Non-Isolated, Buck PFC LED Driver with Digital Reference Control

Check for Samples: TPS92074

FEATURES
- Controlled Reference Derived PFC
- Digital 50/60 Hz Synchronization
- Constant LED current operation
- Single Winding Magnetic Configurations
- Low Typical Operating Current
- Fast Start-up
- Overvoltage Protection
- Feedback Short-Circuit Protection
- Wide Temperature Operation Range
- Low BOM Cost and Small PCB Footprint
- Patent Pending Digital Architecture
- 8-Pin SOIC and 6-Pin TSOT Available

APPLICATIONS
- Non Phase Dimmable LED Lamps
- Bulb Replacement
- Area Lighting

DESCRIPTION
The TPS92074 is a hybrid power factor controller (PFC) optimized for driving LED lighting solutions that do not require phase dimming compatibility. The device monitors the converter rectified AC waveform using an internal, low-power, digital controller. The controller and DAC generate a synchronized triangular reference to regulate the output current. By allowing for some variation in the LED current over a line cycle and maintaining a regulated overall average current, high power factor solutions can be achieved.

Using a constant off-time control, the solution achieves low component count, high efficiency and inherently provides variation in the switching frequency. This variation creates an emulated spread spectrum effect easing the converter's EMI signature and allowing a smaller input filter.

The TPS92074 also includes standard features: current limit, overvoltage protection, thermal shutdown, and VCC undervoltage lockout, all in packages utilizing only 6 pins.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS(1)

All voltages are with respect to GND, –40°C < TJ = TA < 125°C, all currents are positive into and negative out of the specified terminal (unless otherwise noted)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>–0.3</td>
</tr>
<tr>
<td>VSEN, COFF</td>
<td>–0.3</td>
</tr>
<tr>
<td>Bias and ISNS</td>
<td></td>
</tr>
<tr>
<td>ISNS(2) to Ground</td>
<td>–0.3</td>
</tr>
<tr>
<td>I0 bias current (non-switching)</td>
<td>2.5</td>
</tr>
<tr>
<td>Gate</td>
<td></td>
</tr>
<tr>
<td>GATE - continuous</td>
<td>–0.3</td>
</tr>
<tr>
<td>GATE - 100 ns</td>
<td>–2.5</td>
</tr>
<tr>
<td>Continuous power dissipation</td>
<td></td>
</tr>
<tr>
<td>Internally Limited</td>
<td></td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td></td>
</tr>
<tr>
<td>Human Body Model (HBM)</td>
<td>2</td>
</tr>
<tr>
<td>Field Induced Charged Device Model (FICDM)</td>
<td>750</td>
</tr>
<tr>
<td>Operating junction temperature, TJ(3)</td>
<td>160</td>
</tr>
<tr>
<td>Storage temperature range, Tstg</td>
<td>–65</td>
</tr>
<tr>
<td>Lead temperature, soldering, 10s</td>
<td>260</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) ISNS can sustain –2 V for 100 ns without damage.

(3) Maximum junction temperature is internally limited.

THERMAL INFORMATION

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TPS92074</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOIC (D)</td>
</tr>
<tr>
<td>θJA</td>
<td>112.3</td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance(2)</td>
<td>58.4</td>
</tr>
<tr>
<td>θJCtop</td>
<td>52.5</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance(3)</td>
<td>12.5</td>
</tr>
<tr>
<td>ΨJT</td>
<td>51.9</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter(5)</td>
<td>NA</td>
</tr>
<tr>
<td>ΨJB</td>
<td></td>
</tr>
<tr>
<td>Junction-to-board characterization parameter(6)</td>
<td></td>
</tr>
<tr>
<td>θJCbot</td>
<td></td>
</tr>
<tr>
<td>Junction-to-case (bottom) thermal resistance(7)</td>
<td></td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ΨJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJC, using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
RECOMMENDED OPERATING CONDITIONS

Unless otherwise noted, all voltages are with respect to GND, \(-40^\circ C < T_J = T_A < 125^\circ C\).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply input voltage range VCC</td>
<td></td>
<td>11</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) Operating Ratings are conditions under which operation of the device is specified and do not imply assured performance limits. For specified performance limits and associated test conditions, see the Electrical Characteristics table.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified \(-40^\circ C \leq T_J = T_A \leq 125^\circ C\), \(V_{CC} = 14\) V, \(C_{VCC} = 10\ \mu F\), \(C_{GATE} = 2.2\ nF\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY VOLTAGE INPUT (VCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_Q) V_{CC} quiescent current</td>
<td>Not switching</td>
<td>1.3</td>
<td>2.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{Q_SD}) V_{CC} low power mode current</td>
<td>(V_{CC} < V_{CC(UVLO)})</td>
<td>120</td>
<td>250</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>(V_{VCC}) Input range</td>
<td>(V_{CC} \leq V_{CC(OVP)})</td>
<td></td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{VCC(UVLO)}) Overvoltage protection threshold</td>
<td>(V_{CC} > V_{CC(OVP)})</td>
<td>18.0</td>
<td>20.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{VCC(UVLO)}) V_{VCC} UVLO threshold</td>
<td>(V_{CC}) rising</td>
<td>9.8</td>
<td>10.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{VCC(UVLO)}) V_{VCC} UVLO threshold</td>
<td>(V_{CC}) falling</td>
<td>5.75</td>
<td>6.40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{VCC(HYS)}) V_{VCC} UVLO hysteresis</td>
<td></td>
<td>3.3</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>LINE SYNCHRONIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(VSEN_{TH-Hi}) VSEN line detect rising threshold</td>
<td></td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>(VSEN_{TH-Low}) VSEN line detect falling threshold</td>
<td></td>
<td>0.465</td>
<td>0.500</td>
<td>0.540</td>
<td>V</td>
</tr>
<tr>
<td>OFF-TIME CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{COFF}) OFF capacitor threshold</td>
<td></td>
<td>1.14</td>
<td>1.20</td>
<td>1.285</td>
<td>V</td>
</tr>
<tr>
<td>(R_{COFF}) OFF capacitor pull-down resistance</td>
<td></td>
<td>33</td>
<td>60</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>(t_{OFF(max)}) Maximum off-time</td>
<td></td>
<td>280</td>
<td></td>
<td>5.40</td>
<td>μs</td>
</tr>
<tr>
<td>GATE DRIVER OUTPUT (GATE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{GATE(H)}) Gate sourcing resistance</td>
<td></td>
<td>3</td>
<td>8</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>(R_{GATE(L)}) Gate sinking resistance</td>
<td></td>
<td>3</td>
<td>8</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>CURRENT SENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{ISNS}) Average ISNS limit threshold</td>
<td>DAC: 63/127</td>
<td>445</td>
<td>500</td>
<td>555</td>
<td>mV</td>
</tr>
<tr>
<td>(V_{CL}) Current limit</td>
<td></td>
<td>1.2</td>
<td></td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>(t_{ISNS}) Leading edge blanking</td>
<td></td>
<td>240</td>
<td></td>
<td>240</td>
<td>ns</td>
</tr>
<tr>
<td>Current limit reset delay</td>
<td></td>
<td>280</td>
<td></td>
<td>280</td>
<td>μs</td>
</tr>
<tr>
<td>ISNS limit to GATE delay</td>
<td></td>
<td>33</td>
<td></td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{COFF_DLY}) OFF capacitor limit to GATE delay</td>
<td></td>
<td>33</td>
<td></td>
<td>33</td>
<td>ns</td>
</tr>
<tr>
<td>THERMAL SHUTDOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{SD}) Thermal limit threshold</td>
<td></td>
<td>160</td>
<td></td>
<td>160</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{HYS}) Thermal limit hysteresis</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td>°C</td>
</tr>
</tbody>
</table>
DEVICE INFORMATION
FUNCTIONAL BLOCK DIAGRAM

VSEN Filter
Logic
ISNS
COFF
GND
GATE

VCC

V_{VCC} OVP

V_{VCC} UVLO

V_{VCC} Regulator

Internal
Regulator

Standby

Thermal
Shutdown

PWM

Control
Logic

Standby

ILIM

200-\mu S
Off-timer

1.2 V

1.2 V

200-ns
Delay

0 -V to 1-V (Analog)

TPS92074

Product Folder Links: TPS92074

Submit Documentation Feedback
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>NAME</th>
<th>PIN NUMBERS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COFF</td>
<td>2 6</td>
<td>I</td>
<td>Used to set the converter constant off-time. A current and capacitor connected from the output to this pin sets the constant off-time of the switching controller.</td>
</tr>
<tr>
<td>GATE</td>
<td>4 4</td>
<td>O</td>
<td>Power MOSFET driver pin. This output provides the gate drive for the power switching MOSFET.</td>
</tr>
<tr>
<td>GND</td>
<td>1 2</td>
<td></td>
<td>Circuit ground connection</td>
</tr>
<tr>
<td>ISNS</td>
<td>5 3</td>
<td>I</td>
<td>LED current sense pin. Connect a resistor from main switching MOSFET source to GND to set the maximum switching cycle LED current. Connect ISNS to the switching FET source.</td>
</tr>
<tr>
<td>VCC</td>
<td>3 5</td>
<td></td>
<td>Input voltage pin. This pin provides the power for the internal control circuitry and gate driver. (V_{CC}) undervoltage lockout has been implemented with a wide range: 10V rising, 6V falling to ensure operation with start-up methods that allow elimination of the linear pass device. This includes using a coupled inductor with resistive start-up.</td>
</tr>
<tr>
<td>VSEN</td>
<td>8 1</td>
<td>I</td>
<td>The line voltage and frequency are detected through this pin and fed to the digital decoder. Sensing thresholds are 1V rising and 0.5V falling – nominal.</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

Unless otherwise stated, −40°C ≤ TA = TJ ≤ 125°C, VVCC = 14 V, CVCC = 10 µF CGATE = 2.2 nF

Figure 1. COFF Threshold Voltage vs Temperature

Figure 2. VCC Input Current vs Vcc Input Voltage

Figure 3. Input Voltage (UVLO Rising) vs Junction Temperature

Figure 4. Input Voltage (UVLO Falling) vs Junction Temperature

Figure 5. ISNS 0.5V Threshold Distribution
APPLICATION INFORMATION

The TPS92074 is an AC-DC power factor correction (PFC) controller for LED lighting applications. A hysteretic, peak current, constant off-time approach implements the conversion.

The TPS92074 controls the inductor current by controlling two features: (A) The peak inductor current, and (B) The cycle off-time. The following items summarize the basics of the switch operation in this hysteretic controller.

- The main switch Q2 turns on and current ramps in the inductor.
- The Q2 current flows through the sense resistor R7. The R7 voltage is compared to a reference voltage at ISNS. The Q2 on-time ends when the voltage on R7 is equal to a controlled reference voltage and the inductor current has reached its set peak current level for that switching cycle.
- Q2 is turned off and a constant off-time timer begins. Voltage begins ramping on C8.
- The next cycle begins when the voltage on C8 reaches 1.2 V. This ends the constant off-time and discharges C8.
- Capacitor C3 eliminates most of the ripple current seen in the LEDs.

The TPS92074 incorporates a patent-pending control methodology to generate the reference for the conversion stage.
Initial Start-Up

The TPS92074 is designed to achieve instant turn-on using an external linear regulator circuit. The start-up sequence is internally controlled by a \(V_{CC} \) under-voltage lockout (UVLO) circuit. Sufficient headroom has been incorporated to support the use of an auxiliary winding with start-up linear, resistive or coupled capacitor start-up methods.

VCC Bias Supply

The TPS92074 can be configured to use a linear regulator with or without the use of an auxiliary winding. Using a linear regulator to provide \(V_{CC} \) incurs more losses than an auxiliary winding, but has several advantages:

- allows the use of inexpensive off-the-shelf inductors as the main magnetic
- can reduce the size of the required VCC capacitor to as low as 0.1uF

Another consideration when selecting a bias method involves the OVP configuration. Because the feature is enabled via the VCC pin, an auxiliary winding provides the simplest implementation of output over-voltage protection.

A typical start-up sequence begins with \(V_{VCC} \) input voltage below the UVLO threshold and the device operating in low-power, shut-down mode. The \(V_{VCC} \) input voltage increases to the UVLO threshold of 9.8V typical. At this point all of the device features are enabled. The device loads the initial start-up value as the output reference and switching begins. The device operates until the \(V_{VCC} \) level falls below the \(V_{CC(UVLO)} \) falling threshold. (6.4V typical) When \(V_{VCC} \) is below this threshold, the device enters low-power shut-down mode.

Voltage Sense Operation

The VSEN (voltage sense) pin is the only input to the digital controller. The time between the rising edge and the falling edge of the signal determines converter functions. The pin incorporates internal analog and digital filtering so that any transition that remains beyond the threshold for more than approximately 150 \(\mu \)s will cause the device to record a change-of-state.
Controller

Basic Operation

The controller continuously monitors the line cycle period. Control algorithms use a normalized line period of 256 samples from VSEN fall to VSEN fall and a normalized converter reference control of 127 levels over a range of 0V to 1V.

The two main controller states are:
- Start-Up
- Normal Operation

After the initial start-up period where the reference is a DC level, the reference is changed to a triangular ramp to achieve a high power factor. The ramp generates gradually over several cycles ensuring the change is undetectable. The controller maintains the ramp between the rising and falling VSEN signals.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Line Duty Cycle</th>
<th>Controlled Reference Value (value / 127) X 1 V = reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up</td>
<td>Any</td>
<td>50</td>
</tr>
<tr>
<td>Normal Operation</td>
<td>Typical Average</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Typical Ramp Range</td>
<td>22 to 127</td>
</tr>
<tr>
<td>No VSEN</td>
<td>Any</td>
<td>42</td>
</tr>
</tbody>
</table>

Initial Start-up

Line Synchronization

When the device reaches the turn-on UVLO threshold, the output current reference resets to 0.393 V (50/127) and switching begins. The controller samples the line for approximately 80 ms (t₁ to t₂, Figure 8) to determine the line frequency and establish the present state of operation. After determining the line frequency, the controller uses the information to calibrate the internal oscillator. The controller supports line frequencies from 45 Hz to 65 Hz. After determining frequency and duty cycle, the controller enters normal operation.

Triangular Ramp Creation

After the start-up period, the controller creates a triangular ramp that is synchronized to the line and is centered between rising and falling edges of the VSEN signal as shown in Figure 9.
At start-up the ramp is created over 127 line cycles (see Figure 10) or approximately 1 second (t_2 to $t_3 \approx 1$ second). Because the output level before and after the change is very similar and the change very gradual, it is impossible for the user to perceive a change in output level. The ramp converts from a DC level to a ramp using a method that further ensures transparency to the user.

Loss of Voltage Sense

If a circuit malfunction or failure occurs causing the VSEN signal to become too narrow or to be lost completely, the controller simply sets the reference to a default value 0.33 V (42/127) and waits for the VSEN signal to return.

Not Using Voltage Sense

A simplified version of the TPS92074 circuit can be implemented by grounding the VSEN signal if minimum component count and size are essential design criteria. In this configuration, the triangular ramp reference is not implemented. The output is controlled with a default, static reference of 0.394 V (50/127). If used in conjunction with an on-time clamp and the appropriate LED stack voltage, power factors (> 0.9) can still be achieved, but THD is higher without the ramp waveform.

Thermal Shutdown

The TPS92074 includes thermal shutdown protection. If the die temperature reaches approximately 160°C the device stops switching (GATE pin low). When the die temperature cools to approximately 140°C, the device resumes normal operation.

If thermal foldback is desired at levels below the device thermal shut down limit, application circuit design features implement this protection. The most simple of these design features is the addition of a thermistor in the off-time circuitry.

Thermal Foldback

To implement thermal foldback, adjust the resistance of an existing circuit resistor with the use of an NTC (negative temperature coefficient) thermistor.
For example, a resistor combination creating a dominant effect when the thermistor reaches the desired temperature and resistance can be incorporated by paralleling a thermistor and another resistor like R10 with the suggested On-Time clamp (see Figure 12.). This circuit option creates a shorter on-time as the temperature increases, reducing the output current. The use of a thermistor (NTC or PTC) in these types of circuit implementations is simple and saves costly added circuitry and additional device pins.

Overvoltage Protection (OVP)

The implementation of overvoltage protection is simple and built-in if using a two-coil magnetic (coupled inductor) to derive \(V_{CC} \). If the LED string is opened the auxiliary \(V_{CC} \) rises and reaches the \(V_{CC(OVP)} \) trip point. This action disables and grounds the gate pin, preventing the converter from switching. The converter remains disabled until \(V_{CC} \) drops 0.5 V after a 1 second time-out. If an inductor is used, implement other discrete circuits to disable the converter.

Output Bulk Capacitor

The required output bulk capacitor, \(C_{BULK} \), stores energy during the input voltage zero crossing interval and limits twice the line frequency ripple component flowing through the LEDs. Equation 1 describes the calculation of the output capacitor value.

\[
C_{BULK} \geq \frac{P_{IN}}{4\pi \times f_{L} \times R_{LED} \times V_{LED} \times I_{LED(ripple)}}
\]

where

- \(R_{LED} \) is the dynamic resistance of LED string
- \(I_{LED(ripple)} \) is the peak to peak LED ripple current
- \(f_{L} \) is line frequency

Compute \(R_{LED} \) as the difference in LED forward voltage divided by the difference in LED current for a given LED using the manufacturer’s \(V_F \) vs. \(I_F \) curve. For an initial estimate, a typical value of 0.25 \(\Omega \) per LED can be used. More detail can be found in the Application Report Design Challenges of Switching LED Drivers (AN-1656).

In typical applications, the solution size becomes a limiting factor and dictates the maximum dimensions of the bulk capacitor. When selecting an electrolytic capacitor, manufacturer recommended de-rating factors should be applied based on the worst case capacitor ripple current, output voltage and operating temperature to achieve the desired operating lifetime. It should also be a consideration to provide a minimum load at the output of the driver to discharge the capacitor after the power is switched off or during LED open circuit failures.
Design Guidelines

This TPS92074 application design requires the selection of components for the power conversion stage and line sensing. Output inductor, sense resistor and switching frequency are the key aspects of the power stage design. Another important consideration is the inclusion of an on-time clamp. The combination of the line voltage going to zero at each cycle and the hysteretic control method can lead to large increases in current draw at the start and end of each cycle. The components required for the on-time clamp are very inexpensive and they return results that make their inclusion a common choice for LED driver designers. This simplified design procedure assumes the use of an on-time clamp in the design.

![Figure 11. TPS92074 Output Current Control](image)

The device uses the controller reference during every switching cycle. This controller reference sets the peak current through the main switch and sense resistor. The average value of this reference and the inductor ripple current can be used to calculate the average output current. Also consider the length of time the converter provides power to the LEDs based on the LED stack voltage. A conversion factor (CF) that accounts for a lower level of power conversion at the ends of each cycle is used to provide a more accurate sense resistor value. The lower level of power conversion in these areas also helps to increase the power factor. For the R_{SENSE} calculation use $V_{\text{ISNS}}(\text{ave}) = 0.433 \text{ V}$ (55/127). The CF calculation involves computing the normalized time length of the voltage sense pulse using a formula shown in Equation 3. See the simplified design expressions in Equation 2 through Equation 6. For a more comprehensive approach refer to the TPS92074 Design Spreadsheet.

To calculate R_{SENSE}, use Equation 2.

$$R_{\text{SENSE}} = \left(\frac{V_{\text{ISNS(ave)}}}{I_{\text{LED}} + \frac{\Delta I_{\text{(P-P)}}}{2}} \right) \times \text{CF}$$ \hspace{1cm} (2)

To calculate the conversion factor, use Equation 3.

$$\text{CF} = 1 - \left(\sin^{-1}\left(\frac{V_{\text{LED}}}{\sqrt{2} \times V_{\text{RMS}}} \right) \times \frac{3}{2} \right)$$ \hspace{1cm} (3)

To calculate inductance ripple, use Equation 4.

$$\Delta I_{\text{(P-P)}} = \left(\frac{V_{\text{LED}} \times t_{\text{OFF}}}{L} \right)$$ \hspace{1cm} (4)

To calculate the constant off-time, use Equation 5.
To calculate the average switching frequency, use Equation 6.

\[
f_{SW} = \frac{1}{t_{OFF} + (t_{OFF} \times CF)}
\]

(6)

General Approach to Buck and Buck-Boost PFC Design

To maintain a high power factor and low THD, create an input current waveform equivalent to what would be seen in a purely resistive load. A resistive load (like an incandescent light bulb) can draw power until the line zero cross. A buck converter driving an LED load can provide power only while the input line is greater than the LED stack voltage. This situation creates a limitation in the selection of LED stack voltage. Currently in non-LED load, buck PFC applications, a commonly accepted output voltage that maintains acceptable THD and PFC levels is one that maintains a 50% conduction angle each line cycle. See the TI Application Report Power Factor Correction Using the Buck Topology (SLUP264) In practical terms this equates to 90 VDC for a 90 VAC minimum input. For LED driver solutions this rule can be followed if the goal is simply a power factor \(\geq 0.9 \). If the goal is also THD less than 20% then stricter requirements must be followed. In general, designs with an LED stack voltage beyond 45 V have difficulty achieving \(< 20\% \) THD. For these solutions, a buck-boost topology should be used so that the circuit has the capability to draw current from the line below the LED stack voltage.

On-Time Clamp

The use of an on-time clamp (see Figure 12) provides soft-start and soft-stop functionality to the conversion during each line cycle. The clamp also allows an opportunity to control the energy in these conversion areas to optimize THD. For example, reducing the energy conversion in these areas helps to create an input current that is more sinusoidal in shape. Without it, the current can rise quickly at the start and end of each cycle as the converter goes in and out of drop-out. Solutions having a power factor \(\geq 0.9 \) are still achievable, but the design must use the on-time clamp to obtain very low THD.

\[
R_{\text{ton(max)}} = \frac{t_{OFF}}{2 \times \ln \left(-\frac{0.173}{V_{\text{GATE}}} - 1 \right) \times C_{\text{ton(max)}}}
\]

(7)
Voltage Sense Circuitry and Minimum VSEN Signal Length

If the design topology is a buck converter, select the divider so the falling 0.5-V VSEN threshold is reached when the rectified AC voltage is at the LED stack voltage. For example, if the LED stack is 20 V and the top resistor is 400 kΩ, the bottom resistor should be 10.25 kΩ to provide a falling VSEN signal at 0.5 V when the rectified AC reaches 20 V. A 20-V VSEN falling signal corresponds to a 40-V VSEN rising threshold because of the 2:1 hysteresis. These thresholds provide a VSEN signal length of approximately 7.4 ms. This length is adequate to activate the ramp mode. Regardless of the VSEN connection method used, the divider must ensure an adequate voltage sense time (t_{VSEN} > 5.9 ms) to activate the creation of the triangular reference. For example, if a straight resistor divider (as shown in Figure 13) is implemented and the design LED stack is more than 42 V, the VSEN conduction time may not be adequate to ensure use of the ramp reference by the controller.

![Figure 13. Voltage Sense for Low Voltage Buck Applications](image)

![Figure 14. Voltage Sense for Buck Applications up to 65V](image)

![Figure 15. Voltage Sense for Buck-Boost Applications](image)

For LED stack voltages between 3 V and 65 V, use an alternate method that senses from LED(–). Because LED(–) reaches ground each line cycle, the absolute VSEN comparison limits of 0.5 V and 1 V can be used, providing extra conduction time for the VSEN signal as shown in Figure 14. When using an LED stack, with an approximate voltage of more than 65-V, use an alternate VSEN methods such as a bridge tap. For buck-boost applications, implement the circuit shown in Figure 15.

A capacitor on the VSEN pin may be required, depending on operating conditions.

EMI Filtering: AC versus DC side of the rectifier bridge

The TPS92074 requires a minimal amount of EMI filtering to pass conducted and radiated emissions levels to comply with agency requirements. Applications have been tested with the filter on the AC or DC side of the diode bridge and have obtained passing results. The use of an R-C snubber to damp filter resonances is strongly recommended. The EMI filter design involves optimizing several factors and design considerations, including:

- the use of ‘X’ versus non-X rated filter capacitors
- the use of ceramic versus film capacitors
- component rating requirements when on the AC or DC side of the diode bridge
- snubber time constant and position in the design schematic
- filter design choices and audible noise
Application Circuits

Figure 16. TPS92074 Buck Topology with AC Side Filter

Figure 17. TPS92074 Buck-Boost Topology with DC Side Filter
Figure 18. TPS92074 Buck-Boost Topology with Resistive Start-up and AUX Supply

Figure 19. TPS92074 Buck Topology with Thermal Foldback and Analog Dimming (0 to 100%)
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92074D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>95</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>T92074</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS92074DDCR</td>
<td>ACTIVE</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>3000</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>PCSQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS92074DDCT</td>
<td>ACTIVE</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>PCSQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TPS92074DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>T92074</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI’s terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- Reel Diameter
- Reel Width (W1)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Q1**
- **Q2**
- **Q3**
- **Q4**

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92074DDCR</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS92074DDCT</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS92074DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.5</td>
<td>5.4</td>
<td>2.0</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS92074DDCR</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS92074DDCT</td>
<td>SOT-23-THIN</td>
<td>DDC</td>
<td>6</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TPS92074DR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-193 variation AA (6 pin).
LAND PATTERN DATA

DDC (R-PDSO-G6) PLASTIC SMALL OUTLINE

Example Board Layout

6 4
--- ---
(2,7)

1 3
(0,95)

Stencil Openings
Based on a stencil thickness of .127mm (.005 inch).
(Note D)

(1,1) (0,6) (2,7)

Example Non Soldermask Defined Pad

Solder Mask Opening

Pad Geometry

(1,1) (0,6)

(0,07) All Around

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

4218552-3/A 05/13
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated