Simple Step-Up Voltage Regulator

FEATURES
- Requires Few External Components
- NPN Output Switches 3.0A, 65V(max)
- Extended Input Voltage Range: 3.0V to 40V
- Current Mode Operation for Improved Transient Response, Line Regulation, and Current Limiting
- Soft Start Function Provides Controlled Startup
- 52kHz Internal Oscillator
- Output Switch Protected by Current Limit, Undervoltage Lockout and Thermal Shutdown
- Improved Replacement for LM2577-ADJ Series

DESCRIPTION
The UC2577-ADJ device provides all the active functions necessary to implement step-up (boost), flyback, and forward converter switching regulators. Requiring only a few components, these simple regulators efficiently provide up to 60V as a step-up regulator, and even higher voltages as a flyback or forward converter regulator.

The UC2577-ADJ features a wide input voltage range of 3.0V to 40V and an adjustable output voltage. An on-chip 3.0A NPN switch is included with undervoltage lockout, thermal protection circuitry, and current limiting, as well as soft start mode operation to reduce current during startup. Other features include a 52kHz fixed frequency on-chip oscillator with no external components and current mode control for better line and load regulation.

A standard series of inductors and capacitors are available from several manufacturers optimized for use with these regulators and are listed in this data sheet.

TYPICAL APPLICATIONS
- Simple Boost and Flyback Converters
- SEPIC Topology Permits Input Voltage to be Higher or Lower than Output Voltage
- Transformer Coupled Forward Regulators
- Multiple Output Designs

CONNECTION DIAGRAM
5-Pin TO-220 (Top View)

Also available in TO-263 Package.
ABSOLUTE MAXIMUM RATINGS (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>45V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Switch Voltage</td>
<td>65V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Switch Current (Note 2)</td>
<td>6.0A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Internally Limited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 sec.)</td>
<td>260°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum ESD Rating (C = 100pF, R = 15kΩ)</td>
<td>2kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING RANGE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3.0V ≤ VIN ≤ 40V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Switch Voltage</td>
<td>0V ≤ VSWITCH ≤ 60V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Switch Current</td>
<td>ISWITCH ≤ 3.0A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature Range</td>
<td>−40°C ≤ TJ ≤ +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for TA = −40°C to +125°C, VIN = 5V, VFB = VREF, ISWITCH = 0, and TA = TJ.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Circuit Figure 1 (Note 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VIN = 5V to 10V, ILOAD = 100mA to 800mA, TJ = 25°C</td>
<td>11.40</td>
<td>12.0</td>
<td>12.60</td>
<td>V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>VIN = 3.0V to 10V, ILOAD = 300mA, TJ = 25°C</td>
<td>20</td>
<td>100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>VIN = 5V, ILOAD = 100mA to 800mA, TJ = 25°C</td>
<td>20</td>
<td>100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>VIN = 5V, ILOAD = 800mA, TJ = 25°C</td>
<td>80</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Supply Current</td>
<td>VFB = 1.5V (Switch Off), TJ = 25°C</td>
<td>7.5</td>
<td>14</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input Supply UVLO</td>
<td>ISWITCH = 100mA, TJ = 25°C</td>
<td>2.70</td>
<td>2.95</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>Measured at SWITCH Pin, ISWITCH = 100mA, TJ = 25°C</td>
<td>42</td>
<td>52</td>
<td>62 kHz</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage</td>
<td>Measured at FB Pin, VIN = 3.0V to 40V, VCOMP = 1.0V, TJ = 25°C</td>
<td>1.206</td>
<td>1.230</td>
<td>1.254</td>
<td>V</td>
</tr>
<tr>
<td>Reference Voltage Line Regulation</td>
<td>VIN = 3.0V to 40V, TJ = 25°C</td>
<td>0.5</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Amp Input Bias Current</td>
<td>VCOMP = 1.0V, TJ = 25°C</td>
<td>100</td>
<td>800</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Error Amp Transconductance</td>
<td>ICOMP = −30µA to +30µA, VCOMP = 1.0V, TJ = 25°C</td>
<td>1600</td>
<td>3700</td>
<td>5800</td>
<td>µmho</td>
</tr>
<tr>
<td>Error Amp Voltage Gain</td>
<td>VCOMP = 0.8V to 1.6V, RCOMP = 1.0MW (Note 4), TJ = 25°C</td>
<td>250</td>
<td>800</td>
<td>V/V</td>
<td></td>
</tr>
<tr>
<td>Error Amplifier Output Swing</td>
<td>Upper Limit VFB = 1.0V, TJ = 25°C</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Error Amp Output Current</td>
<td>VFB = 1.0V to 1.5V, VCOMP = 1.0V, TJ = 25°C</td>
<td>±90</td>
<td>200</td>
<td>±400</td>
<td>µA</td>
</tr>
<tr>
<td>Soft Start Current</td>
<td>VFB = 1.0V, VCOMP = 0.5V, TJ = 25°C</td>
<td>1.5</td>
<td>5.0</td>
<td>9.5</td>
<td>µA</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>VCOMP = 1.5V, ISWITCH = 100mA, TJ = 25°C</td>
<td>93</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for $T_A = -40°C$ to $+125°C$, $V_{IN} = 5V$, $V_{FB} = V_{REF}$, $I_{SWITCH} = 0$, and $T_A = T_J$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Parameters (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch Transconductance</td>
<td>$V_{SWITCH} = 65V, \ V_{FB} = 1.5V$ (Switch Off)</td>
<td>10</td>
<td>600</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch Leakage Current</td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$I_{SWITCH} = 2.0A, \ V_{COMP} = 2.0V$ (Max Duty Cycle)</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Switch Saturation Voltage</td>
<td>$I_{SWITCH} = 2.0A, \ V_{COMP} = 2.0V$ (Max Duty Cycle)</td>
<td>3.0</td>
<td>4.3</td>
<td>6.0</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPN Switch Current Limit</td>
<td>$V_{COMP} = 2.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>COMP Pin Current</td>
<td>$V_{COMP} = 0$</td>
<td>25</td>
<td>50</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$T_J = 25°C$</td>
<td>40</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions during which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Output current cannot be internally limited when the UC2577 is used as a step-up regulator. To prevent damage to the switch, its current must be externally limited to 6.0A. However, output current is internally limited when the UC2577 is used as a flyback or forward converter regulator.

Note 3: External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the UC2577 is used as shown in the Test Circuit, system performance will be as specified by the system parameters.

Note 4: A 1.0MΩ resistor is connected to the compensation pin (which is the error amplifier’s output) to ensure accuracy in measuring A_{VOL}. In actual applications, this pin’s load resistance should be $\geq 10M\Omega$, resulting in A_{VOL} that is typically twice the guaranteed minimum limit.

Figure 1. Circuit Used to Specify System Parameters

- $L = 415-0930$ (AIE)
- $D = \text{any manufacturer}$
- $C_{OUT} = \text{Sprague Type 673D Electrolytic 680µF, 20V}$
- $R1 = 48.7k \text{ in series with 511Ω (1%)}$
- $R2 = 5.62k \text{ (1%)}$
APPLICATIONS INFORMATION

Step-up (Boost) Regulator

The Block Diagram shows a step-up switching regulator utilizing the UC2577. The regulator produces an output voltage higher than the input voltage. The UC2577 turns its switch on and off at a fixed frequency of 52kHz, thus storing energy in the inductor (L). When the NPN switch is on, the inductor current is charged at a rate of VIN/L. When the switch is off, the voltage at the SWITCH terminal of the inductor rises above VIN, discharging the stored current through the output diode (D) into the output capacitor (COUT) at a rate of (VOUT - VIN)/L. The energy stored in the inductor is thus transferred to the output.

The output voltage is controlled by the amount of energy transferred, which is controlled by modulating the peak inductor current. This modulation is accomplished by feeding a portion of the output voltage to an error amplifier which amplifies the difference between the feedback voltage and an internal 1.23V precision reference voltage. The output of the error amplifier is then compared to a voltage proportional to the switch current, or the inductor current, during the switch on time. A comparator terminates the switch on time when the two voltages are equal and thus controls the peak switch current to maintain a constant output voltage. Figure 2 shows voltage and current waveforms for the circuit. Formulas for calculation are shown in Figure 3.

STEP-UP REGULATOR DESIGN PROCEDURE

Refer to the Block Diagram

Given:

VIN\textsubscript{min} = Minimum input supply voltage

VOUT = Regulated output voltage

<table>
<thead>
<tr>
<th>Duty Cycle</th>
<th>D</th>
<th>\frac{VOUT + VF - VIN}{VOUT + VF - VSAT} = \frac{VOUT - VIN}{VOUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Inductor Current</td>
<td>\text{IND(AVG)}</td>
<td>\frac{ILOAD}{1 - D}</td>
</tr>
<tr>
<td>Inductor Current Ripple</td>
<td>\Delta\text{IND}</td>
<td>\frac{VIN - VSAT}{L} \cdot \frac{D}{52,000}</td>
</tr>
<tr>
<td>Peak Inductor Current</td>
<td>\text{IND(PK)}</td>
<td>\frac{ILOAD + \Delta\text{IND}}{1 - D} \cdot \frac{2}{2}</td>
</tr>
<tr>
<td>Peak Switch Current</td>
<td>\text{ISW(PK)}</td>
<td>\frac{ILOAD + \Delta\text{IND}}{1 - D} \cdot \frac{2}{2}</td>
</tr>
<tr>
<td>Switch Voltage when Off</td>
<td>\text{VSW(OFF)}</td>
<td>VOUT + VF</td>
</tr>
<tr>
<td>Diode Reverse Voltage</td>
<td>VR</td>
<td>VOUT - VSAT</td>
</tr>
<tr>
<td>Avg. Diode Current</td>
<td>\text{ID(AVG)}</td>
<td>ILOAD</td>
</tr>
<tr>
<td>Peak Diode Current</td>
<td>\text{ID(PK)}</td>
<td>\frac{ILOAD + \Delta\text{IND}}{1 - D} \cdot \frac{2}{2}</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>PD</td>
<td>0.25\Omega \left(\frac{ILOAD}{1 - D}\right)^2 \cdot \frac{ILOAD \cdot D \cdot VIN}{50 (1 - D)}</td>
</tr>
</tbody>
</table>

\(VF = \) Forward Biased Diode Voltage, \(ILOAD = \) Output Load

First, determine if the UC2577 can provide these values of VOUT and ILOAD\text{max} when operating with the minimum value of VIN. The upper limits for VOUT and ILOAD\text{max} are given by the following equations.

VOUT \leq 60V and
VOUT \leq 10 \cdot VIN\text{min}

ILOAD\text{max} \leq \frac{2.1A \cdot VIN\text{min}}{VOUT}

These limits must be greater than or equal to the values specified in this application.

1. Output Voltage Section

Resistors R1 and R2 are used to select the desired output voltage. These resistors form a voltage divider and present a portion of the output voltage to the error amplifier which compares it to an internal 1.23V reference. Select R1 and R2 such that:

\[
R1 = \frac{VOUT}{1.23V - 1}
\]

\[
R2 = T \cdot 2.33V
\]

Figure 2. Step-up Regulator Waveforms

Figure 3. Step-up Regulator Formulas
2. Inductor Selection (L)

A. Preliminary Calculations

To select the inductor, the calculation of the following three parameters is necessary:

- **D_{max}**: the maximum switch duty cycle ($0 \leq D \leq 0.9$):
 \[
 D_{max} = \frac{V_{OUT} + V_F - V_{INmin}}{V_{OUT} + V_F - 0.6V}
 \]
 where typically $V_F = 0.5V$ for Schottky diodes and $V_F = 0.8V$ for fast recovery diodes.
- **E \cdot T**: the product of volts \cdot time that charges the inductor:
 \[
 E \cdot T = D_{max} \cdot (V_{INmin} - 0.6V) \times 10^6 \text{ (V} \cdot \mu\text{s})
 \]
- **I_{IND, DC}**: the average inductor current under full load:
 \[
 I_{IND, DC} = \frac{1.05 \cdot I_{LOADmax}}{1 - D_{max}}
 \]

B. Identify Inductor Value:

1. From Figure 4, identify the inductor code for the region indicated by the intersection of $E \cdot T$ and $I_{IND, DC}$. This code gives the inductor value in microhenries. The L or H prefix signifies whether the inductor is rated for a maximum $E \cdot T$ of 90Vμs (L) or 250Vμs (H).
2. If $D < 0.85$, go to step C. If $D \geq 0.85$, calculate the minimum inductance needed to ensure the switching regulator’s stability:

 - If L_{min} is smaller than the inductor values found in step B1, go on to step C. Otherwise, the inductor value found in step B1 is too low; an appropriate inductor code should be obtained from the graph as follows:
 1. Find the lowest value inductor that is greater than L_{min}.
 2. Find where $E \cdot T$ intersects this inductor value to determine if it has an L or H prefix. If $E \cdot T$ intersects both the L and H regions, select the inductor with an H prefix.

C. Inductor Selection

Select an inductor from the table of Figure 5 which cross references the inductor codes to the part numbers of the three different manufacturers. The inductors listed in this table have the following characteristics:

- **AIE** (ferrite, pot-core inductors): Benefits of this type are low electromagnetic interference (EMI), small physical size, and very low power dissipation (core loss).
- **Pulse** (powdered iron, toroid core inductors): Benefits are low EMI and ability to withstand $E \cdot T$ and peak current above rated value better than ferrite cores.
- **Renco** (ferrite, bobbin-core inductors): Benefits are low cost and best ability to withstand $E \cdot T$ and peak current above rated value. Be aware that these inductors generate more EMI than the other types, and this may interfere with signals sensitive to noise.

Figure 4. Inductor Selection Graph

Note: This chart assumes that the inductor ripple current inductor is approximately 20% to 30% of the average inductor current (when the regulator is under full load). Greater ripple current causes higher peak switch currents and greater output ripple voltage. Lower ripple current is achieved with larger value inductors. The factor of 20% to 30% is chosen as a convenient balance between the two extremes.
3. Compensation Network (Rc, Cc) and Output Capacitor (Cout) Selection

The compensation network consists of resistor Rc and capacitor Cc which form a simple pole-zero network and stabilize the regulator. The values of Rc and Cc depend upon the voltage gain of the regulator, ILOADmax, the inductor L, and output capacitance Cout. A procedure to calculate and select the values for Rc, Cc, and Cout which ensures stability is described below. It should be noted, however, that this may not result in optimum compensation. To guarantee optimum compensation a standard procedure for testing loop stability is recommended, such as measuring VOUT transient responses to pulsing ILOAD.

A. Calculate the maximum value for Rc.

\[Rc \leq \frac{750 \times \text{ILOADmax} \times \text{VOUT}^2}{\text{Vinmin}^2} \]

Select a resistor less than or equal to this value, not to exceed 3kΩ.

B. Calculate the minimum value for Cout using the following two equations.

\[Cout \geq \frac{0.19 \times L \times Rc \times \text{ILOADmax}}{\text{Vinmin} \times \text{VOUT}} \quad \text{and} \]

\[Cout \geq \frac{\text{Vinmin} \times \text{RC} \times (\text{Vinmin} + (3.74 \times 10^5 \times L))}{487,800 \times \text{VOUT}^3} \]

The larger of these two values is the minimum value that ensures stability.

C. Calculate the minimum value of Cc.

\[Cc \geq \frac{58.5 \times \text{VOUT}^2 \times Cout}{\text{RC}^2 \times \text{Vinmin}} \]

The compensation capacitor is also used in the soft start function of the regulator. When the input voltage is applied to the part, the switch duty cycle is increased slowly at a rate defined by the compensation capacitor and the soft start current, thus eliminating high input currents. Without the soft start circuitry, the switch duty cycle would instantly rise to about 90% and draw large currents from the input supply. For proper soft starting, the value for Cc should be equal or greater than 0.22µF.

Figure 6 lists several types of aluminum electrolytic capacitors which could be used for the output filter. Use the following parameters to select the capacitor.

- **Working Voltage (WVDC):** Choose a capacitor with a working voltage at least 20% higher than the regulator output voltage.
- **Ripple Current:** This is the maximum RMS value of current that charges the capacitor during each switching cycle. For step-up and flyback regulators, the formula for ripple current is:

\[I_{\text{RIPPLErms}} = \frac{\text{ILOADmax} \times D_{\text{max}}}{1 - D_{\text{max}}} \]

Choose a capacitor that is rated at least 50% higher than this value at 52kHz.

- **Equivalent Series Resistance (ESR):** This is the primary cause of output ripple voltage, and it also affects the values of Rc and Cc needed to stabilize the regulator. As a result, the preceding calculations for Cc and Rc are only valid if the ESR does not exceed the maximum value specified by the following equations.

\[\text{ESR} \leq \frac{0.01 \times 15V}{I_{\text{RIPPLE(P-P)}}} \quad \text{and} \quad \leq \frac{8.7 \times 10^{-3} \times \text{Vin}}{\text{ILOADmax}} \]

Select a capacitor with an ESR, at 52kHz, that is less than or equal to the lower value calculated. Most electrolytic capacitors specify ESR at 120kHz which is 15% to 30% higher than at 52kHz. Also, note that ESR increases by a factor of 2 when operating at −20°C.

In general, low values of ESR are achieved by using large value capacitors (C \(\geq 470\mu F \)), and capacitors with high WVDC, or by paralleling smaller value capacitors.
APPLICATIONS INFORMATION (cont.)

4. Input Capacitor Selection (C\text{IN})
To reduce noise on the supply voltage caused by the switching action of a step-up regulator (ripple current noise), \text{VIN} should be bypassed to ground. A good quality 0.1\mu F capacitor with low ESR should provide sufficient decoupling. If the UC2577 is located far from the supply source filter capacitors, an additional electrolytic (47\mu F, for example) is required.

<table>
<thead>
<tr>
<th>V\text{OUT}_{\text{max}}</th>
<th>\text{Schottky}</th>
<th>\text{Fast Recovery}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20V</td>
<td>1N5817</td>
<td>1N5820</td>
</tr>
<tr>
<td></td>
<td>MBR120P</td>
<td>MBR320P</td>
</tr>
<tr>
<td>30V</td>
<td>1N5818</td>
<td>1N5821</td>
</tr>
<tr>
<td></td>
<td>MBR130P</td>
<td>MBR330P</td>
</tr>
<tr>
<td></td>
<td>11DQ03</td>
<td>31DQ03</td>
</tr>
<tr>
<td>40V</td>
<td>1N5819</td>
<td>1N5822</td>
</tr>
<tr>
<td></td>
<td>MBR140P</td>
<td>MBR340P</td>
</tr>
<tr>
<td></td>
<td>11DQ04</td>
<td>31DQ04</td>
</tr>
<tr>
<td>50V</td>
<td>MBR150</td>
<td>MBR350</td>
</tr>
<tr>
<td></td>
<td>11DQ05</td>
<td>31DQ05</td>
</tr>
<tr>
<td></td>
<td>1N4933</td>
<td>MBR105</td>
</tr>
<tr>
<td>100V</td>
<td>1N4934</td>
<td>MR851</td>
</tr>
<tr>
<td></td>
<td>MUR110</td>
<td>30DL1</td>
</tr>
<tr>
<td></td>
<td>10DL1</td>
<td>MR831</td>
</tr>
</tbody>
</table>

Nichicon - Types PF, PX, or PZ
927 East State Parkway, Schaumburg, IL 60173
(708)843-7500

United Chemi-CON - Types LX, SXF, or SXJ
9801 West Higgins, Rosemont, IL 60018
(708)696-2000

Figure 6. Aluminum Electrolytic Capacitors Recommended for Switching Regulators

5. Output Diode Selection (D)
In the step-up regulator, the switching diode must withstand a reverse voltage and be able to conduct the peak output current of the UC2577. Therefore a suitable diode must have a minimum reverse breakdown voltage greater than the circuit output voltage, and should also be rated for average and peak current greater than I\text{LOAD}_{\text{max}} and I_dpk. Because of their low forward voltage drop (and thus higher regulator efficiencies), Schottky barrier diodes are often used in switching regulators. Refer to Figure 7 for recommended part numbers and voltage ratings of 1A and 3A diodes.

ORDERING INFORMATION
Unitrode Type Number
UC2577TKC-ADJ 5 Pin TO-220 Plastic Pkg -50 pc Tube
UC2577TDKTTT-ADJ 5 Pin TO-263 Plastic Pkg -50 pc Reel
UC2577TDTR-ADJ 5 Pin TO-263 Plastic Pkg -500 pc Reel
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PINS</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC2577T-ADJ</td>
<td>ACTIVE</td>
<td>TO-220</td>
<td>KC</td>
<td>5</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>UC2577T-ADJ</td>
</tr>
<tr>
<td>UC2577TD-ADJ</td>
<td>OBSOLETE</td>
<td>DDPACK/TO-263</td>
<td>KTT</td>
<td>5</td>
<td>5</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 125</td>
<td>UC2577TD-ADJ</td>
</tr>
<tr>
<td>UC2577TDKTTT-ADJ</td>
<td>ACTIVE</td>
<td>DDPACK/TO-263</td>
<td>KTT</td>
<td>5</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>UC2577TD-ADJ</td>
</tr>
<tr>
<td>UC2577TDKTTT-ADJG3</td>
<td>ACTIVE</td>
<td>DDPACK/TO-263</td>
<td>KTT</td>
<td>5</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>UC2577TD-ADJ</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
MECHANICAL DATA

KTT (R-PSFM-G5) PLASTIC FLANGE-MOUNT PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0.13) per side.
☆ Falls within JEDEC TO-263 variation BA, except minimum lead thickness, maximum seating height, and minimum body length.

4200577-4/G 01/13
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. All lead dimensions apply before solder dip.
D. The center lead is in electrical contact with the mounting tab.
△ These features are optional.
△ Thermal pad contour optional within these dimensions.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
<tr>
<td>Applications</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td></td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td></td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td></td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td></td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td></td>
<td>Medical</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td></td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td></td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td></td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td></td>
<td>TI E2E Community</td>
</tr>
<tr>
<td></td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated