TPS7A30 –35-V, –200-mA, Ultralow-Noise, Negative Linear Regulator

1 Features

- Input Voltage Range: –3 V to –35 V
- Noise:
 - $14 \mu V_{\text{RMS}}$ (20 Hz to 20 kHz)
 - $15.1 \mu V_{\text{RMS}}$ (10 Hz to 100 kHz)
- Power-Supply Ripple Rejection:
 - 72 dB (120 Hz)
 - ≥ 55 dB (10 Hz to 700 kHz)
- Adjustable Output: –1.18 V to –33 V
- Maximum Output Current: 200 mA
- Dropout Voltage: 216 mV at 100 mA
- Stable with Ceramic Capacitors $\geq 2.2 \mu F$
- CMOS Logic-Level-Compatible Enable Pin
- Built-In, Fixed, Current Limit and Thermal Shutdown Protection
- Packages: 8-Pin HVSSOP PowerPAD™ and 3-mm × 3-mm VSON
- Operating Temperature Range: –40°C to 125°C

2 Applications

- Supply Rails for Operational Amplifiers, DACs, ADCs, and Other High-Precision Analog Circuitry
- Audio
- Post DC-DC Converter Regulation and Ripple Filtering
- Test and Measurement
- RX, TX, and PA Circuitry
- Industrial Instrumentation
- Base Stations and Telecom Infrastructure
- –12-V and –24-V Industrial Buses

3 Description

The TPS7A30 series of devices are negative, high-voltage (–35 V), ultralow-noise (15.1 μV_{RMS}, 72-dB PSRR) linear regulators that can source a maximum load of 200 mA.

These linear regulators include a CMOS logic-level-compatible enable pin and capacitor-programmable soft-start function that allows for customized power-management schemes. Other features include built-in current limit and thermal shutdown protection to safeguard the device and system during fault conditions.

The TPS7A30 family is designed using bipolar technology, and is ideal for high-accuracy, high-precision instrumentation applications where clean voltage rails are critical to maximize system performance. This design makes the device an excellent choice to power operational amplifiers, analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and other high-performance analog circuitry.

In addition, the TPS7A30 family of linear regulators is suitable for post dc-dc converter regulation. By filtering out the output voltage ripple inherent to dc-dc switching conversion, maximum system performance is provided in sensitive instrumentation, test and measurement, audio, and RF applications.

For applications that require positive and negative high-performance rails, consider TI’s TPS7A49 family of positive high-voltage, ultralow-noise linear regulators.

Device Information(1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A30</td>
<td>HVSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>VSON (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Post DC-DC Converter Regulation for High-Performance Analog Circuitry
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 4
6 Specifications .. 5
 6.1 Absolute Maximum Ratings 5
 6.2 ESD Ratings .. 5
 6.3 Recommended Operating Conditions 6
 6.4 Thermal Information .. 6
 6.5 Electrical Characteristics 7
 6.6 Typical Characteristics 8
7 Parameter Measurement Information 13
8 Detailed Description ... 14
 8.1 Overview .. 14
 8.2 Functional Block Diagram 14
 8.3 Feature Description .. 15
 8.4 Device Functional Modes 16
9 Application and Implementation 17
 9.1 Application Information 17
 9.2 Typical Application .. 20
 9.3 Do's and Don'ts .. 23
10 Power Supply Recommendations 23
11 Layout ... 24
 11.1 Layout Guidelines .. 24
 11.2 Layout Examples .. 25
 11.3 Thermal Considerations 26
 11.4 Power Dissipation ... 26
12 Device and Documentation Support 28
 12.1 Device Support ... 28
 12.2 Documentation Support 28
 12.3 Community Resources 28
 12.4 Trademarks .. 28
 12.5 Electrostatic Discharge Caution 28
 12.6 Glossary ... 29
13 Mechanical, Packaging, and Orderable Information 29

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (April 2015) to Revision D

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added DRB package to document</td>
<td>1</td>
</tr>
<tr>
<td>Added TI Design</td>
<td>1</td>
</tr>
<tr>
<td>Changed Packages Features bullet</td>
<td>1</td>
</tr>
<tr>
<td>Added VSON row to Device Information table</td>
<td>1</td>
</tr>
<tr>
<td>Added DRB package to Pin Configuration and Functions section</td>
<td>4</td>
</tr>
<tr>
<td>Changed EN pin description in Pin Functions table: updated voltage symbols</td>
<td>4</td>
</tr>
<tr>
<td>Added DRB column to Thermal Information table</td>
<td>6</td>
</tr>
<tr>
<td>Changed test conditions of last row in</td>
<td>EN</td>
</tr>
<tr>
<td>Changed title and y-axis of Figure 7 to Ground Current</td>
<td>9</td>
</tr>
<tr>
<td>Changed y-axis of Figure 11 and Figure 12 to Iq</td>
<td>9</td>
</tr>
<tr>
<td>Changed VEN value of disabled mode in Table 1</td>
<td>16</td>
</tr>
<tr>
<td>Changed first sentence of Application Information section</td>
<td>17</td>
</tr>
<tr>
<td>Added Table 2 and respective description to Adjustable Operation section</td>
<td>17</td>
</tr>
<tr>
<td>Deleted third sentence from Capacitor Recommendations section</td>
<td>17</td>
</tr>
<tr>
<td>Changed third paragraph of Power for Precision Analog section</td>
<td>19</td>
</tr>
<tr>
<td>Changed description of start-up time in Design Requirements section</td>
<td>20</td>
</tr>
<tr>
<td>Changed Equation 3</td>
<td>20</td>
</tr>
<tr>
<td>Changed Equation 8</td>
<td>21</td>
</tr>
<tr>
<td>Changed fifth item in Do's and Don'ts section</td>
<td>23</td>
</tr>
<tr>
<td>Changed Figure 40 footnote</td>
<td>25</td>
</tr>
<tr>
<td>Changed 35°C to 45°C in Thermal Considerations section</td>
<td>26</td>
</tr>
</tbody>
</table>
Changes from Revision B (December 2013) to Revision C

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ... 1

- Changed document title ... 1

- Changed Thermal Information table; updated values ... 6

- Deleted Dissipation Ratings table .. 6

- Changed condition statement for Electrical Characteristics table .. 7

- Added footnote about measuring V_{REF} to Electrical Characteristics table ... 7

- Added V_{FB} parameter to Electrical Characteristics table .. 7

- Changed parametric symbol for current limit from I_{LM} to I_{CL} ... 7

- Changed C_{BYP} notation to C_{FF} throughout data sheet ... 7

- Changed condition statement for Typical Characteristics ... 8

- Changed Figure 14; changed notation for C_{BYP} to C_{FF} ... 9

- Changed Figure 16; changed notation for C_{BYP} to C_{FF} ... 9

- Changed Figure 18; changed notation for C_{BYP} to C_{FF} ... 9

- Changed Figure 32; changed C_{BYP} to C_{FF} ... 20

Changes from Revision A (March 2011) to Revision B

- Changed V_{REF} parameter typical specification in Electrical Characteristics table ... 7

Changes from Original (August 2010) to Revision A

- Switched colors for 10mA and 200mA curves in Figure 10 ... 8
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNC</td>
<td>7</td>
<td>— Do not connect. Do not route this pin to any electrical net, not even GND or IN.</td>
</tr>
<tr>
<td>EN</td>
<td>5</td>
<td>I This pin turns the regulator on or off. If $V_{EN} \geq V_{EN(+HI, min)}$ or $V_{EN} \leq V_{EN(-HI, max)}$, the regulator is enabled. If $V_{EN(+LO, max)} \geq V_{EN} \geq V_{EN(-LO, min)}$, the regulator is disabled. The EN pin can be connected to IN, if not used. $</td>
</tr>
<tr>
<td>FB</td>
<td>2</td>
<td>I This pin is the feedback pin that sets the output voltage of the device.</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>— Ground</td>
</tr>
<tr>
<td>IN</td>
<td>8</td>
<td>I Input supply</td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
<td>— Not internally connected. This pin must either be left open or tied to GND.</td>
</tr>
<tr>
<td>NR/SS</td>
<td>6</td>
<td>— Noise reduction pin. Connecting an external capacitor to this pin filters the noise generated by the internal band gap. This capacitor allows RMS noise to be reduced to very low levels and also controls the soft-start function.</td>
</tr>
<tr>
<td>OUT</td>
<td>1</td>
<td>O Regulator output. A capacitor $\geq 2.2 \mu F$ must be tied from this pin to ground to ensure stability.</td>
</tr>
<tr>
<td>PowerPAD</td>
<td>—</td>
<td>— Must either be left open or tied to GND. Solder to printed-circuit-board (PCB) plane to enhance thermal performance.</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

Voltage	MIN	MAX	UNIT
IN pin to GND pin	–36	0.3	V
OUT pin to GND pin	–33	0.3	V
OUT pin to IN pin	–0.3	36	V
FB pin to GND pin	–2	0.3	V
FB pin to IN pin	–0.3	36	V
EN pin to IN pin	–0.3	36	V
EN pin to GND pin	–36	36	V
NR/SS pin to IN pin	–0.3	36	V
NR/SS pin to GND pin	–2	0.3	V

<table>
<thead>
<tr>
<th>Current</th>
<th>Peak output</th>
<th>Internally limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating virtual junction, (T_J)</td>
<td>(-40)</td>
</tr>
<tr>
<td></td>
<td>Storage, (T_{stg})</td>
<td>(-65)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)}) Electrostatic discharge</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±1500</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±500</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>–35</td>
<td>–3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{EN}</td>
<td>0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td></td>
<td>V_{REF}</td>
<td>33</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>0</td>
<td></td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>T_J</td>
<td>–40</td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>2.2</td>
<td></td>
<td>10</td>
<td>µF</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>2.2</td>
<td></td>
<td>10</td>
<td>µF</td>
</tr>
<tr>
<td>C_{NR}</td>
<td>0</td>
<td></td>
<td>10</td>
<td>nF</td>
</tr>
<tr>
<td>C_{FF}</td>
<td>0</td>
<td></td>
<td>10</td>
<td>nF</td>
</tr>
<tr>
<td>R_2</td>
<td></td>
<td></td>
<td>237</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TPS7A30</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DGN</td>
<td>DRB</td>
</tr>
<tr>
<td></td>
<td>(HVSSOP PowerPAD)</td>
<td>(VSON)</td>
</tr>
<tr>
<td>R_{JA}</td>
<td>63.4</td>
<td>47.7</td>
</tr>
<tr>
<td>$R_{J(C)(top)}$</td>
<td>53</td>
<td>55.3</td>
</tr>
<tr>
<td>R_{JB}</td>
<td>37.4</td>
<td>23.3</td>
</tr>
<tr>
<td>ψ_{JT}</td>
<td>3.7</td>
<td>1.1</td>
</tr>
<tr>
<td>ψ_{JB}</td>
<td>37.1</td>
<td>23.5</td>
</tr>
<tr>
<td>$R_{J(C)(bot)}$</td>
<td>13.5</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 Electrical Characteristics

At $T_J = -40^\circ C$ to $125^\circ C$, $|V_{IN}| = |V_{OUT}^{(nom)}| + 1$ V or $|V_{IN}| = 3$ V (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_N = 2.2$ μF, $C_{OUT} = 2.2$ μF, $C_{NR/SS} = 0$ nF, and the FB pin tied to OUT, unless otherwise noted. Typical values are at $T_A = 25^\circ C$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input voltage</td>
<td>–35</td>
<td>–3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Internal reference</td>
<td>–1.202</td>
<td>–1.179</td>
<td>–1.166</td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback voltage</td>
<td>–1.176</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output voltage range</td>
<td>$</td>
<td>V_{IN}</td>
<td>\geq</td>
<td>V_{OUT}^{(nom)}</td>
</tr>
<tr>
<td></td>
<td>Nominal accuracy</td>
<td>$T_J = 25^\circ C$, $</td>
<td>V_{IN}</td>
<td>=</td>
<td>V_{OUT}^{(nom)}</td>
</tr>
<tr>
<td></td>
<td>Overall accuracy</td>
<td>$</td>
<td>V_{OUT}^{(nom)}</td>
<td>+ 1$ V $\leq</td>
<td>V_{IN}</td>
</tr>
<tr>
<td>$</td>
<td>V_{OUT}^{(V_{REF})}</td>
<td>/</td>
<td>V_{OUT}^{(nom)}</td>
<td>$</td>
<td>Line regulation</td>
</tr>
<tr>
<td>$</td>
<td>V_{OUT}^{(LOAD)}</td>
<td>/</td>
<td>V_{OUT}^{(nom)}</td>
<td>$</td>
<td>Load regulation</td>
</tr>
<tr>
<td>$</td>
<td>V_{DOU}</td>
<td>$</td>
<td>Dropout voltage</td>
<td>$V_{IN} = 95% V_{OUT}^{(nom)}$, $I_{OUT} = 100$ mA</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 95% V_{OUT}^{(nom)}$, $I_{OUT} = 200$ mA</td>
<td>325</td>
<td>600</td>
<td>mV</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Current limit</td>
<td>$V_{OUT} = 90% V_{OUT}^{(nom)}$</td>
<td>220</td>
<td>330</td>
<td>500</td>
</tr>
<tr>
<td>I_{GND}</td>
<td>Ground current</td>
<td>$I_{OUT} = 0$ mA</td>
<td>55</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OUT} = 100$ mA</td>
<td>950</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown supply current</td>
<td>$V_{EN} = 0.4$ V</td>
<td>1</td>
<td>3</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{EN} = –0.4$ V</td>
<td>1</td>
<td>3</td>
<td>μA</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Feedback current</td>
<td>14</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>$</td>
<td>I_{EN}</td>
<td>$</td>
<td>Enable current</td>
<td>$V_{EN} =</td>
<td>V_{IN}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = V_{EN} = –35$ V</td>
<td>0.51</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = –21$ V, $V_{EN} = 15$ V</td>
<td>0.5</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>$V_{EN(+Hi)}$</td>
<td>Positive enable high-level voltage</td>
<td>$T_J = –40^\circ C$ to $125^\circ C$</td>
<td>2</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = –40^\circ C$ to $85^\circ C$</td>
<td>1.8</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>$V_{EN(+Lo)}$</td>
<td>Positive enable low-level voltage</td>
<td>0</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{EN(-Hi)}$</td>
<td>Negative enable high-level voltage</td>
<td>V_{IN}</td>
<td>–2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{EN(-Lo)}$</td>
<td>Negative enable low-level voltage</td>
<td>–0.4</td>
<td>0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{n}</td>
<td>Output noise voltage</td>
<td>$V_{IN} = –3$ V, $V_{OUT}^{(nom)} = V_{REF}$, $C_{OUT} = 10$ μF, $C_{NR/SS} = 10$ nF, $BW = 10$ Hz to 100 kHz</td>
<td>15.1</td>
<td></td>
<td>μV$_{RMS}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = –6.2$ V, $V_{OUT}^{(nom)} = –5$ V, $C_{OUT} = 10$ μF, $C_{NR/SS} = C_{FF}^{(5)} = 10$ nF, $BW = 10$ Hz to 100 kHz</td>
<td>17.5</td>
<td></td>
<td>μV$_{RMS}$</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>$V_{IN} = –6.2$ V, $V_{OUT}^{(nom)} = –5$ V, $C_{OUT} = 10$ μF, $C_{NR/SS} = C_{FF}^{(5)} = 10$ nF, $f = 120$ Hz</td>
<td>72</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>T_{SD}</td>
<td>Thermal shutdown temperature</td>
<td>Shutdown, temperature increasing</td>
<td>170</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Reset, temperature decreasing</td>
<td>150</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Operating junction temperature range</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) At operating conditions, $V_{IN} \leq 0$ V, $V_{OUT}^{(nom)} \leq V_{REF} \leq 0$ V. At regulation, $V_{IN} \leq V_{OUT}^{(nom)} – |V_{DOU}|$, $I_{OUT} > 0$ flows from OUT to IN.

(2) V_{REF} is measured at the NR/SS pin.

(3) To ensure stability at no load conditions, a current from the feedback resistive network equal to or greater than 5 μA is required.

(4) If $I_{FB} > 0$ V flows into the device.

(5) C_{FF} refers to a feed-forward capacitor connected to the FB and OUT pins.
6.6 Typical Characteristics

At $T_J = -40^\circ$ to 125°C, $|V_{IN}| = |V_{OUT(nom)}| + 1$ V or $|V_{IN}| = 3$ V (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_{IN} = 2.2$ μF, $C_{OUT} = 2.2$ μF, $C_{NR/SS} = 0$ nF, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ$C.

Figure 1. Feedback Voltage vs Input Voltage

Figure 2. Feedback Current vs Temperature

Figure 3. Ground Current vs Input Voltage

Figure 4. Ground Current vs Input Voltage

Figure 5. Ground Current vs Output Current

Figure 6. Enable Current vs Enable Voltage
Typical Characteristics (continued)

At $T_J = -40°C$ to 125°C, $|V_{IN}| = |V_{OUT(nom)}| + 1 V$ or $|V_{IN}| = 3 V$ (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1 mA$, $C_{IN} = 2.2 \mu F$, $C_{OUT} = 2.2 \mu F$, $C_{NPRSS} = 0 \mu F$, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25°C$.

Figure 7. Ground Current vs Input Voltage

Figure 8. Shutdown Current vs Input Voltage

Figure 9. Dropout Voltage vs Output Current

Figure 10. Dropout Voltage vs Temperature

Figure 11. Current Limit vs Input Voltage

Figure 12. Current Limit vs Temperature
Typical Characteristics (continued)

At \(T_J = -40°C \) to 125°C, \(|V_{IN}| = |V_{OUT(nom)}| + 1\) V or \(|V_{IN}| = 3\) V (whichever is greater), \(V_{EN} = V_{IN}, I_{OUT} = 1\) mA, \(C_{IN} = 2.2\) μF, \(C_{OUT} = 2.2\) μF, \(C_{NR/SS} = 0\) nF, and \(V_{OUT} = V_{FB} \), unless otherwise noted. Typical values are at \(T_A = 25°C \).

![Enable Threshold Voltage vs Temperature](image1)

![Power-Supply Rejection Ratio vs \(C_{OUT} \)](image2)

![Line Regulation](image3)

![Power-Supply Rejection Ratio vs \(C_{NR/SS} \)](image4)

![Load Regulation](image5)

![Power-Supply Rejection Ratio vs \(C_{FF} \)](image6)
Typical Characteristics (continued)

At $T_J = -40^\circ$C to 125°C, $|V_{IN}| = |V_{OUT(nom)}| + 1$ V or $|V_{IN}| = 3$ V (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_{IN} = 2.2$ µF, $C_{OUT} = 2.2$ µF, $C_{NR/SS} = 0$ nF, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ$C.

Figure 19. Capacitor-Programmable Soft-Start

Figure 20. Capacitor-Programmable Soft-Start

Figure 21. Capacitor-Programmable Soft-Start

Figure 22. Capacitor-Programmable Soft-Start

Figure 23. Line Transient Response

Figure 24. Line Transient Response
Typical Characteristics (continued)

At $T_J = -40^\circ C$ to $125^\circ C$, $|V_{IN}| = |V_{OUT(nom)}| + 1$ V or $|V_{IN}| = 3$ V (whichever is greater), $V_{EN} = V_{IN}$, $I_{OUT} = 1$ mA, $C_N = 2.2 \mu F$, $C_{OUT} = 2.2 \mu F$, $C_{NR/SS} = 0$ nF, and $V_{OUT} = V_{FB}$, unless otherwise noted. Typical values are at $T_A = 25^\circ C$.

![Figure 25. Load Transient Response](image-url)
7 Parameter Measurement Information

![Figure 26. Output Spectral Noise Density vs Output Current](image1)

<table>
<thead>
<tr>
<th>I_{OUT}</th>
<th>RMS NOISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mA</td>
<td>15.13</td>
</tr>
<tr>
<td>200mA</td>
<td>17.13</td>
</tr>
</tbody>
</table>

![Figure 27. Output Spectral Noise Density vs C_{NR/SS}](image2)

<table>
<thead>
<tr>
<th>C_{NR/SS}</th>
<th>RMS NOISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0nF</td>
<td>80.00</td>
</tr>
<tr>
<td>10nF</td>
<td>17.29</td>
</tr>
</tbody>
</table>

![Figure 28. Output Spectral Noise Density vs V_{OUT(nom)}](image3)

<table>
<thead>
<tr>
<th>V_{OUT(nom)}</th>
<th>RMS NOISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>−5V</td>
<td>17.50</td>
</tr>
<tr>
<td>−1.2V</td>
<td>15.13</td>
</tr>
</tbody>
</table>
8 Detailed Description

8.1 Overview
The TPS7A30 family of devices are wide VIN, low-noise, 150-mA linear regulators (LDOs). These devices feature an enable pin, programmable soft-start, current limiting, and thermal protection circuitry that allow the device to be used in a wide variety of applications. As bipolar-based devices, the TPS7A30 devices are ideal for high-accuracy, high-precision applications at higher voltages.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Internal Current Limit
The fixed internal current limit of the TPS7A30 family helps protect the regulator during fault conditions. The maximum amount of current the device can source is the current limit (330 mA, typical), and is largely independent of the output voltage. For reliable operation, do not operate the device in current limit for extended periods of time.

8.3.2 Programmable Soft-Start
The NR/SS capacitor also functions as a soft-start capacitor to slow down the rise time of the output. The rise time of the output when using an NR/SS capacitor is governed by Equation 1. In Equation 1, t_{SS} is the soft-start time in milliseconds and $C_{NR/SS}$ is the capacitance at the NR pin in nanofarads. Figure 29 shows the relationship between the $C_{NR/SS}$ size and the start-up time without a C_{FF}.

$$t_{SS} \text{ (ms)} = 0.9 \times C_{NR/SS} \text{ (nF)}$$ \hfill (1)

![Figure 29. Soft-Start Time vs C_{NR/SS}](image)

8.3.3 Enable Pin Operation
The TPS7A30 provides a dual-polarity enable pin (EN) that turns on the regulator when $|V_{EN}| > 2 \text{ V}$, whether the voltage is positive or negative, as shown in Figure 30.

This functionality allows for different system power management topologies:
- Connecting the EN pin directly to a negative voltage (such as V_{IN}).
- Connecting the EN pin directly to a positive voltage, such as the output of digital logic circuitry.

![Figure 30. Enable Pin Positive and Negative Threshold](image)
8.4 Device Functional Modes

8.4.1 Normal Operation

The device regulates to the nominal output voltage under the following conditions:

- The input voltage is at least as high as the \(|V_{\text{IN(min)}}|\).
- The input voltage magnitude is greater than the nominal output voltage magnitude added to the dropout voltage.
- \(|V_{\text{EN}}| > |V_{(\text{HI})}|\).
- The output current is less than the current limit.
- The device junction temperature is less than the maximum specified junction temperature.

8.4.2 Dropout Operation

If the input voltage magnitude is lower than the nominal output voltage magnitude plus the specified dropout voltage magnitude, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the output voltage magnitude is the same as the input voltage magnitude minus the dropout voltage magnitude. The transient performance of the device is significantly degraded because the pass device (such as a bipolar junction transistor, or BJT) is in saturation and no longer controls the current through the LDO. Line or load transients in dropout can result in large output voltage deviations.

8.4.3 Disabled

The device is disabled under the following conditions:

- \(|V_{\text{EN}}| < |V_{(\text{LO})}|\).
- The device junction temperature is greater than the thermal shutdown temperature.

Table 1 shows the conditions that lead to the different modes of operation.

<table>
<thead>
<tr>
<th>OPERATING MODE</th>
<th>(V_{\text{IN}})</th>
<th>(V_{\text{EN}})</th>
<th>(I_{\text{OUT}})</th>
<th>(T_{J})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>(</td>
<td>V_{\text{IN}}</td>
<td>> (</td>
<td>V_{\text{OUT(nom)}}</td>
</tr>
<tr>
<td>Dropout mode</td>
<td>(</td>
<td>V_{\text{IN(min)}}</td>
<td><</td>
<td>V_{\text{IN}}</td>
</tr>
<tr>
<td>Disabled mode (any true condition disables the device)</td>
<td>—</td>
<td>(</td>
<td>V_{\text{EN}}</td>
<td><</td>
</tr>
</tbody>
</table>
9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS7A30 belongs to a family of linear regulators that use an innovative bipolar process to achieve ultralow-noise. The TPS7A30 are bipolar-based devices and are therefore ideal for high-accuracy, high-performance analog applications at higher voltages.

9.1.1 Adjustable Operation

The TPS7A3001 has an output voltage range of –1.174 V to –33 V. The nominal output voltage of the device is set by two external resistors; see Figure 32.

\[
R_1 = R_2 \left(\frac{V_{OUT}}{V_{FB(nom)}} - 1 \right), \quad \text{where} \quad \frac{|V_{FB(nom)}|}{R_2} > 5 \mu A
\]

(2)

If greater voltage accuracy is required, take into account the output voltage offset contributions resulting from the feedback pin current and use 0.1% tolerance resistors. Table 2 shows the 1% resistor values for several different standard output voltages.

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R_1 (kΩ)</th>
<th>R_2 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–2.5</td>
<td>11.3</td>
<td>10</td>
</tr>
<tr>
<td>–5</td>
<td>32.4</td>
<td>10</td>
</tr>
<tr>
<td>–12</td>
<td>93.1</td>
<td>10</td>
</tr>
<tr>
<td>–15</td>
<td>118</td>
<td>10</td>
</tr>
<tr>
<td>–18</td>
<td>143</td>
<td>10</td>
</tr>
</tbody>
</table>

9.1.2 Capacitor Recommendations

Use low-equivalent series resistance (ESR) capacitors for the input, output, noise reduction, and feed-forward capacitors. Ceramic capacitors with X7R and X5R dielectrics are preferred. Ceramic X7R capacitors offer improved overtemperature performance, whereas ceramic X5R capacitors are the most cost-effective and are available in higher values.

NOTE

High-ESR capacitors can degrade PSRR.
9.1.2.1 Input and Output Capacitor Requirements
The TPS7A30 family of negative, high-voltage linear regulators achieve stability with a minimum input and output capacitance of 2.2 \(\mu F \); however, TI highly recommends using a 10-\(\mu F \) capacitor to maximize ac performance.

9.1.2.2 Noise-Reduction and Feed-Forward Capacitor Requirements
Although noise-reduction and feed-forward capacitors (\(C_{NR/SS} \) and \(C_{FF} \), respectively) are not needed to achieve stability, TI highly recommends using 10-nF capacitors to minimize noise and maximize ac performance.

For more information on \(C_{FF} \), refer to application report, *Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator* (SBVA042). This application report explains the advantages of using \(C_{FF} \) (also known as \(C_{BYP} \)), and the problems that can occur when using this capacitor.

9.1.3 Maximum AC Performance
To maximize noise and PSRR performance, TI recommends including a 10-\(\mu F \) or higher input and output capacitors, and 10-nF noise-reduction and bypass capacitors; see Figure 32. The solution illustrated in Figure 32 delivers minimum noise levels of 15.1 \(\mu V_{RMS} \) and power-supply rejection levels above 55 dB from 10 Hz to 700 kHz; see Figure 18 and Figure 26.

9.1.4 Output Noise
The TPS7A30 provides low output noise when a noise-reduction capacitor (\(C_{NR/SS} \)) is used. The noise-reduction capacitor serves as a filter for the internal reference. By using a 10-nF noise reduction capacitor, the output noise is reduced by approximately 80\% (from 80 \(\mu V_{RMS} \) to 17 \(\mu V_{RMS} \)); see Figure 27.

The TPS7A30 low output voltage noise makes the device an ideal solution for powering noise-sensitive circuitry.

9.1.5 Power-Supply Rejection
The 10-nF noise-reduction capacitor greatly improves TPS7A30 power-supply rejection, achieving up to 20 dB of additional power-supply rejection for frequencies between 110 Hz and 400 kHz.

Additionally, ac performance can be maximized by adding a 10-nF bypass capacitor (\(C_{FF} \)) from the FB pin to the OUT pin. This capacitor greatly improves power-supply rejection at lower frequencies, for the band from 10 Hz to 200 kHz; see Figure 18.

The very high power-supply rejection of the TPS7A30 makes the device a good choice for powering high-performance analog circuitry (such as operational amplifiers, ADCs, DACs, and audio amplifiers).

9.1.6 Transient Response
As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude but increases duration of the transient response.

9.1.7 Post DC-DC Converter Filtering
Most of the time, the voltage rails available in a system do not match the voltage requirements for the system. These rails must be stepped up or down, depending on specific voltage requirements.

DC-DC converters are the preferred solution to step up or down a voltage rail when current consumption is not negligible. These converters offer high efficiency with minimum heat generation, but have one primary disadvantage: these converters introduce a high-frequency component (and the associated harmonics) in addition to the dc output signal.

This high-frequency component, if not filtered properly, degrades analog circuitry performance, reducing overall system accuracy and precision.

The TPS7A30 offers a wide-bandwidth, very-high power-supply rejection ratio. This specification makes the device ideal for post dc-dc converter filtering; see Figure 31. TI highly recommends using the maximum performance schematic illustrated in Figure 32. Also, verify that the fundamental frequency (and its first harmonic, if possible) is within the bandwidth of the regulator PSRR; see Figure 18.
9.1.8 Audio Applications

Audio applications are extremely sensitive to any distortion and noise in the audio band from 20 Hz to 20 kHz. This stringent requirement demands clean voltage rails to power critical high-performance audio systems.

The very-high power-supply rejection ratio (> 55 dB) and low noise at the audio band of the TPS7A30 maximize performance for audio applications; see Figure 18.

9.1.9 Power for Precision Analog

One of the primary TPS7A30 applications is to provide ultralow noise voltage rails to high-performance analog circuitry in order to maximize system accuracy and precision.

In conjunction with its positive counterpart, the TPS7A49xx family of positive high-voltage linear regulators, the TPS7A30 family of negative high voltage linear regulators provides ultralow noise positive and negative voltage rails to high-performance analog circuitry (such as operational amplifiers, ADCs, DACs, and audio amplifiers).

The low noise levels at high voltages, such as ±15 V, enables clean power rails for precision analog circuitry. This characteristic allows for high-performance analog solutions to optimize the voltage range, thus maximizing system accuracy.
9.2 Typical Application

9.2.1 Design Requirements

The design goals are \(V_{IN} = -3 \text{ V} \), \(V_{OUT} = -1.2 \text{ V} \), and \(I_{OUT} = 150 \text{ mA} \), maximum. The design must optimize transient response and meet a start-up time of 14 ms. The input supply comes from a supply on the same printed circuit board (PCB). The design circuit is shown in Figure 32.

The design space consists of \(C_{IN} \), \(C_{OUT} \), \(C_{NR/SS} \), \(R_1 \), and \(R_2 \), at \(T_A(\text{max}) = 75^\circ \text{C} \).

9.2.2 Detailed Design Procedure

The first step when designing with a linear regulator is to examine the maximum load current, along with the input and output voltage requirements, to determine if the device thermal and dropout voltage requirements can be met. At 150 mA, the input dropout voltage of the TPS7A30 family is a maximum of 600 mV overtemperature; therefore, the dropout headroom of 1.8 V is sufficient for operation over both input and output voltage accuracy. Dropout headroom is calculated as \(V_{IN} - V_{OUT} - V_{DO(\text{max})} \), and must be greater than 0 V for reliable operation. \(V_{DO(\text{max})} \) is the maximum dropout allowed, given worst-case load conditions.

The maximum power dissipated in the linear regulator is the maximum voltage dropped across the pass element from the input to the output, multiplied by the maximum load current. In this example, the maximum voltage drop across the pass element is \(|3 \text{ V} - 1.2 \text{ V}|\), resulting in \(V_{IN} - V_{OUT} = 1.8 \text{ V} \). The power dissipated in the pass element is calculated by taking this voltage drop multiplied by the maximum load current. For this example, the maximum power dissipated in the linear regulator is 0.273 W, and is calculated as Equation 3:

\[
P_D = (V_{IN} - V_{OUT}) (I_{MAX}) + (V_{IN}) (I_Q)
\]

When the power dissipated in the linear regulator is known, the corresponding junction temperature rise can be calculated. To calculate the junction temperature rise above ambient, the power dissipated must be multiplied by the junction-to-ambient thermal resistance. This calculation gives the worst-case junction temperature; good thermal design can significantly reduce this number. For thermal resistance information, refer to the Thermal Information table. For this example, using the DGN package, the maximum junction temperature rise is calculated to be 17.3°C. The maximum junction temperature rise is calculated by adding the junction temperature rise to the maximum ambient temperature, which is 75°C for this example. For this example, calculate the maximum junction temperature as 92.3°C. Keep in mind that the maximum junction temperature must be below 125°C for reliable device operation. Additional ground planes, added thermal vias, and airflow all help to lower the maximum junction temperature.

Use the following equations to select the rest of the components:

To ensure stability under no-load conditions, the current through the resistor network must be greater than 5 µA, as shown in Equation 4.

\[
\frac{V_{FB}}{R_2} > 5 \mu\text{A} \rightarrow R_2 < 242.4 \text{ k}\Omega
\]

To set \(R_2 = 100 \text{ k}\Omega \) for a standard 1% value resistor, calculate \(R_1 \) as shown in Equation 5.

\[
R_1 = R_2 \left(\frac{V_{OUT}}{V_{REF(\text{nom})}} - 1 \right) = 100 \text{ k}\Omega \left(\frac{1.2 \text{ V}}{1.176 \text{ V}} - 1 \right) = 2.04 \text{ k}\Omega
\]

Use a standard, 1%, 2.05-kΩ resistor for \(R_1 \).
Typical Application (continued)

Equation 6 calculates the start-up time, t_{SS}.

$$t_{SS} \text{ (ms)} = 0.9 \times C_{NR/SS} = 14 \text{ ms}$$

$$C_{SS} = 15 \text{ nF}$$ \hspace{1cm} (6)

For the soft-start to dominate the start-up conditions, ideally place the start-up time as a result of the current limit at two decades below the soft-start time (at 140 μs). C_{OUT} must be at least 2.2 μF for stability, as shown in Equation 7 and Equation 8.

$$t_{SS(CL)} = \frac{V_{OUT}}{I_{CL(max)}}$$

$$C_{OUT(max)} = t_{SS(CL)} \left(\frac{I_{CL(min)}}{V_{OUT}} \right) = 140 \mu s \times \frac{220 \text{ mA}}{2 \text{ V}} = 15.4 \mu \text{F}$$ \hspace{1cm} (7)

For C_{IN}, assume that the –3-V supply has some inductance and is placed several inches away from the PCB. For this case, select a 2.2-μF ceramic input capacitor to ensure that the input impedance is negligible to the LDO control loop and to keep the physical size and cost of the capacitor low; this component is a common-value capacitor.

For better PSRR for this design, use a 10-μF input and output capacitor. To reduce the peaks from transients but slow down the recovery time, increase the output capacitor size or add additional output capacitors.
Typical Application (continued)

9.2.3 Application Curves

Figure 33. Capacitor-Programmable Soft-Start

Figure 34. Capacitor-Programmable Soft-Start

Figure 35. Line Transient Response

Figure 36. Line Transient Response

Figure 37. Load Transient Response
9.3 Do's and Don’ts

Place at least one low-ESR, 2.2-μF capacitor as close as possible to both the IN and OUT pins of the regulator to the GND pin.

Provide adequate thermal paths away from the device.

Do not place the input or output capacitor more than 10 mm away from the regulator.

Do not exceed the absolute maximum ratings.

Do not float the enable (EN) pin.

Do not resistively or inductively load the NR/SS pin.

10 Power Supply Recommendations

The input supply for the LDO must be within the recommended operating conditions (that is, between –3 V and –35 V). The input voltage must provide adequate headroom in order for the device to have a regulated output. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.

The input and output supplies must also be bypassed with at least a 2.2-μF capacitor located near the input and output pins. There must be no other components located between these capacitors and the pins.
11 Layout

11.1 Layout Guidelines
Layout is a critical part of good power-supply design. There are several signal paths that conduct fast-changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power-supply performance. To help eliminate these problems, the IN pin must be bypassed to ground with a low ESR ceramic bypass capacitor with an X5R or X7R dielectric.

The GND pin must be tied directly to the PowerPAD under the device. The PowerPAD must be connected to any internal PCB ground planes using multiple vias directly under the device.

Equivalent series inductance (ESL) and equivalent series resistance (ESR) must be minimized to maximize performance and ensure stability. Every capacitor (C\textsubscript{IN}, C\textsubscript{OUT}, C\textsubscript{NR/SS}, and C\textsubscript{FF}) must be placed as close as possible to the device and on the same side of the PCB as the regulator itself.

Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use of vias and long traces is strongly discouraged because these circuits can negatively affect system performance, and can even cause instability.

11.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance
To improve ac performance (such as PSRR, output noise, and transient response), TI recommends designing the board with separate ground planes for V\textsubscript{IN} and V\textsubscript{OUT}, with each ground plane star-connected only at the GND pin of the device. In addition, the ground connection for the bypass capacitor must connect directly to the GND pin of the device.

11.2 Layout Examples

![PCB Layout Example](image_url)

Figure 38. PCB Layout Example
Figure 39. PCB Layout Example Schematic

NOTE: C_{IN} and C_{OUT} are size 1206 capacitors, and C_{NR}, R1, and R2 are size 0402.

Figure 40. PCB Layout Example
11.3 Thermal Considerations

Thermal protection disables the output when the junction temperature rises to approximately 170°C, allowing the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry is enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit can cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature must be limited to a maximum of 125°C. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection must trigger at least 45°C above the maximum expected ambient condition of any particular application. This configuration produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the TPS7A30 is designed to protect against overload conditions. This circuitry is not intended to replace proper heatsinking. Continuously running the TPS7A30 into thermal shutdown degrades device reliability.

11.4 Power Dissipation

The ability to remove heat from the die is different for each package type, presenting different considerations in the PCB layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Performance data or JEDEC low- and high-K boards are provided in the Thermal Information table. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat dissipating layers also improves the heatsink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation (P_D) can be approximated by the product of the output current times the voltage drop across the output pass element, as shown in Equation 9.

$$ P_D = (V_{IN} - V_{OUT}) \times I_{OUT} $$

(9)
Power Dissipation (continued)

Estimating the junction temperature can be done by using the thermal metrics Ψ_{JT} and Ψ_{JB}, as discussed in the Thermal Information table. These metrics are a more accurate representation of the heat transfer characteristics of the die and the package than R_{0JA}. The junction temperature can be estimated with Equation 10.

\[
\Psi_{JT}: \quad T_J = T_T + \Psi_{JT} \cdot P_D \\
\Psi_{JB}: \quad T_J = T_B + \Psi_{JB} \cdot P_D
\]

where
- P_D is the power dissipation given by Equation 9,
- T_T is the temperature at the center-top of the device package, and
- T_B is the PCB temperature measured 1 mm away from the device package on the PCB surface. \hspace{1cm} (10)

NOTE

Both T_T and T_B can be measured on actual application boards using a thermo-gun (an infrared thermometer).

For more information about measuring T_T and T_B, see the application note Using New Thermal Metrics (SBVA025), available for download at www.ti.com.
12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 Evaluation Modules
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TPS7A30. The TPS7A30-49EVM-567 evaluation module (and related user's guide) can be requested at the TI website through the product folders or purchased directly from the TI eStore.

12.1.1.2 Spice Models
Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. A SPICE model for the TPS7A30 is available through the product folders under the Tools & Software tab.

12.1.2 Device Nomenclature

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A30xx yyy z</td>
<td>XX is nominal output voltage (01 = Adjustable).<sup>2</sup> YYY is package designator. Z is package quantity.</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder on www.ti.com.
(2) For fixed –1.2-V operation, tie FB to OUT.

12.2 Documentation Support

12.2.1 Related Documentation
For related documentation see the following:
- Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator, SBVA042.
- Using New Thermal Metrics, SBVA025

12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks
PowerPAD, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary

SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A3001DGNR</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td></td>
</tr>
<tr>
<td>TPS7A3001DGNT</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGN</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td></td>
</tr>
<tr>
<td>TPS7A3001DRBR</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td></td>
</tr>
<tr>
<td>TPS7A3001DRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>PSZQ</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp. -** The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If an area is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish -** Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A3001DGNR</td>
<td>MSOP-Power PAD</td>
<td>DGN 8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
<td></td>
</tr>
<tr>
<td>TPS7A3001DGNT</td>
<td>MSOP-Power PAD</td>
<td>DGN 8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
<td></td>
</tr>
<tr>
<td>TPS7A3001DRBR</td>
<td>SON</td>
<td>DRB 8</td>
<td>3000</td>
<td>330.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
<td></td>
</tr>
<tr>
<td>TPS7A3001DRBT</td>
<td>SON</td>
<td>DRB 8</td>
<td>250</td>
<td>180.0</td>
<td>12.4</td>
<td>3.3</td>
<td>3.3</td>
<td>1.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q2</td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal.

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

www.ti.com 3-Aug-2017
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A3001DGNR</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS7A3001DGNT</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS7A3001DRBR</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>3000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS7A3001DRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M–1994.
B. This drawing is subject to change without notice.
C. Small Outline No–Lead (SON) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers represent that, with respect to their applications, Designers have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agrees that prior to using or distributing any applications that include TI products, Designers will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET OR INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class Ill devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated