TPS7A7002 Very Low Input, Very Low Dropout 3-A Regulator With Enable

1 Features

- Input Voltage as Low as 1.425 V
- 380-mV Maximum Dropout at 2 A
- 600-mV Maximum Dropout at 3 A
- Adjustable Output from 0.5 V
- Protections: Current Limit and Thermal Shutdown
- Enable Pin
- 1-µA Ground Current in Shutdown Mode
- Full Industrial Temperature Range
- Available in an SOIC-8, Fully RoHS-Compliant Package

2 Applications

- Telecom and Networking Cards
- Motherboards and Peripheral Cards
- Industrial
- Wireless Infrastructure
- Set-Top Boxes
- Medical Equipment
- Notebook Computers
- Battery-Powered Systems

3 Description

The TPS7A7002 is a high-performance, positive-voltage, low-dropout (LDO) regulator designed for use in applications requiring very-low input voltage and very-low dropout voltage at up to 3 A. The device operates with a single input voltage as low as 1.425 V, and with an output voltage programmable to as low as 0.5 V. The output voltage can be set using an external divider.

The TPS7A7002 features ultra-low dropout, ideal for applications where V_{OUT} is very close to V_{IN}. Additionally, the TPS7A7002 has an enable pin for further reduced power dissipation while in Shutdown mode. The TPS7A7002 provides excellent regulation over variations in line, load, and temperature.

The TPS7A7002 is available in an 8-pin SO PowerPAD™ package.

Device Information (1)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A7002</td>
<td>SO PowerPAD (8)</td>
<td>3.90 mm × 4.89 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the package option addendum at the end of the data sheet.

Typical Application

![Typical Application Diagram]

Dropout Voltage vs Output Current

![Dropout Voltage vs Output Current Graph]

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (July 2015) to Revision D

• Changed OUT pin description text from "TI recommends using at least a 4.7-μF ceramic capacitor, and up to 10 μF for a good transient response." to "A 4.7-μF or larger capacitor of any type is required for stability." for clarity.................. 3
• Changed "operating free-air" to "junction" in Absolute Maximum Ratings table condition line ... 4
• Added rows for enable pin voltage, input capacitor, output capacitor, and feedforward capacitance to Recommended Operating Conditions table .. 4
• Added min value of 0 to output current in Recommended Operating Conditions table .. 4
• Changed note (1) in Electrical Characteristics table; deleted initial reference to R1 and updated R2 resistor range........... 5
• Changed Output Capacitor (OUT) section; reworded for clarity... 9

Changes from Revision B (November 2013) to Revision C

• Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. .. 1

Changes from Revision A (September 2013) to Revision B

• Changed data sheet status from product preview to production data.. 1
• Added pin 1 identifier (black bar) to pinout diagram... 3

Changes from Original (May 2013) to Revision A

• Changed product preview data sheet... 7
5 Pin Configuration and Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>FB</td>
<td>7</td>
<td>I</td>
</tr>
<tr>
<td>GND</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>IN</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>NC</td>
<td>1, 4, 5</td>
<td>—</td>
</tr>
<tr>
<td>OUT</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>PowerPAD</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over junction temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>-0.3</td>
<td>(V_{IN} + 0.3) (^{(2)})</td>
<td>A</td>
</tr>
<tr>
<td>Temperature</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The absolute maximum rating is \(V_{IN} + 0.3\) V or 7 V, whichever is smaller.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ESD})</td>
<td>V</td>
</tr>
</tbody>
</table>

Human body model (HBM), per ANSI/ESDA/JEDEC JS-001\(^{(1)}\) ±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101\(^{(2)}\) ±500

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>1.425</td>
<td></td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN})</td>
<td>0</td>
<td></td>
<td>(V_{IN})</td>
<td>V</td>
</tr>
<tr>
<td>(C_{IN})</td>
<td>1</td>
<td></td>
<td>10</td>
<td>µF</td>
</tr>
<tr>
<td>(C_{OUT})</td>
<td>4.7</td>
<td>10</td>
<td>200</td>
<td>µF</td>
</tr>
<tr>
<td>(C_{FB})</td>
<td>0</td>
<td></td>
<td>100</td>
<td>nF</td>
</tr>
<tr>
<td>(I_{OUT})</td>
<td>0</td>
<td></td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>(T_{J})</td>
<td>-40</td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) See Figure 1 and Figure 2 for additional output capacitor ESR requirements.

(2) For output capacitors larger than 47 µF, a feedforward capacitor of at least 220 pF must be used.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TPS7A7002</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DDA (SO PowerPAD)</td>
</tr>
<tr>
<td>(R_{JA})</td>
<td>46.4</td>
</tr>
<tr>
<td>(R_{JC(top)})</td>
<td>54.2</td>
</tr>
<tr>
<td>(R_{JB})</td>
<td>29.9</td>
</tr>
<tr>
<td>(\psi_{JT})</td>
<td>10.2</td>
</tr>
<tr>
<td>(\psi_{JB})</td>
<td>29.8</td>
</tr>
<tr>
<td>(R_{JC(bot)})</td>
<td>6.8</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

Over the full operating temperature range (see Recommended Operating Conditions), \(V_{\text{EN}} = 1.1 \, \text{V} \), \(V_{\text{FB}} = V_{\text{OUT}} \), \(1.425 \, \text{V} \leq V_{\text{IN}} \leq 6.5 \, \text{V} \), \(10 \, \mu\text{A} \leq I_{\text{OUT}} \leq 3 \, \text{A} \), \(C_{\text{OUT}} = 10 \, \mu\text{F} \) (unless otherwise noted). Typical values are at \(T_J = 25^\circ\text{C} \).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{GND}})</td>
<td>GND pin current</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{GND}})</td>
<td>Shutdown GND pin current</td>
<td>(V_{\text{IN}} = 6.5 , \text{V}, V_{\text{EN}} = 0 , \text{V})</td>
<td>5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>OUTPUT VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OUT}})</td>
<td>Output voltage accuracy(^{(1)})</td>
<td></td>
<td></td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>(V_{\text{OUT}})</td>
<td>(V_{\text{IN}} = V_{\text{OUT}} + 0.5 , \text{V}, I_{\text{OUT}} = 10 , \text{mA})</td>
<td>(-2%)</td>
<td>(-2%)</td>
<td>(2%)</td>
<td>%/V</td>
</tr>
<tr>
<td>(V_{\text{OUT}})</td>
<td>(V_{\text{IN}} = 1.8 , \text{V}, I_{\text{OUT}} = 0.8 , \text{A}, 0^\circ\text{C} \leq T_J \leq 85^\circ\text{C})</td>
<td>(-3%)</td>
<td>(-2%)</td>
<td>(2%)</td>
<td>%/V</td>
</tr>
<tr>
<td>(\Delta V_{\text{O(VIN)}})</td>
<td>Line regulation</td>
<td>(I_{\text{OUT}} = 10 , \text{mA})</td>
<td>0.2</td>
<td>0.4</td>
<td>%/V</td>
</tr>
<tr>
<td>(\Delta V_{\text{O(VI)}})</td>
<td>Load regulation(^{(1)})</td>
<td>(I_{\text{OUT}} = 10 , \text{mA})</td>
<td>0.25</td>
<td>0.75</td>
<td>%/A</td>
</tr>
<tr>
<td>(V_{\text{DO}})</td>
<td>Dropout voltage (^{(5)})</td>
<td>(I_{\text{OUT}} = 1 , \text{A}, 0.5 , \text{V} \leq V_{\text{OUT}} \leq 5 , \text{V})</td>
<td>200</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(V_{\text{DO}})</td>
<td>(I_{\text{OUT}} = 2 , \text{A}, 0.5 , \text{V} \leq V_{\text{OUT}} \leq 5 , \text{V})</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{DO}})</td>
<td>(I_{\text{OUT}} = 3 , \text{A}, 0.5 , \text{V} \leq V_{\text{OUT}} \leq 4.8 , \text{V})</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{IO}})</td>
<td>Output current limit</td>
<td>(V_{\text{IN}} = 1.425 , \text{V}, V_{\text{OUT}} = 0.9 \times V_{\text{OUT(NO)}(6)})</td>
<td>3.36</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>FEEDBACK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{REF}})</td>
<td>Reference voltage accuracy</td>
<td>(V_{\text{IN}} = 3.3 , \text{V}, I_{\text{OUT}} = 10 , \text{mA})</td>
<td>0.49</td>
<td>0.5</td>
<td>0.51</td>
</tr>
<tr>
<td>(I_{\text{FB}})</td>
<td>FB pin current</td>
<td>(V_{\text{FB}} = 0.5 , \text{V})</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{EN}})</td>
<td>EN pin current</td>
<td>(V_{\text{EN}} = 0 , \text{V}, V_{\text{IN}} = 3.3 , \text{V})</td>
<td>0.2</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(V_{\text{EN(HI)}})</td>
<td>EN pin input high (enable)</td>
<td>(V_{\text{IN}} = 3.3 , \text{V})</td>
<td>0</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{EN(LO)}})</td>
<td>EN pin input low (disable)</td>
<td>(V_{\text{IN}} = 3.3 , \text{V})</td>
<td>1.1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{SD})</td>
<td>Thermal shutdown temperature</td>
<td>Shutdown, temperature increasing</td>
<td>160</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Reset, temperature decreasing</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) When setting \(V_{\text{OUT}} \) to a value other than 0.5 V, connect \(R_2 \) to the FB pin using 27-kΩ ≤ \(R_2 \) ≤ 33-kΩ resistors. See Figure 7 for details of \(R_1 \) and \(R_2 \).

\(^{(2)}\) Accuracy does not include error on feedback resistors \(R_1 \) and \(R_2 \).

\(^{(3)}\) TPS7A7002 is not tested at \(V_{\text{OUT}} = 0.5 \, \text{V}, 2.3 \, \text{V} \leq V_{\text{IN}} \leq 6.5 \, \text{V}, \) and 500 mA ≤ \(I_{\text{OUT}} \) ≤ 3 A because the power dissipation is higher than the maximum rating of the package. Also, this accuracy specification does not apply to any application condition that exceeds the power dissipation limit of the package.

\(^{(4)}\) \(V_{\text{IN}} = V_{\text{OUT}} + 0.5 \, \text{V} \) or 1.425 V, whichever is greater.

\(^{(5)}\) \(V_{\text{DO}} = V_{\text{IN}} – V_{\text{OUT}} \) with \(V_{\text{FB}} = \text{GND} \) configuration.
6.6 Typical Characteristics

for all fixed voltage versions and an adjustable version at $T_J = 25^\circ C$, $V_{EN} = V_{IN}$, $C_{IN} = 10 \mu F$, $C_{OUT} = 10 \mu F$, and using the component values in Table 2 (unless otherwise noted)

![Figure 1. Stability Curve](image1)

$C_{OUT} = 10 \mu F$

![Figure 2. Stability Curve](image2)

$C_{OUT} = 100 \mu F$

$V_{IN} = 5 \, V$, $V_{OUT} = 3.3 \, V$

![Figure 3. Power-Supply Ripple Rejection vs Frequency](image3)

$V_{OUT} = 3.3 \, V$

![Figure 4. Dropout Voltage vs Output Current](image4)

$V_{OUT} = 1.6 \, V$

![Figure 5. Dropout Voltage vs Output Current](image5)

$V_{OUT} = 1.4 \, V$

![Figure 6. Dropout Voltage vs Output Current](image6)
7 Detailed Description

7.1 Overview
The TPS7A7002 offers a high current supply with very-low dropout voltage. The TPS7A7002 is designed to minimize the required component count for a simple, small-size, and low-cost solution.

7.2 Functional Block Diagram

![Block Diagram](image)

Figure 7. Adjustable Output Voltage Version

7.3 Feature Description

7.3.1 Internal Current Limit
The TPS7A7002 internal current limit helps protect the regulator during fault conditions. During a current limit condition, the output sources a fixed amount of current largely independent of output voltage. For reliable operation, do not operate the device in a current limit state for an extended period of time.

Powering on the device with the enable pin, or increasing the input voltage above the minimum operating voltage while a low-impedance short exists on the output of the device, may result in a sequence of high-current pulses from the input to the output of the device. The energy consumed by the device is minimal during these events; therefore, there is no failure risk. Additional input capacitance helps to mitigate the load transient requirement of the upstream supply during these events.

7.3.2 Enable (EN)
The enable pin (EN) is an active-high logic input. When it is logic low, the device turns off, and the consumption current is less than 1 µA. When it is logic high, the device turns on. The EN pin must be connected to a logic high or logic low level.

When the enable function is not required, connect EN to IN.
7.4 Device Functional Modes

Table 1 provides a quick comparison between the normal, dropout, and disabled modes of operation.

<table>
<thead>
<tr>
<th>OPERATING MODE</th>
<th>V\text{IN}</th>
<th>EN</th>
<th>I\text{OUT}</th>
<th>T\text{J}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>V\text{IN} > V\text{OUT(nom)} + V\text{DO}</td>
<td>V\text{EN} > V\text{EN(HI)}</td>
<td>I\text{OUT} < I\text{CL}</td>
<td>T\text{J} < T\text{SD}</td>
</tr>
<tr>
<td>Dropout</td>
<td>V\text{IN} < V\text{OUT(nom)} + V\text{DO}</td>
<td>V\text{EN} > V\text{EN(HI)}</td>
<td>I\text{OUT} < I\text{CL}</td>
<td>T\text{J} < T\text{SD}</td>
</tr>
<tr>
<td>Disabled</td>
<td>—</td>
<td>V\text{EN} < V\text{EN(LO)}</td>
<td>—</td>
<td>T\text{J} > T\text{SD}</td>
</tr>
</tbody>
</table>

7.4.1 Normal Operation

The device regulates to the nominal output voltage under the following conditions:
- The input voltage is greater than the nominal output voltage plus the dropout voltage (V\text{OUT(nom)} + V\text{DO}).
- The enable voltage has previously exceeded the enable rising threshold voltage and not yet decreased below the enable falling threshold.
- The output current is less than the current limit (I\text{OUT} < I\text{CL}).
- The device junction temperature is less than the thermal shutdown temperature (T\text{J} < T\text{SD}).

7.4.2 Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage tracks the input voltage. During this mode, the transient performance of the device becomes significantly degraded because the pass device is in a triode state and no longer controls the current through the LDO. Line or load transients in dropout can result in large output-voltage deviations.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The TPS7A7002 offers a high current supply with very-low dropout voltage, and it is designed to minimize the required component count for a simple, small-size, and low-cost solution. This section discusses the implementation of the TPS7A7002 LDO.

8.1.1 Input Capacitor (IN)
An input capacitor is not required for stability; however, TI recommends connecting a 1-µF to 10-µF low equivalent series resistance (ESR) capacitor across IN and GND as close as possible to the device.

8.1.2 Output Capacitor (OUT)
The TPS7A7002 is stable with standard ceramic capacitors with capacitance values from 4.7 µF to 47 µF without a feedforward capacitor. For output capacitors from 47 µF to 200 µF, a feedforward capacitor of at least 220 pF must be used. The TPS7A7002 is evaluated using an X5R-type, 10-µF ceramic capacitor. X5R- and X7R-type capacitors are recommended because of minimal variation in value and ESR over temperature. Maximum ESR must be less than 1 Ω.

As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude, but increases duration of the transient response.

8.1.3 Feedback Resistors (FB)
The voltage on the FB pin sets the output voltage and is determined by the values of R1 and R2. Use Equation 1 to calculate the values of R1 and R2 for any voltage.

\[
V_{\text{OUT}} = V_{\text{REF}} \times \left(1 + \frac{R_1}{R_2}\right)
\]

(1)

Table 2 shows the recommended resistor values for the best performance of the TPS7A7002. If the values in Table 2 are not used, keep the value of R2 from 27 kΩ to 33 kΩ. In Table 2, E96 series resistors are used. For the actual design, pay attention to any resistor error factors.

<table>
<thead>
<tr>
<th>V_{\text{OUT}}</th>
<th>R_1 (kΩ)</th>
<th>R_2 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>1.2</td>
<td>42.2</td>
<td>30.1</td>
</tr>
<tr>
<td>1.5</td>
<td>60.4</td>
<td>30.1</td>
</tr>
<tr>
<td>1.8</td>
<td>78.7</td>
<td>30.1</td>
</tr>
<tr>
<td>2.5</td>
<td>121</td>
<td>30.1</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>30.1</td>
</tr>
<tr>
<td>3.3</td>
<td>169</td>
<td>30.1</td>
</tr>
<tr>
<td>5</td>
<td>274</td>
<td>30.1</td>
</tr>
</tbody>
</table>
8.2 Typical Application

This section describes the implementation of the TPS7A7002, using the feedback pin to configure the output voltage and regulate a 2-A load at 1.4 V using a 1.6-V input voltage, operating in a temperature range of 25°C to 85°C. Figure 8 shows the schematic for this typical application circuit.

![Typical Application Schematic](image)

Figure 8. Typical Application Schematic

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 3 as the input parameters.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESIGN REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>1.6 V ±3%</td>
</tr>
<tr>
<td>Output voltage</td>
<td>1.4 V ±3%</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>2 A</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>25°C ≤ T_A ≤ 75°C</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

At I_{OUT} = 2 A, the TPS7A7002 has a maximum dropout of less than 150 mV over temperature, as seen in Figure 9; thus, a 200-mV headroom is sufficient for operation over both input and output voltage accuracy.

To achieve 1.2 V on the output, choose the correct feedback resistors. The Feedback Resistors (FB) section suggests keeping the value of R_2 in the range of 27 kΩ to 33 kΩ, so select R_2 to be 30.1 kΩ, a standard resistor in the E96 series. Using Equation 1 to achieve a 1.4-V output, determine the size for R_1 using Equation 2.

\[
R_1 = \left(\frac{2 \times V_{OUT}}{V_{OUT}} - 1\right) \times R_2
\]

Given that R_2 = 30.1 kΩ and V_{OUT} = 1.4 V, R_1 = 54.2 kΩ. The closest resistor in the E96 series is 53.6 kΩ, giving an output voltage within the output design requirements.

With a headroom voltage of 200 mV and a 2-A maximum load, the internal power dissipation is 400 mW, and corresponds to a 18.56°C junction temperature rise for the DDA package.

With a 75°C maximum ambient temperature as per design constraints, the junction temperature is at 93.56°C, and satisfies the recommended operating junction temperature range.
8.2.3 Application Curve

![Application Curve Diagram]

\[V_{\text{OUT}} = 1.4 \text{ V} \]

Figure 9. Dropout Voltage vs Output Current

9 Power Supply Recommendations

These devices are designed to operate from an input voltage supply range from 1.425 V to 6.5 V. The input voltage range provides adequate headroom for the device to have a regulated output. This input supply is well regulated and stable. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.

10 Layout

10.1 Layout Guidelines

For best performance, place all circuit components on the same side of the circuit board, and place the external components as close to the device as practically possible. The use of vias and long traces is strongly discouraged because of parasitics that might affect performance; follow these guidelines to minimize parasitics. Also, embed a ground reference plane to maintain accuracy of the output voltage and shield noise. Make sure that this plane is connected to the PowerPAD in order to help spread (or sink) heat from the device; be aware that NC pins might be connected to this plane. The recommended layout is shown in Figure 10.
10.2 Layout Example

![Layout Recommendation Diagram]

Figure 10. Layout Recommendation

10.3 Thermal Consideration

Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is re-enabled.

The internal protection circuitry of the TPS7A7002 is designed to protect against overload conditions. The protection circuitry is not intended to replace proper heat sinking. Continuously running the TPS7A7002 into thermal shutdown degrades device reliability.

10.4 Power Dissipation

Power dissipation (P_D) of the device depends on the input voltage and load conditions, and is calculated using Equation 3.

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$$ \hspace{1cm} (3)

In order to minimize power dissipation and achieve greater efficiency, use the lowest possible input voltage necessary to achieve the required output voltage regulation.

On the SOIC (DDA) package, the primary conduction path for heat is through the exposed pad to the PCB. The pad can either be connected to ground or left floating; however, attach the pad to an appropriate amount of copper PCB area to prevent the device from overheating. The maximum junction-to-ambient thermal resistance depends on the maximum ambient temperature, maximum device junction temperature, and power dissipation of the device, and is calculated using Equation 4:

$$R_{JUA} = \left(\frac{+125^\circ C - T_A}{P_D} \right)$$ \hspace{1cm} (4)
11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

<table>
<thead>
<tr>
<th>PRODUCT(1)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A7002yyy</td>
<td>YYY is package designator. Z is package quantity.</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation, see the following:

- A Topical Index of TI LDO Application Notes
- Semiconductor and IC Package Thermal Metrics

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A7002DDA</td>
<td>ACTIVE</td>
<td>SO PowerPAD</td>
<td>DDA</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>SJA</td>
<td></td>
</tr>
<tr>
<td>TPS7A7002DDAR</td>
<td>ACTIVE</td>
<td>SO PowerPAD</td>
<td>DDA</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>SJA</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A7002DDAR</td>
<td>SO Power PAD</td>
<td>DDA</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.8</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

Notes:
- **A0:** Dimension designed to accommodate the component width
- **B0:** Dimension designed to accommodate the component length
- **K0:** Dimension designed to accommodate the component thickness
- **W:** Overall width of the carrier tape
- **P1:** Pitch between successive cavity centers

Tape Dimensions Diagram:
- K0: Dimension labeled as K0 is the cavity width.
- P1: Pitch between successive cavity centers.

Reel Dimensions Diagram:
- Reel Diameter: The overall diameter of the reel.
- Reel Width (W1): The width of the reel.

Quadrant Assignments:
- The quadrants (Q1 to Q4) are assigned based on the user direction of feed.
- The pocket quadrants (Q3-Q4) are used for additional spacing or orientation.
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS7A7002DDAR</td>
<td>SO PowerPAD</td>
<td>DDA</td>
<td>8</td>
<td>2500</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>
DDA (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL-OUTLINE

NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. This package compiles to JEDEC MS-012 variation BA

PowerPAD is a trademark of Texas Instruments.
THERMAL PAD MECHANICAL DATA

DDA (R-PDSO-G8) PowerPAD™ PLASTIC SMALL OUTLINE

THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-752S for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated