td>
<td>°C</td>
</tr>
<tr>
<td>(T_A) Operating ambient temperature range</td>
<td>–55 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{stg}) Storage temperature range</td>
<td>–65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

DISSIPATION RATINGS

<table>
<thead>
<tr>
<th>BOARD</th>
<th>PACKAGE</th>
<th>(R_{\theta JC}) (^{\circ})C/W</th>
<th>(R_{\theta JA}) (^{\circ})C/W</th>
<th>DERATING FACTOR ABOVE (T_A = 25)°C</th>
<th>(T_A \geq 25)°C POWER RATING</th>
<th>(T_A = 70)°C POWER RATING</th>
<th>(T_A = 85)°C POWER RATING</th>
<th>(T_A = 125)°C POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low K</td>
<td>DCK</td>
<td>165.39</td>
<td>396.24</td>
<td>2.52 mW/°C</td>
<td>252 mW</td>
<td>139 mW</td>
<td>101 mW</td>
<td>0 W</td>
</tr>
<tr>
<td>High K</td>
<td>DCK</td>
<td>165.39</td>
<td>314.74</td>
<td>3.18 mW/°C</td>
<td>318 mW</td>
<td>175 mW</td>
<td>127 mW</td>
<td>127 mW</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>$I_O = 3 \text{ mA}$</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_O = 10 \text{ mA}$</td>
<td>2</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_O</td>
<td>Continuous output current$^{(2)}$</td>
<td>0</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Operating ambient temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPS79718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ \text{C}, 2.8 \text{ V} < V_i < 5.5 \text{ V}$</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_I = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$, $2.8 \text{ V} < V_i < 5.5 \text{ V}$</td>
<td>1.705</td>
<td>1.895</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPS79730</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ \text{C}, 4 \text{ V} < V_i < 5.5 \text{ V}$</td>
<td>3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_I = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$, $4 \text{ V} < V_i < 5.5 \text{ V}$</td>
<td>2.88</td>
<td>3.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPS79733</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = 25^\circ \text{C}, 4.3 \text{ V} < V_i < 5.5 \text{ V}$</td>
<td>3.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_I = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$, $4.3 \text{ V} < V_i < 5.5 \text{ V}$</td>
<td>3.168</td>
<td>3.432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent current (GND current)$^{(3)}$</td>
<td>$T_A = 25^\circ \text{C}, 0 \text{ mA} < I_O < 10 \text{ mA}$</td>
<td>1.2</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$T_I = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$, $I_O = 10 \text{ mA}$</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>$T_A = 25^\circ \text{C}$, $I_O = 1 \text{ mA}$ to 10 mA</td>
<td>17</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Output voltage line regulation</td>
<td>$V_O + 1 \text{ V} < V_i < 5.5 \text{ V}$, $T_A = 25^\circ \text{C}$</td>
<td>0.15</td>
<td></td>
<td></td>
<td>$% \text{/V}$</td>
</tr>
<tr>
<td></td>
<td>$V_O + 1 \text{ V} < V_i < 5.5 \text{ V}$, $T_I = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output noise voltage (TPS79718)</td>
<td>$BW = 200 \text{ Hz}$ to 100 kHz, $C_O = 10 \text{ mF}$, $I_O = 10 \text{ mA}$, $T_A = 25^\circ \text{C}$</td>
<td>600</td>
<td></td>
<td></td>
<td>$\mu \text{V}_{\text{RMS}}$</td>
</tr>
<tr>
<td>Output current limit</td>
<td>$V_O = 0$ V, See Note 4</td>
<td>190</td>
<td>300</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power supply ripple rejection (TPS79718)</td>
<td>$I = 100 \text{ Hz}$, $C_O = 10 \text{ mF}$, $I_O = 10 \text{ mA}$, $T_A = 25^\circ \text{C}$</td>
<td>50</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Dropout voltage$^{(4)}$</td>
<td>TPS79730</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 10 \text{ mA}$, $T_A = 25^\circ \text{C}$</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_O = 10 \text{ mA}$, $T_A = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPS79733</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$I_O = 10 \text{ mA}$, $T_A = 25^\circ \text{C}$</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_O = 10 \text{ mA}$, $T_A = -55^\circ \text{C} \rightarrow 125^\circ \text{C}$</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum input voltage for valid PG</td>
<td>$I_{PG1} = 100$ μA, $V_{PG1} \geq 0.8 \text{ V}$</td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PG trip threshold voltage</td>
<td>V_O decreasing</td>
<td>90</td>
<td></td>
<td></td>
<td>$% V_O$</td>
</tr>
<tr>
<td>PG output low voltage</td>
<td>$V_I = 1.4$ V, $I_{PG1} = 100$ μA</td>
<td>0.14</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>PG leakage current</td>
<td>$V_{PG} = 5$ V</td>
<td>0.1</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

(1) To calculate the minimum input voltage for your maximum output current, use the following formula: $V_I(\text{min}) = V_O(\text{max}) + V_{DO}(\text{max load})$

(2) Continuous output current is limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.

(3) The minimum IN operating voltage is 1.8 V or V_O (typ) + 1 V, whichever is greater. The maximum IN voltage is 5.5 V. There is no minimum output current requirement and the maximum output current is 10 mA.

(4) IN voltage equals V_O(typ) – 100 mV. The TPS79730 input voltage is set to 2.9 V and the TPS79733 input voltage is set to 3.2 V. The TPS79718 dropout voltage is limited by input voltage range limitations.
TPS797xx PG TIMING DIAGRAM

A. \(V_{\text{min}} = V_{\text{OUT}} + V_{\text{DO}} \)

B. The PG trip voltage is typically 10% lower than the output voltage (90\(\%\)\(V_{\text{O}}\)). \(V_{\text{IT}}\) to \(V_{\text{IT+}}\) is the hysteresis voltage.
TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE vs OUTPUT CURRENT

- $V_o = 4.3 \text{ V}$
- $C_o = 1 \mu \text{F}$
- $T_a = 25^\circ \text{C}$

![Figure 1.](https://example.com/figure1.png)

OUTPUT VOLTAGE vs OUTPUT CURRENT

- $V_o = 2.8 \text{ V}$
- $C_o = 1 \mu \text{F}$
- $T_a = 25^\circ \text{C}$

![Figure 2.](https://example.com/figure2.png)

OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

- $V_o = 4.3 \text{ V}$
- $C_o = 1 \mu \text{F}$
- $T_a = 25^\circ \text{C}$

![Figure 3.](https://example.com/figure3.png)

GROUND CURRENT vs FREE-AIR TEMPERATURE

- $I_o = 1 \text{ mA}$
- $I_o = 10 \text{ mA}$

![Figure 5.](https://example.com/figure5.png)

OUTPUT IMPEDANCE vs FREQUENCY

- $V_i = 4.3 \text{ V}$
- $V_o = 3.3 \text{ V}$
- $C_o = 1 \mu \text{F}$
- $T_j = 25^\circ \text{C}$
- $I_o = 1 \text{ mA}$
- $I_o = 10 \text{ mA}$

![Figure 7.](https://example.com/figure7.png)

DROPOUT VOLTAGE vs FREE-AIR TEMPERATURE

- $V_o = 3.2 \text{ V}$
- $C_o = 1 \mu \text{F}$
- $I_o = 1 \text{ mA}$
- $I_o = 10 \text{ mA}$

![Figure 8.](https://example.com/figure8.png)

POWER UP / POWER DOWN

- $V_o = 3.3 \text{ V}$
- $R_L = 330 \Omega$
- V_i

![Figure 9.](https://example.com/figure9.png)

TYPICAL CHARACTERISTICS (continued)

![TPS79718 LINE TRANSIENT RESPONSE](image1)

![TPS79718 LOAD TRANSIENT RESPONSE](image2)

![TPS79733 LINE TRANSIENT RESPONSE](image3)

![TPS79733 LOAD TRANSIENT RESPONSE](image4)

Figure 10.

Figure 11.

Figure 12.

Figure 13.
APPLICATION INFORMATION

The TPS797xx family of low-dropout (LDO) regulators has been optimized for use in micropower applications. The devices feature extremely low dropout voltages and ultralow quiescent current (1.2 µA typ).

A typical application circuit is shown in Figure 14.

![Figure 14. Typical Application Circuit](image)

External Capacitor Requirements

Although not required, a 0.1 µF or larger input bypass capacitor, connected between IN and GND and located close to the TPS797xx, is recommended, especially when a highly resistive power supply is powering the LDO in addition to other devices.

Like all low-dropout regulators, the TPS797xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance is 0.47 µF. Any 0.47 µF capacitor is suitable. Capacitor values larger than 0.47 µF are acceptable.

Power Dissipation and Junction Temperature

Specified regulator operation is assured to a junction temperature of 125°C; restrict the maximum junction temperature to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, \(P_{D(\text{max})} \), and the actual dissipation, \(P_D \), which must be less than or equal to \(P_{D(\text{max})} \).

\[
P_{D(\text{max})} = \frac{T_{J,\text{max}} - T_A}{R_{\text{JA}}}
\]

The maximum-power-dissipation limit is determined using the following equation:

Where:
- \(T_{J,\text{max}} \) is the maximum allowable junction temperature.
- \(R_{\text{JA}} \) is the thermal resistance junction-to-ambient for the package (see the Power Dissipation Rating Table).
- \(T_A \) is the ambient temperature.

The regulator dissipation is calculated using:

\[
P_D = (V_I - V_O) \times I_O
\]

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation triggers the thermal protection circuit.
Regulator Protection

The TPS797xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might be appropriate.

The TPS797xx features internal current limiting. During normal operation, the TPS797xx limits output current to approximately 190 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. Take care not to exceed the power dissipation ratings of the package.

Microcontroller Application

One application for which this device is particularly suited is providing a regulated input voltage and power good (PG) supervisory signal to low-power devices such as mixed-signal microcontrollers. The quiescent or ground current of the TPS797xx family is typically 1.2 µA even at full load; therefore, the reduction in battery life by including the TPS797xx in the system is negligible. The primary benefits of using the TPS797xx to power low power digital devices include:

- Regulated output voltage that protects the device from battery droop and noise on the line (e.g., switch bounce)
- Smooth, monotonic power up
- PG signal for controlled device RESET
- Potential to use an existing 5-V power rail to power a 3.3 V or lower device
- Potential to provide separate digital and analog power and ground supplies for a system with only one power source

Figure 15 shows an application in which the TPS79718 is used to power Texas Instruments MSP430 mixed signal microcontroller.

![Figure 15. MSP430 Microcontroller Powered by the TPS79718 Regulator](image)

Minimal board space is needed to accommodate the DCK (SC70/SOT-323) packaged TPS79718, the 0.1 µF output capacitor, the 0.47 µF input capacitor, and the pullup resistor on the PG pin.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS79718MDCKREP</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CKW</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS79730MDCKREP</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>BUA</td>
<td>Samples</td>
</tr>
<tr>
<td>V62/06673-01XE</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CKW</td>
<td>Samples</td>
</tr>
<tr>
<td>V62/06673-02XE</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>BUA</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

- Catalog: TPS79718, TPS79730, TPS79733
- Automotive: TPS79718-Q1, TPS79730-Q1, TPS79733-Q1

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>A0</th>
<th>Dimension designed to accommodate the component width</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Dimension designed to accommodate the component length</td>
</tr>
<tr>
<td>K0</td>
<td>Dimension designed to accommodate the component thickness</td>
</tr>
<tr>
<td>W</td>
<td>Overall width of the carrier tape</td>
</tr>
<tr>
<td>P1</td>
<td>Pitch between successive cavity centers</td>
</tr>
</tbody>
</table>

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS79718MDCKREP</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.41</td>
<td>2.41</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS79730MDCKREP</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.41</td>
<td>2.41</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS79718MDCKREP</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
<tr>
<td>TPS79730MDCKREP</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties, if any, associated with the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHTS OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product), Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.