FEATURES

- Compatible With HDMI v1.2a (Type A) DVI 1.0

High-Speed Digital Interface

- Wide Bandwidth of Over 1.65 Gbps
(Bandwidth 2.4 Gbps Typ)
- 165-MHz Speed Operation
- Serial Data Stream at 10× Pixel Clock Rate
- Supports All Video Formats up to 1080p and SXGA (1280×1024 at 75 Hz)
- Total Raw Capacity 4.95 Gbps (Single Link)
- HDCP Compatible
- Low Crosstalk ($\mathrm{X}_{\text {TALK }}=\mathbf{- 4 1} \mathrm{dB}$ Typ)
- Low Bit-to-Bit Skew ($\mathrm{t}_{\mathrm{sk}(0)}=0.1 \mathrm{~ns}$ Max)
- Low and Flat ON-State Resistance
($r_{\text {on }}=6 \Omega$ Max, $r_{\text {on(flat) }}=0.5 \Omega$ Typ)
- Low Input/Output Capacitance
($\mathrm{C}_{\mathrm{ON}}=7.8 \mathrm{pF}$ Typ)
- Rail-to-Rail Switching on Data I/O Ports (0 to 5 V)
- V_{cc} Operating Range From 3 V to 3.6 V
- I ${ }_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model
(A114-B, Class II)
- 1000-V Charged-Device Model (C101)

APPLICATIONS

- DVI/HDMI Signal Switching
- Differential DVI, HDMI Signal Multiplexing for Audio/Video Receivers and High-Definition Televisions (HDTVs)
- 10/100/1000 Base-T Signal Switching
- Hub and Router Signal Switching

DESCRIPTION/ORDERING INFORMATION

The TS3DV520 is a 20-bit to 10 -bit multiplexer/demultiplexer digital video switch with a single select (SEL) input. SEL controls the data path of the multiplexer/demultiplexer. The device provides five differential channels for digital video signal switching. This device can also be used to replace mechanical relays in LAN applications and allows for signals to be routed from a 10/100/1000 Base-T transceiver to the RJ-45 connectors in laptops or docking stations.

This device provides low and flat ON-state resistance ($r_{o n}$) and excellent ON-state resistance match. Low input/output capacitance, high bandwidth, low skew, and low crosstalk among channels make this device suitable for various digital video applications, such as DVI and HDMI.
This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off. }}$. The $\mathrm{I}_{\text {off }}$ feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

Table 1. ORDERING INFORMATION ${ }^{(1)}$

$\mathbf{T}_{\mathbf{A}}$	PACKAGE ${ }^{(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TQFN	Tape and reel	TS3DV520RHUR	SD520

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

> FUNCTION TABLE

INPUT SEL	INPUT/OUTPUT An	FUNCTION	
L	nB_{1}	$\mathrm{~A}_{\mathrm{n}}=\mathrm{nB}_{1}$	$n B_{2}$ high-impedance mode
H	nB_{2}	$\mathrm{~A}_{\mathrm{n}}=\mathrm{nB}_{2}$	$n B_{1}$ high-impedance mode

PIN DESCRIPTION

NAME	DESCRIPTION
A_{n}	Data //O
nB	Data $/ \mathrm{O}$
SEL	Select input

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage range		-0.5	4.6	V
	Control input voltage range ${ }^{(2)(3)}$		-0.5	7	V
$\mathrm{V}_{1 / \mathrm{O}}$	Switch I/O voltage range ${ }^{(2)(3)(4)}$		-0.5	7	V
I_{IK}	Control input clamp current	$\mathrm{V}_{\text {IN }}<0$		-50	mA
I/OK	I/O port clamp current	$\mathrm{V}_{1 / \mathrm{O}}<0$		-50	mA
	ON-state switch current ${ }^{(5)}$			± 128	mA
	Continuous current through V_{CC} or GND			± 100	mA
	Package thermal impedance ${ }^{(6)}$			31.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to ground, unless otherwise specified.
(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(4) V_{I} and V_{O} are used to denote specific conditions for $V_{I / O}$.
(5) I_{I} and I_{O} are used to denote specific conditions for $I_{I / O}$.
(6) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

		MIN	MAX
V_{CC}	UNPply voltage	3	3.6
$\mathrm{~V}_{\mathrm{IH}}$	High-level control input voltage (SEL)	2	5.5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage (SEL)	0	0.8
$\mathrm{~V}_{\text {IO }}$	Input/output voltage	0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-40	V

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics ${ }^{(1)}$

for high-frequency switching over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
(unless otherwise noted)

PARAMETER		TEST CONDITIONS				MIN	TYP ${ }^{(2)}$	MAX	UNIT
V_{IK}	SEL	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-0.7	-1.2	V
I_{H}	SEL	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$					± 1	$\mu \mathrm{A}$
ILL	SEL	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$					± 1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$		$V_{C C}=0$,	$\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V ,	$V_{1}=0$				1	$\mu \mathrm{A}$
I_{Cc}		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{I}_{1 / \mathrm{O}}=0$,	Switch ON or O			250	500	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	SEL	$\mathrm{f}=1 \mathrm{MHz}$,	$\mathrm{V}_{\text {IN }}=0$				2	2.5	pF
$\mathrm{C}_{\text {OFF }}$	B port	$\mathrm{V}_{1}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	Outputs open,	Switch OFF		2.5	3	pF
$\mathrm{CoN}^{\text {O }}$		$\mathrm{V}_{1}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	Outputs open,	Switch ON		7.8	8.5	pF
ron		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$1.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$,	$\mathrm{l}_{\mathrm{O}}=-40 \mathrm{~mA}$			3.5	6	Ω
$\mathrm{r}_{\text {on(flat) }}{ }^{(3)}$		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{V}_{1}=1.5 \mathrm{~V}$ and V_{CC},	$\mathrm{l}_{0}=-40 \mathrm{~mA}$			0.5		Ω
$\Delta r_{\text {on }}{ }^{(4)}$		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$1.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$,	$\mathrm{I}_{\mathrm{O}}=-40 \mathrm{~mA}$			0.4	1	Ω

(1) V_{I}, V_{O}, I_{I}, and I_{O} refer to I / O pins. $V_{I N}$ refers to the control inputs.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) $r_{\text {on(flat) }}$ is the difference of $r_{o n}$ in a given channel at specified voltages.
(4) $\Delta r_{\text {on }}$ is the difference of $r_{\text {on }}$ from center $\left(A_{4}, A_{5}\right)$ ports to any other port.

Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (unless otherwise noted) (see Figure 4 and Figure 5)

| PARAMETER | FROM
 (INPUT) | TO
 (OUTPUT) | MIN | TYP (1) |
| :---: | :---: | :---: | :---: | :---: | MAX | UNIT |
| :---: |
| $t_{\text {pd }}(2)$ |
| A or B |

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
(3) Output skew between center port (A_{4} to A_{5}) to any other port
(4) Skew between opposite transitions of the same output in a given device $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$

Dynamic Characteristics

over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS			TYP ${ }^{(1)}$	UNIT
$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	$\mathrm{f}=250 \mathrm{MHz}$,	See Figure 7	-41	dB
OIRR	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	$\mathrm{f}=250 \mathrm{MHz}$,	See Figure 8	-39	dB
BW	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	See Figure 6		1.2	GHz

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

OPERATING CHARACTERISTICS

Figure 1. Gain/Phase vs Frequency

Figure 3. Crosstalk vs Frequency

Figure 2. OFF Isolation vs Frequency

Figure 4. $r_{\text {on }}$ and V_{0} vs V_{1}

APPLICATION INFORMATION

Typical HDMI Connector

The TS3DV520 can be used to switch between two digital video ports.

Pin	Signal Assignment
1	TMDS Data2+ +
2	TMDS Data2 Shield
3	TMDS Data 2-
4	TMDS Data1+
5	TMDS Data1 Shield
6	TMDS Data 1-
7	TMDS Data0+
8	TMDS Data0 Shield
9	TMDS Data 0-
10	TMDS Clock+
11	TMDS Clock Shield
12	TMDS Clock-
13	CEC
14	Reserved (N.C. on device)
15	SCL
16	SDA
17	DDC/CEC Ground
18	+5V Power
19	Hot Plug Detect

PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TEST	V_{CC}	S 1	\mathbf{R}_{L}	$\mathrm{V}_{\mathbf{I}}$	C_{L}	V_{Δ}
$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\mathrm{PZL}}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$2 \times \mathrm{V}_{\mathrm{CC}}$	200Ω	GND	10 pF	0.3 V
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	GND	200Ω	$\mathrm{~V}_{\mathrm{CC}}$	10 pF	0.3 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{\text {PLZ }}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{\text {PzL }}$ and $t_{\text {PzH }}$ are the same as $t_{\text {en }}$.

Figure 5. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (Skew)

TEST	V_{CC}	S 1	R_{L}	$\mathrm{V}_{\mathbf{I}}$	C_{L}	V_{Δ}
$\mathrm{t}_{\mathbf{s k}(\mathrm{o})}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	Open	200Ω	$\mathrm{~V}_{\mathrm{CC}}$ or GND	10 pF	
$\mathrm{t}_{\mathbf{s k}(\mathrm{p})}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	Open	200Ω	$\mathrm{~V}_{\mathrm{CC}}$ or GND	10 pF	

$t_{\text {sk(0) }}=\left|t_{\text {PLHy }}-\mathrm{t}_{\text {PLHx }}\right|$ or $\left|\mathrm{t}_{\text {PHLy }}-\mathrm{t}_{\text {PHLx }}\right|$
VOLTAGE WAVEFORMS
OUTPUT SKEW ($\mathrm{t}_{\text {sk(0) }}$)

$\mathrm{t}_{\mathrm{sk}(\mathrm{p})}=\left|\mathrm{t}_{\mathrm{PLH}}-\mathrm{t}_{\mathrm{PLH}}\right|$
VOLTAGE WAVEFORMS PULSE SKEW ($\mathrm{t}_{\text {sk(p) }}$)

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.

Figure 6. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_{L} includes probe and jig capacitance.
Figure 7. Test Circuit for Frequency Response (BW)
Frequency response is measured at the output of the ON channel. For example, when $\mathrm{V}_{\mathrm{SEL}}=0$ and A_{0} is the input, the output is measured at $0 \mathrm{~B}_{1}$. All unused analog I/O ports are left open.

HP8753ES setup

Average $=4$
RBW $=3 \mathrm{kHz}$
$\mathrm{V}_{\text {BIAS }}=0.35 \mathrm{~V}$
ST $=2 \mathrm{~s}$
P1 $=0 \mathrm{dBM}$

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. A $50-\Omega$ termination resistor is needed to match the loading of the network analyzer.

Figure 8. Test Circuit for Crosstalk ($\mathrm{X}_{\text {TALK }}$)
Crosstalk is measured at the output of the nonadjacent $O N$ channel. For example, when $\mathrm{V}_{\text {SEL }}=0$ and A_{0} is the input, the output is measured at $1 \mathrm{~B}_{1}$. All unused analog input (A) ports are connected to GND, and output (B) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average $=4$
RBW $=3 \mathrm{kHz}$
$\mathrm{V}_{\text {BIAS }}=0.35 \mathrm{~V}$
ST $=2 \mathrm{~s}$
P1 $=0 \mathrm{dBM}$

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. A $50-\Omega$ termination resistor is needed to match the loading of the network analyzer.

Figure 9. Test Circuit for OFF Isolation ($\mathrm{O}_{\mathrm{IRR}}$)
OFF isolation is measured at the output of the OFF channel. For example, when $\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {CC }}$ and A_{0} is the input, the output is measured at OB_{2}. All unused analog input (A) ports are left open, and output (B) ports are connected to GND through $50-\Omega$ pulldown resistors.
HP8753ES setup
Average $=4$
RBW $=3 \mathrm{kHz}$
$\mathrm{V}_{\text {BIAS }}=0.35 \mathrm{~V}$
ST $=2$
P1 $=0 \mathrm{dBM}$

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS3DV520ERHUR	ACTIVE	WQFN	RHU	56	2000	RoHS \& Green	NIPDAU \| NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	SD520E	Samples
TS3DV520ERHURG4	ACTIVE	WQFN	RHU	56	2000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SD520E	Samples
TS3DV520RHUR	ACTIVE	WQFN	RHU	56	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SD520	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TS3DV520ERHUR | WQFN | RHU | 56 | 2000 | 330.0 | 24.4 | 5.3 | 11.3 | 1.0 | 12.0 | 24.0 | Q1 |
| TS3DV520ERHUR | WQFN | RHU | 56 | 2000 | 330.0 | 24.4 | 5.3 | 11.3 | 1.0 | 8.0 | 24.0 | Q1 |
| TS3DV520RHUR | WQFN | RHU | 56 | 2000 | 330.0 | 24.4 | 5.3 | 11.3 | 1.0 | 12.0 | 24.0 | Q1 |

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3DV520ERHUR	WQFN	RHU	56	2000	346.0	346.0	35.0
TS3DV520ERHUR	WQFN	RHU	56	2000	367.0	367.0	45.0
TS3DV520RHUR	WQFN	RHU	56	2000	346.0	346.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

SOLDER PASTE EXAMPLE
BASED ON 0.125 MM THICK STENCIL
SCALE: 10X
EXPOSED PAD 57
68\% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

