UCC28720 Constant-Voltage, Constant-Current Controller With Primary-Side Regulation

1 Features

- < 10-mW No-Load Power
- Primary-Side Regulation (PSR) Eliminates Opto-Coupler
- ±5% Voltage and Current Regulation Across Line and Load
- 700-V Start-Up Switch
- 80-kHz Maximum Switching Frequency Enables High-Power Density Charger Designs
- Quasi-Resonant Valley-Switching Operation for Highest Overall Efficiency
- Wide VDD Range Allows Small Bias Capacitor
- Dynamic BJT Drive
- Overvoltage, Low-Line, and Overcurrent Protection Functions
- Programmable Cable Compensation
- SOIC-7 Package

2 Applications

- USB-Compliant Adapters and Chargers for Consumer Electronics
 - Smart phones
 - Tablet computers
 - Cameras
- Standby Supply for TV and Desktop
- White Goods

3 Description

The UCC28720 flyback power supply controller provides isolated-output Constant-Voltage (CV) and Constant-Current (CC) output regulation without the use of an optical coupler. The devices process information from the primary power switch and an auxiliary flyback winding for precise control of output voltage and current.

An internal 700-V start-up switch, dynamically-controlled operating states and a tailored modulation profile support ultra-low standby power without sacrificing start-up time or output transient response.

Control algorithms in the UCC28720 allow operating efficiencies to meet or exceed applicable standards. The output drive interfaces to a bipolar transistor power switch. Discontinuous conduction mode (DCM) with valley switching reduces switching losses. Modulation of switching frequency and primary current peak amplitude (FM and AM) keeps the conversion efficiency high across the entire load and line ranges.

The controller has a maximum switching frequency of 80 kHz and always maintains control of the peak-primary current in the transformer. Protection features help keep primary and secondary component stresses in check. The UCC28720 allows compensation for voltage drop in the cable to be programmed with an external resistor.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCC28720</td>
<td>SOIC (7)</td>
<td>3.91 mm × 4.90 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.
Table of Contents

1 Features .. 1
2 Applications ... 1
3 Description .. 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 3
 6.1 Absolute Maximum Ratings 3
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information 4
 6.5 Electrical Characteristics 4
 6.6 Switching Characteristics 5
 6.7 Typical Characteristics 6
7 Detailed Description .. 8
 7.1 Overview .. 8
 7.2 Functional Block Diagram 8
 7.3 Feature Description 9
8 Application and Implementation 16
 8.1 Application Information 16
 8.2 Typical Application 16
9 Power Supply Recommendations 21
10 Layout ... 22
 10.1 Layout Guidelines 22
 10.2 Layout Example .. 22
11 Device and Documentation Support 24
 11.1 Device Support .. 24
 11.2 Documentation Support 25
 11.3 Community Resources 26
 11.4 Trademarks .. 26
 11.5 Electrostatic Discharge Caution 26
 11.6 Glossary .. 26
12 Mechanical, Packaging, and Orderable Information .. 27

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (January 2014) to Revision B Page

• Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. .. 1

Changes from Original (May 2014) to Revision A Page

• Changed \(C_{\text{DD}} \) equation. ... 20
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>VS</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>CBC</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>CS</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td>DRV</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>HV</td>
<td>7</td>
<td>I</td>
</tr>
</tbody>
</table>

6 Specifications

6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>NAME</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHV</td>
<td></td>
<td>700</td>
<td>V</td>
</tr>
<tr>
<td>VVDD</td>
<td></td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>IDRIV</td>
<td></td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>IDRIV</td>
<td></td>
<td>Self-limiting</td>
<td>mA</td>
</tr>
<tr>
<td>IS</td>
<td></td>
<td>−1.2</td>
<td>mA</td>
</tr>
<tr>
<td>VDRV</td>
<td></td>
<td>−0.5</td>
<td>Self-limiting</td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td>−0.75</td>
<td>7</td>
</tr>
<tr>
<td>CS, CBC</td>
<td></td>
<td>−0.5</td>
<td>5</td>
</tr>
<tr>
<td>TJ</td>
<td></td>
<td>−55</td>
<td>150</td>
</tr>
<tr>
<td>TSTG</td>
<td></td>
<td>−65</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal. These ratings apply over the operating ambient temperature ranges unless otherwise noted.
6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{ESD}})</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001<sup>(1) </sup></td>
<td>±2000</td>
</tr>
<tr>
<td></td>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101<sup>(2) </sup></td>
<td>±500</td>
</tr>
</tbody>
</table>

⁽¹⁾JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Bias supply operating voltage</td>
<td>9</td>
<td>35</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(C_{\text{VDD}})</td>
<td>VDD bypass capacitor</td>
<td>1.0</td>
<td>10</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{CBC}})</td>
<td>Cable-compensation resistance</td>
<td>10</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{VS}})</td>
<td>VS pin current</td>
<td>−1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{J})</td>
<td>Operating junction temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>Thermal Metric<sup>(1) </sup></th>
<th>UCC28720 D (SOIC)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{JA}}) Junction-to-ambient thermal resistance</td>
<td>141.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JC(top)}}) Junction-to-case (top) thermal resistance</td>
<td>73.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{\text{JB}}) Junction-to-board thermal resistance</td>
<td>89.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JT}}) Junction-to-top characterization parameter</td>
<td>23.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\psi_{\text{JB}}) Junction-to-board characterization parameter</td>
<td>88.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

⁽¹⁾For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{HV}})</td>
<td>Start-up current out of VDD</td>
<td>(V_{\text{HV}} = 100) V, (V_{\text{VDD}} = 0) V, start state</td>
<td>100</td>
<td>225</td>
<td>500</td>
</tr>
<tr>
<td>(I_{\text{HV,LKG}})</td>
<td>Leakage current at HV</td>
<td>(V_{\text{HV}} = 400) V, run state, (T_{J} = 25) ºC</td>
<td>0.01</td>
<td>0.25</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{RUN}})</td>
<td>Supply current, run</td>
<td>(I_{\text{DRV}} = 0), run state</td>
<td>2.00</td>
<td>2.65</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{WAIT}})</td>
<td>Supply current, wait</td>
<td>(I_{\text{DRV}} = 0), wait state</td>
<td>95</td>
<td>150</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{START}})</td>
<td>Supply current, start</td>
<td>(I_{\text{DRV}} = 0), (V_{\text{VDD}} = 18) V, start state, (I_{\text{HV}} = 0)</td>
<td>18</td>
<td>30</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{\text{FAULT}})</td>
<td>Supply current, fault</td>
<td>(I_{\text{DRV}} = 0), fault state</td>
<td>95</td>
<td>150</td>
<td>µA</td>
</tr>
</tbody>
</table>

UNDERVERVOLTA GE LOCKOUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{VDD(on)}})</td>
<td>VDD turn-on threshold</td>
<td>(V_{\text{VDD}}) low to high</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>(V_{\text{VDD(off)}})</td>
<td>VDD turn-off threshold</td>
<td>(V_{\text{VDD}}) high to low</td>
<td>7.35</td>
<td>7.7</td>
<td>8.15</td>
</tr>
</tbody>
</table>

VS INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{VS,R}})</td>
<td>Regulating level</td>
<td>Measured at no-load condition, (T_{J} = 25) ºC<sup>(1) </sup></td>
<td>4.01</td>
<td>4.05</td>
<td>4.09</td>
</tr>
<tr>
<td>(V_{\text{VSNC}})</td>
<td>Negative clamp level</td>
<td>(I_{\text{VS}} = -300) µA, volts below ground</td>
<td>190</td>
<td>250</td>
<td>325</td>
</tr>
<tr>
<td>(I_{\text{VSB}})</td>
<td>Input bias current</td>
<td>(V_{\text{VS}} = 4) V</td>
<td>−0.25</td>
<td>0</td>
<td>0.25</td>
</tr>
</tbody>
</table>

⁽¹⁾The regulating level and over voltage at VS decreases with temperature by 0.8 mV/°C. This compensation is included to reduce the power supply output voltage variance over temperature.
Electrical Characteristics (continued)

over operating free-air temperature range, $V_{DD} = 25$ V, $HV = \text{open}$, $R_{CBC} = \text{open}$, $T_A = -40^\circ \text{C}$ to 125°C, $T_A = T_J$
(unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CST(max)}$</td>
<td>Max CS threshold voltage $V_{VS} = 3.7$ V</td>
<td>735</td>
<td>780</td>
<td>815</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{CST(min)}$</td>
<td>Min CS threshold voltage $V_{VS} = 4.35$ V</td>
<td>175</td>
<td>190</td>
<td>215</td>
<td>mV</td>
</tr>
<tr>
<td>K_AM</td>
<td>AM control ratio $V_{CST(max)} / V_{CST(min)}$</td>
<td>3.6</td>
<td>4.0</td>
<td>4.4</td>
<td>V/V</td>
</tr>
<tr>
<td>V_{CCR}</td>
<td>Constant current regulating level CC regulation constant</td>
<td>317</td>
<td>330</td>
<td>344</td>
<td>mV</td>
</tr>
<tr>
<td>K_{LC}</td>
<td>Line compensation current ratio $I_{VLS(current)}/I_{VLS(max)}$</td>
<td>24.0</td>
<td>25.0</td>
<td>28.6</td>
<td>A/A</td>
</tr>
<tr>
<td>T_{CSLEB}</td>
<td>Leading-edge blanking time DRV output duration, $V_{CS} = 1$ V</td>
<td>230</td>
<td>290</td>
<td>355</td>
<td>ns</td>
</tr>
<tr>
<td>$f_{SW(max)}$</td>
<td>Maximum switching frequency $V_{VS} = 3.7$ V</td>
<td>74</td>
<td>80</td>
<td>87</td>
<td>kHz</td>
</tr>
<tr>
<td>$f_{SW(min)}$</td>
<td>Minimum switching frequency $V_{VS} = 4.35$ V</td>
<td>580</td>
<td>650</td>
<td>740</td>
<td>Hz</td>
</tr>
<tr>
<td>I_{ZTO}</td>
<td>Zero-crossing timeout delay</td>
<td>2.5</td>
<td>3.1</td>
<td>3.6</td>
<td>µs</td>
</tr>
</tbody>
</table>

CABLE COMPENSATION

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{VLS(max)}$</td>
<td>Cable compensation maximum voltage</td>
<td>2.9</td>
<td>3.1</td>
<td>3.5</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CSV(min)}$</td>
<td>Minimum compensation at VS $V_{CSV} = 0$ V, change in VS regulating level at full load</td>
<td>-55</td>
<td>-15</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{CSV(max)}$</td>
<td>Maximum compensation at VS $V_{CSV} = 0$ V, change in VS regulating level at full load</td>
<td>275</td>
<td>320</td>
<td>380</td>
<td>mV</td>
</tr>
</tbody>
</table>

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{SW(max)}$</td>
<td>Maximum switching frequency $V_{VS} = 3.7$ V</td>
<td>74</td>
<td>80</td>
<td>87</td>
<td>kHz</td>
</tr>
<tr>
<td>$f_{SW(min)}$</td>
<td>Minimum switching frequency $V_{VS} = 4.35$ V</td>
<td>580</td>
<td>650</td>
<td>740</td>
<td>Hz</td>
</tr>
<tr>
<td>I_{ZTO}</td>
<td>Zero-crossing timeout delay</td>
<td>2.5</td>
<td>3.1</td>
<td>3.6</td>
<td>µs</td>
</tr>
</tbody>
</table>
6.7 Typical Characteristics

VDD = 25 V, unless otherwise noted.
Typical Characteristics (continued)

VDD = 25 V, unless otherwise noted.

Figure 7. Minimum Switching Frequency vs. Junction Temperature

Figure 8. Maximum Switching Frequency vs. Junction Temperature

Figure 9. Driver Output Source Current vs. Junction Temperature

Figure 10. Driver Pull Down Resistance vs. Junction Temperature

Figure 11. Over Voltage Protection Threshold vs. Junction Temperature

Figure 12. HV Charging Current vs. Junction Temperature

Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12
7 Detailed Description

7.1 Overview

The UCC28720 is a flyback power supply controller which provides accurate voltage and constant current regulation with primary-side feedback, eliminating the need for opto-coupler feedback circuits. The controller operates in discontinuous conduction mode with valley-switching to minimize switching losses. The modulation scheme is a combination of frequency and primary peak current modulation to provide high conversion efficiency across the load range. The control law provides a wide-dynamic operating range of output power which allows the power designer to achieve the <10-mW stand-by power requirement.

During low-power operating ranges the device has power management features to reduce the device operating current at operating frequencies below 28 kHz. Accurate voltage and constant current regulation, fast dynamic response, and fault protection are achieved with primary-side control. A complete charger solution can be realized with a straightforward design process, low cost and low component count.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Detailed Pin Description

VDD (Device Bias Voltage Supply): The VDD pin is connected to a bypass capacitor to ground. The VDD turn-on UVLO threshold is 21 V and turn-off UVLO threshold is 8.1 V, with an available operating range up to 35 V on VDD. The USB charging specification requires the output current to operate in constant-current mode from 5 V to a minimum of 2 V; this is easily achieved with a nominal VDD of approximately 25 V. The additional VDD headroom up to 35 V allows for VDD to rise due to the leakage energy delivered to the VDD capacitor in high-load conditions.

GND (Ground): There is a single ground reference external to the device for the base drive current and analog signal reference. Place the VDD bypass capacitor close to GND and VDD with short traces to minimize noise on the VS and CS signal pins.

HV (High Voltage Start-up): The HV pin is connected directly to the bulk capacitor to provide start-up current to the VDD capacitor. The typical start-up current is ~300 µA which provides fast charging of the VDD capacitor. The internal HV start-up device is active until VDD exceeds the turn-on UVLO threshold at which time the HV start-up device is turned off. In the off state the leakage current is very low to minimize standby losses of the controller. When VDD falls below the UVLO turn-off threshold the HV start-up device is turned on.

VS (Voltage-Sense): The VS pin is connected to a resistor divider from the auxiliary winding to ground. The output-voltage feedback information is sampled at the end of the transformer secondary current demagnetization time to provide an accurate representation of the output voltage. Timing information to achieve valley-switching and to control the duty cycle of the secondary transformer current is determined by the waveform on the VS pin. Avoid placing a filter capacitor on this input which would interfere with accurate sensing of this waveform.

The VS pin also senses the bulk capacitor voltage to provide for AC-input run and stop thresholds, and to compensate the current-sense threshold across the AC-input range. During the transistor on-time the VS pin is clamped to approximately 250 mV below GND and the current out of the VS pin is sensed. For the AC-input run/stop function, the run threshold on VS is 225 µA and the stop threshold is 80 µA. The values for the auxiliary voltage divider upper-resistor R_{S1} and lower-resistor R_{S2} can be determined by the equations below.

$$R_{S1} = \frac{V_{IN(run)} \times \sqrt{2}}{N_{PA} \times I_{VSL(run)}}$$

where
- N_{PA} is the transformer primary-to-auxiliary turns ratio,
- $V_{IN(run)}$ is the AC RMS voltage to enable turn-on of the controller (run),
- $I_{VSL(run)}$ is the run-threshold for the current pulled out of the VS pin during the switch on-time. (see Electrical Characteristics)

$$R_{S2} = \frac{R_{S1} \times V_{VSR}}{N_{AS} \times (V_{OCV} + V_{F}) - V_{VSR}}$$

where
- V_{OCV} is the converter regulated output voltage,
- V_{F} is the output rectifier forward drop at near-zero current,
- N_{AS} is the transformer auxiliary to secondary turns ratio,
- R_{S1} is the VS divider high-side resistance,
- V_{VSR} is the CV regulating level at the VS input (see Electrical Characteristics).

DRV (Base Drive): The DRV pin is connected to the NPN transistor base pin. The driver provides a base drive signal limited to 7 V. The turn-on characteristic of the driver is a 15 mA to 35-mA current source that is scaled with the current sense threshold dictated by the operating point in the control scheme. When the minimum current sense threshold is being used, the base drive current is also at its minimum value. As the current sense threshold is increased to the maximum, the base drive current scales linearly with it to its maximum of 35 mA typical. The turn-off current is determined by the low-side driver $R_{DS(on)}$
Feature Description (continued)

CS (Current Sense): The current-sense pin is connected through a series resistor (R_{LC}) to the current-sense resistor (R_{CS}). The current-sense threshold is 0.78 V for I_{PP(max)} and 0.195 V for I_{PP(min)}. The series resistor R_{LC} provides the function of feed-forward line compensation to eliminate change in I_{PP} due to change in di/dt and the propagation delay of the internal comparator and NPN transistor turn-off time. There is an internal leading-edge blanking time of approximately 300 ns to eliminate sensitivity to the turn-on current spike. It should not be necessary to place a bypass capacitor on the CS pin. The value of R_{CS} is determined by the target output current in Constant Current (CC) regulation. The values of R_{CS} and R_{LC} can be determined by the equations below. The term η_{XFMR} is intended to account for the energy stored in the transformer but not delivered to the secondary. This includes transformer resistance and core loss, bias power, and primary-to-secondary leakage ratio.

Example: With a transformer core and winding loss of 5%, primary-to-secondary leakage inductance of 3.5%, and bias power to output power ratio of 1.5%. The η_{XFMR} value is approximately: 1 - 0.05 - 0.035 - 0.015 = 0.9.

\[
R_{CS} = \frac{V_{CCR} \times N_{PS}}{2I_{OCC}} \times \sqrt{\eta_{XFMR}}
\]

where
- \(V_{CCR}\) is a current regulation constant (see Electrical Characteristics),
- \(N_{PS}\) is the transformer primary-to-secondary turns ratio (a ratio of 13 to 15 is recommended for 5-V output),
- \(I_{OCC}\) is the target output current in constant-current regulation,
- \(\eta_{XFMR}\) is the transformer efficiency. (3)

\[
R_{LC} = \frac{K_{LC} \times R_{S1} \times R_{CS} \times t_D \times N_{PA}}{L_P}
\]

where
- \(R_{S1}\) is the VS pin high-side resistor value,
- \(R_{CS}\) is the current-sense resistor value,
- \(t_D\) is the current-sense delay including NPN transistor turn-off delay, add ~50 ns to transistor delay,
- \(N_{PA}\) is the transformer primary-to-auxiliary turns ratio,
- \(L_P\) is the transformer primary inductance,
- \(K_{LC}\) is a current-scaling constant (see Electrical Characteristics). (4)

CBC (Cable Compensation): The cable compensation pin is connected to a resistor to ground to program the amount of output voltage compensation to offset cable resistance. The cable compensation block provides a 0-V to 3-V voltage level on the CBC pin corresponding to I_{OCC(max)} output current. Connecting a resistance from CBC to GND programs a current that is summed into the VS feedback divider, increasing the regulation voltage as I_{OUT} increases. There is an internal series resistance of 28 kΩ to the CBC pin which sets a maximum cable compensation of a 5-V output to 400 mV when CBC is shorted to ground. The CBC resistance value can be determined by the equation below.

\[
R_{CBC} = \frac{V_{CBC(max)} \times 3 \text{kΩ} \times (V_{OCV} + V_F)}{V_{VSR} \times V_{OCBC}} - 28 \text{kΩ}
\]

where
- \(V_{OCV}\) is the regulated output voltage,
- \(V_F\) is the diode forward voltage in V,
- \(V_{OCBC}\) is the target cable compensation voltage at the output terminals,
- \(V_{CBC(max)}\) is the maximum voltage at the cable compensation pin at the maximum converter output current (see Electrical Characteristics),
- \(V_{VSR}\) is the CV regulating level at the VS input (see Electrical Characteristics). (5)
7.4 Device Functional Modes

7.4.1 Primary-Side Voltage Regulation

Figure 13 illustrates a simplified flyback convertor with the main voltage regulation blocks of the device shown. The power train operation is the same as any DCM flyback circuit but accurate output voltage and current sensing is the key to primary-side control.

![Figure 13. Simplified Flyback Convertor (with the Main Voltage Regulation Blocks)](Image)

In primary-side control, the output voltage is sensed on the auxiliary winding during the transfer of transformer energy to the secondary. As shown in Figure 14 it is clear there is a down slope representing a decreasing total rectifier V_F and resistance voltage drop ($I_S R_S$) as the secondary current decreases to zero. To achieve an accurate representation of the secondary output voltage on the auxiliary winding, the discriminator reliably recognizes the leakage inductance reset and ringing and ignores it, continuously samples the auxiliary voltage during the down slope after the ringing is diminished, and captures the error signal at the time the secondary winding reaches zero current. The internal reference on VS is 4.05 V. Temperature compensation on the VS reference voltage of -0.8-mV/°C offsets the change in the output rectifier forward voltage with temperature. The resistor divider is selected as outlined in the VS pin description.

![Figure 14. Auxiliary Winding Voltage](Image)

The UCC28720 includes a VS signal sampler that uses discrimination methods to ensure an accurate sample of the output voltage from the auxiliary winding. There are some conditions that must be met on the auxiliary winding signal to ensure reliable operation. These conditions are the reset time of the leakage inductance and the duration of any subsequent leakage inductance ring. Refer to Figure 15 below for a detailed illustration of waveform criteria to ensure a reliable sample on the VS pin. The first detail to examine is the duration of the leakage inductance reset pedestal, t_{LK_RESET} in Figure 15. Because this can mimic the waveform of the secondary current decay, followed by a sharp downslope, it is important to keep the leakage reset time less than 600 ns for I_{PRI_min}, and less than 2.2 µs for I_{PRI_max}. The second detail is the amplitude of ringing on
Device Functional Modes (continued)

the V_{AUX} waveform following t_{LK_RESET}. The peak-to-peak voltage at the VS pin should be less than approximately 100 mV_p-p at least 200 ns before the end of the demagnetization time, t_{DM}. If there is a concern with excessive ringing, it usually occurs during light or no-load conditions, when t_{DM} is at the minimum. The tolerable ripple on VS scales up when measured at the auxiliary winding by R_{S1} and R_{S2}, and is equal to 100 mV x ($R_{S1} + R_{S2}$) / R_{S2} when measured directly at the auxiliary winding.

Figure 15. Auxiliary Waveform Details

During voltage regulation, the controller operates in frequency modulation mode and amplitude modulation mode as illustrated in Figure 16 below. The internal operating frequency limits of the device are 80 kHz, $f_{SW\,(max)}$ and 65 Hz, $f_{SW\,(min)}$. The transformer primary inductance and primary peak current chosen sets the maximum operating frequency of the converter. The output preload resistor and efficiency at low power determines the converter minimum operating frequency. There is no stability compensation required for the UCC28720.

Figure 16. Frequency and Amplitude Modulation Modes (during Voltage Regulation)
Device Functional Modes (continued)

7.4.2 Primary-Side Current Regulation

Timing information at the VS pin and current information at the CS pin allow accurate regulation of the secondary average current. The control law dictates that as power is increased in CV regulation and approaching CC regulation the primary-peak current is at $I_{PP(max)}$. Referring to Figure 17 below, the primary-peak current, turns ratio, secondary demagnetization time (t_{DM}), and switching period (t_{SW}) determine the secondary average output current. Ignoring leakage inductance effects, the average output current is given by Equation 6. When the average output current reaches the regulation reference in the current control block, the controller operates in frequency modulation mode to control the output current at any output voltage at or below the voltage regulation target as long as the auxiliary winding can keep VDD above the UVLO turn-off threshold.

$$l_{OUT} = \frac{l_{PP}}{2} \times \frac{N_D}{N_S} \times \frac{t_{DM}}{t_{SW}}$$

Figure 17. Transformer Currents

Figure 18. Typical Target Output V-I Characteristic

7.4.3 Valley Switching

The UCC28720 utilizes valley switching to reduce switching losses in the transistor, to reduce induced-EMI, and to minimize the turn-on current spike at the sense resistor. The controller operates in valley-switching in all load conditions unless the collector voltage (V_C) ringing has subsided.
Device Functional Modes (continued)

Referring to Figure 19 below, the UCC28720 operates in a valley-skipping mode in most load conditions to maintain an accurate voltage or current regulation point and still switch on the lowest available \(V_C \).

![Figure 19. Valley-Skipping Mode](UDG-13091)

7.4.4 Start-Up Operation

The internal high-voltage start-up switch connected to the bulk capacitor voltage (\(V_{BLK} \)) through the HV pin charges the VDD capacitor. During start up there is typically 300 µA available to charge the VDD capacitor. When VDD reaches the 21-V UVLO turn-on threshold, the controller is enabled, the converter starts switching and the start-up switch is turned off. The initial three cycles are limited to \(I_{PP(min)} \). After the initial three cycles at minimum \(I_{PP(min)} \), the controller responds to the condition dictated by the control law. The converter will remain in discontinuous mode during charging of the output capacitor(s), maintaining a constant output current until the output voltage is in regulation.

7.4.5 Fault Protection

The UCC28720 provides comprehensive fault protection. Protection functions include:

- Output over-voltage fault
- Input under-voltage fault
- Internal over-temperature fault
- Primary over-current fault
- CS pin fault
- VS pin fault

A UVLO reset and restart sequence applies for all fault protection events.

The output over-voltage function is determined by the voltage feedback on the VS pin. If the voltage sample on VS exceeds 115% of the nominal \(V_{OUT} \), the device stops switching and the internal current consumption is \(I_{FAULT} \) which discharges the VDD capacitor to the UVLO turn-off threshold. After that, the device returns to the start state and a start-up sequence ensues.

The UCC28720 always operates with cycle-by-cycle primary peak current control. The normal operating range of the CS pin is 0.78 V to 0.195 V. There is additional protection if the CS pin reaches 1.5 V. This results in a UVLO reset and restart sequence.

The line input run and stop thresholds are determined by current information at the VS pin during the transistor on-time. While the VS pin is clamped close to GND during the transistor on-time, the current through \(R_{S1} \) is monitored to determine a sample of the bulk capacitor voltage. A wide separation of run and stop thresholds allows clean start-up and shut-down of the power supply with the line voltage. The run current threshold is 225 µA and the stop current threshold is 80 µA.

The internal over-temperature protection threshold is 165°C. If the junction temperature reaches this threshold the device initiates a UVLO reset cycle. If the temperature is still high at the end of the UVLO cycle, the protection cycle repeats.
Device Functional Modes (continued)

Protection is included in the event of component failures on the VS pin. If complete loss of feedback information on the VS pin occurs, the controller stops switching and restarts.
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The UCC28720 flyback power supply controller provides constant voltage (CV) and constant current (CC) output regulation to help meet USB-compliant adaptors and charger requirements. This device uses the information obtained from auxiliary winding sensing (VS) to control the output voltage and does not require optocoupler/TL431 feedback circuitry. Not requiring optocoupler feedback reduces the component count and makes the design more cost effective and efficient.

8.2 Typical Application

![Figure 20. Design Procedure Application Example](image)

Figure 20. Design Procedure Application Example
Typical Application (continued)

8.2.1 Design Requirements

The design parameters are listed in Table 1.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>RMS Input Voltage</td>
<td></td>
<td>100 ($V_{IN\text{MIN}}$)</td>
<td>115/230</td>
<td>240</td>
</tr>
<tr>
<td>f_{LINE}</td>
<td>Line Frequency</td>
<td></td>
<td>47</td>
<td>50/60</td>
<td>64</td>
</tr>
<tr>
<td>$P_{\text{SB.Conv}}$</td>
<td>No Load Input Power</td>
<td>$V_{IN} = \text{Nom}, I_{OUT} = 0$ A</td>
<td></td>
<td>10</td>
<td>mW</td>
</tr>
<tr>
<td>$V_{IN\text{(RUN)}}$</td>
<td>Brownout Voltage</td>
<td>$I_{OUT} = \text{Nom}$</td>
<td></td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OCV}</td>
<td>Output Voltage</td>
<td>$V_{IN} = \text{Nom}, I_{OUT} = \text{NOM}$</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
</tr>
<tr>
<td>V_{RIPPLE}</td>
<td>Output Voltage Ripple</td>
<td>$V_{IN} = \text{Nom}, I_{O} = \text{Max}$</td>
<td></td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Output Current</td>
<td>$V_{IN} = \text{Min to Max}$</td>
<td></td>
<td>1</td>
<td>1.05</td>
</tr>
<tr>
<td>Output OVP</td>
<td>$I_{OUT} = \text{Min to Max}$</td>
<td></td>
<td>5.75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Transient Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Step ($I_{\text{TRAN}} = 0.6$ A)</td>
<td>(0.1 to 0.6 A) or (0.6 to 0.1 A)</td>
<td></td>
<td>4.1</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

SYSTEMS CHARACTERISTICS

| f_{MAX} | Switching Frequency | | 70 | kHz |
| η | Full Load Efficiency (115/230 V RMS input) | $I_{OUT} = 1$ A | | 74% |

8.2.2 Detailed Design Procedure

This procedure outlines the steps to design a constant-voltage, constant-current flyback converter using the UCC28720 controller. Refer to the Figure 20 for component names and network locations. The design procedure equations use terms that are defined below.

8.2.2.1 Stand-by Power Estimate

Assuming no-load stand-by power is a critical design parameter, determine estimated no-load power based on target converter maximum switching frequency and output power rating.

The following equation estimates the stand-by power of the converter.

$$P_{\text{SB.Conv}} = \frac{P_{\text{OUT}} \times f_{\text{MIN}}}{\eta_{\text{SB}} \times K_{AM}^2 \times f_{\text{MAX}}}$$

(7)

For a typical USB charger application, the bias power during no-load is approximately 2.5 mW. This is based on 25-V VDD and 100-µA bias current. The output preload resistor can be estimated by V_{OCV} and the difference in the converter stand-by power and the bias power. The equation for output preload resistance accounts for bias power estimated at 2.5 mW.

$$R_{PL} = \frac{V_{\text{OCV}}^2}{P_{\text{SB.Conv}} - 2.5 \text{ mW}}$$

(8)

The capacitor bulk voltage for the loss estimation is the highest voltage for the stand-by power measurement, typically 325 V_{DC}.

For the total stand-by power estimation add an estimated 2.5 mW for snubber loss to the converter stand-by power loss.

$$P_{\text{SB}} = P_{\text{SB.Conv}} + 2.5 \text{ mW}$$

(9)
8.2.2.2 Input Bulk Capacitance and Minimum Bulk Voltage

Determine the minimum voltage on the input capacitance, \(C_{B1} \) and \(C_{B2} \) total, in order to determine the maximum \(Np \) to \(Ns \) turns ratio of the transformer. The input power of the converter based on target full-load efficiency, minimum input RMS voltage, and minimum AC input frequency are used to determine the input capacitance requirement.

Maximum input power is determined based on \(V_{OCV} \), \(I_{OCC} \), and the full-load efficiency target.

\[
P_{IN} = \frac{V_{OCV} \times I_{OCC}}{\eta}
\]
(10)

The below equation provides an accurate solution for input capacitance based on a target minimum bulk capacitor voltage. To target a given input capacitance value, iterate the minimum capacitor voltage to achieve the target capacitance.

\[
C_{BULK} = \frac{2P_{IN} \times \left(\frac{0.25 + 1}{2\pi} \times \arcsin \left(\frac{V_{BULK(min)}}{\sqrt{2} \times V_{IN(min)}} \right) \right)}{\left(2V_{IN(min)}^2 - V_{BULK(min)}^2 \right) \times f_{LINE}}
\]
(11)

8.2.2.3 Transformer Turns Ratio, Inductance, Primary-Peak Current

The maximum primary-to-secondary turns ratio can be determined by the target maximum switching frequency at full load, the minimum input capacitor bulk voltage, and the estimated DCM quasi-resonant time.

Initially determine the maximum available total duty cycle of the on time and secondary conduction time based on target switching frequency and DCM resonant time. For DCM resonant time, assume 500 kHz if you do not have an estimate from previous designs. For the transition mode operation limit, the period required from the end of secondary current conduction to the first valley of the \(V_{CE} \) voltage is ½ of the DCM resonant period, or 1 µs assuming 500-kHz resonant frequency. \(D_{MAX} \) can be determined using the equation below.

\[
D_{MAX} = 1 - \left(\frac{t_R}{2} \times f_{MAX} \right) - D_{MAGCC}
\]
(12)

Once \(D_{MAX} \) is known, the maximum turns ratio of the primary to secondary can be determined with the equation below. \(D_{MAGCC} \) is defined as the secondary diode conduction duty cycle during constant-current, CC, operation. It is set internally by the UCC28720 at 0.425. The total voltage on the secondary winding needs to be determined: which is the sum of \(V_{OCV} \), the secondary rectifier \(V_F \), and the cable compensation voltage (\(V_{OCBC} \)). For the 5-V USB charger applications, a turns ratio range of 13 to 15 is typically used.

\[
N_{PS(max)} = \frac{D_{MAX} \times V_{BULK(min)}}{D_{MAGCC} \times (V_{OCV} + V_F + V_{OCBC})}
\]
(13)

Once an optimum turns ratio is determined from a detailed transformer design, use this ratio for the following parameters.

The UCC28720 constant-current regulation is achieved by maintaining a maximum \(D_{MAG} \) duty cycle of 0.425 at the maximum primary current setting. The transformer turns ratio and constant-current regulating voltage determine the current sense resistor for a target constant current.

Since not all of the energy stored in the transformer is transferred to the secondary, a transformer efficiency term is included. This efficiency number includes the core and winding losses, leakage inductance ratio, and bias power ratio to rated output power. For a 5-V, 1-A charger example, bias power of 1.5% is a good estimate. An overall transformer efficiency of 0.9 is a good estimate to include 3.5% leakage inductance, 5% core and winding loss, and 1.5% bias power.

\[
R_{CS} = \frac{V_{CCR} \times N_{PS}}{2I_{OCC}} \times \sqrt{1/X_{FMR}}
\]
(14)

The primary transformer inductance can be calculated using the standard energy storage equation for flyback transformers. Primary current, maximum switching frequency and output and transformer power losses are included in the equation below. Initially determine transformer primary current.

Primary current is simply the maximum current sense threshold divided by the current sense resistance.
\(I_{PP(max)} = \frac{V_{CST(max)}}{R_{CS}} \) \(\quad (15) \)

\[L_p = \frac{2(V_{OCV} + V_F + V_{DCBC}) \times I_{OCC}}{t_{XFMR} \times I_{PP(max)}^2 \times f_{MAX}} \]

The secondary winding to auxiliary winding transformer turns ratio \((N_{AS}) \) is determined by the lowest target operating output voltage in constant-current regulation and the VDD UVLO of the UCC28720. There is additional energy supplied to VDD from the transformer leakage inductance energy which allows a lower turns ratio to be used in many designs.

\[N_{AS} = \frac{V_{DD(off)} + V_{FA}}{V_{OCC} + V_F} \] \(\quad (17) \)

8.2.2.4 Transformer Parameter Verification

The transformer turns ratio selected affects the transistor \(V_C \) and secondary rectifier reverse voltage so these should be reviewed. The UCC28720 does require a minimum on time of the transistor \(t_{ON} \) and minimum \(D_{MAG} \) time \(t_{DMAG} \) of the secondary rectifier in the high line, minimum load condition. The selection of \(f_{MAX} \), \(L_p \) and \(R_{CS} \) affects the minimum \(t_{ON} \) and \(t_{DMAG} \).

The secondary rectifier and transistor voltage stress can be determined by the equations below.

\[V_{REV} = \frac{V_{IN(max)} \times \sqrt{2}}{N_{PS}} + V_{OCV} + V_{OCBC} \] \(\quad (18) \)

For the transistor \(V_C \) voltage stress, an estimated leakage inductance voltage spike \((V_{LK}) \) needs to be included.

\[V_{CPK} = (V_{IN(max)} \times \sqrt{2}) + (V_{OCV} + V_F + V_{DCBC}) \times N_{PS} + V_{LK} \] \(\quad (19) \)

Equation 20 and Equation 21 are used to determine if the minimum \(t_{ON} \) target of 300 ns and minimum \(t_{DMAG} \) target of 1.2 \(\mu \)s is achieved.

\[t_{ON(min)} = \frac{L_p \times I_{PP(max)} \times V_{CST(min)}}{V_{IN(max)} \times \sqrt{2} \times V_{CST(max)}} \] \(\quad (20) \)

\[t_{DMAG(min)} = \frac{t_{ON} \times V_{IN(max)} \times \sqrt{2}}{N_{PS} \times (V_{OCV} + V_F)} \] \(\quad (21) \)

8.2.2.5 Output Capacitance

The output capacitance value is typically determined by the transient response requirement from no-load. For example, in some USB charger applications there is a requirement to maintain a minimum \(V_O \) of 4.1 V with a load-step transient of 0 mA to 500 mA. The equation below assumes that the switching frequency can be at the UCC28720 minimum of \(f_{SW(min)} \).

\[C_{OUT} = \frac{I_{TRAN} \left(\frac{1}{f_{SW(min)}} + 150 \ \mu s \right)}{V_{O\Delta}} \] \(\quad (22) \)

Another consideration of the output capacitor(s) is the ripple voltage requirement which is reviewed based on secondary peak current and ESR. A margin of 20% is added to the capacitor ESR requirement in the equation below.

\[R_{ESR} = \frac{V_{RIPPLE} \times 0.8}{I_{PP(max)} \times N_{PS}} \] \(\quad (23) \)
8.2.2.6 VDD Capacitance, C_{DD}

The capacitance on VDD needs to supply the device operating current until the output of the converter reaches the target minimum operating voltage in constant-current regulation. At this time the auxiliary winding can sustain the voltage to the UCC28720. The total output current available to the load and to charge the output capacitors is the constant-current regulation target. The equation below assumes the output current of the flyback is available to charge the output capacitance until the minimum output voltage is achieved. There is 1 V of margin added to VDD in the calculation.

$$
C_{DD} = \frac{(\text{RUN} + I_{\text{DRS(max)}} \times (1 - D_{\text{magcc}})) \times C_{\text{OUT}} \times V_{\text{OCC}}}{(V_{\text{DD(on)}} - V_{\text{DD(off)}}) - 1 \text{ V}}
$$

(24)

8.2.2.7 VS Resistor Divider, Line Compensation, and Cable Compensation

The VS divider resistors determine the output voltage regulation point of the flyback converter, also the high-side divider resistor (R_{S1}) determines the line voltage at which the controller enables continuous DRV operation. R_{S1} is initially determined based on transformer auxiliary to primary turns ratio and desired input voltage operating threshold.

$$
R_{S1} = \frac{V_{\text{IN(run)}} \times \sqrt{2}}{N_{\text{PA}} \times I_{\text{VSL(run)}}}
$$

(25)

The low-side VS pin resistor is selected based on desired V_O regulation voltage.

$$
R_{S2} = \frac{R_{S1} \times V_{\text{VSR}}}{N_{\text{NS}} \times (V_{\text{OCV}} + V_F) - V_{\text{VSR}}}
$$

(26)

The UCC28720 can maintain tight constant-current regulation over input line by utilizing the line compensation feature. The line compensation resistor (R_{LC}) value is determined by current flowing in R_{S1} and expected base drive and transistor turn-off delay. Assume a 50-ns internal delay in the UCC28720.

$$
R_{LC} = \frac{K_{\text{LC}} \times R_{S1} \times R_{\text{CS}} \times t_{\text{D}} \times N_{\text{PA}}}{L_P}
$$

(27)

The UCC28720 has adjustable cable drop compensation. The resistance for the desired compensation level at the output terminals can be determined using Equation 28.

$$
R_{\text{CBC}} = \frac{V_{\text{CBC(max)}} \times 3 \text{ k}\Omega \times (V_{\text{OCV}} + V_F)}{V_{\text{VSR}} \times V_{\text{OCBC}}} - 28 \text{ k}\Omega
$$

(28)

8.2.3 Application Curves

![Figure 21. Efficiency](Image)

![Figure 22. Output at Start-up 115-V RMS, No Load](Image)
9 Power Supply Recommendations

The UCC28720 is intended for AC/DC adapters and chargers with input voltage range of 85 VAC\textsubscript{ rms} to 265 VAC\textsubscript{ rms} using Flyback topology. It can be used in other applications and converter topologies with different input voltages. Be sure that all voltages and currents are within the recommended operating conditions and absolute maximum ratings of the device. To maintain output current regulation over the entire input voltage range, design the converter to operate close to \(f_{\text{MAX}} \) when in full-load conditions. To improve thermal performance increase the copper area connected to GND pins.
10 Layout

10.1 Layout Guidelines

- High frequency bypass Capacitor C5 must be placed across Pin 1 and 4 as close as you can get it to the pins.
- Resistor R4 and C5 form a low pass filter and the connection of R4 and C5 must be as close to the VDD pin as possible.
- The VS pin controls the output voltage through the transformer turns ratio and the voltage divider of R5 and R11. Note the trace length between the R5, R11 and VS pin should be as short as possible to reduce or eliminate possible EMI coupling.
- The IC ground and power ground must meet at the bulk capacitor’s (C6 and C7) return. Try to ensure that high frequency/high current from the power stage does not go through the signal ground.
 - The high frequency/high current path that you need to be cautious of on the primary is C7+, T1 (P5, P3), Q1d, Q1s, R8 to the return of C6 and C7. Try to keep all high current loops as short as possible.
- Try to keep all high current loops as short as possible.
- Keep all high current/high frequency traces away from or perpendicular to other traces in the design.
- Traces on the voltage clamp formed by D1, R2, D3 and C2 as short as possible.
- C6 return needs to be as close to the bulk capacitor supply as possible. This reduces the magnitude of dv/dt caused by large di/dt.
- Avoid mounting semiconductors under magnetics.

10.2 Layout Example

![Figure 29. Layout](image-url)
Line
Neutral
VOUT +
VOUT -
VIN = 90V to 256V RMS
Vout = 5V/1A
No value means not populated
+ C3
680 uF
D1
MURS160-13-F
C1
1nF
R1
39
R9
10 ohm Fusible Resistor
JP1
3
1
2Q1
2STL2580-AP

Figure 30. 5W USB Adapter Schematic
11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

11.1.1.1 Definition of Terms

11.1.1.1.1 Capacitance Terms in Farads
- \(C_{\text{BULK}} \): total input capacitance of \(C_{B1} \) and \(C_{B2} \).
- \(C_{\text{DD}} \): minimum required capacitance on the VDD pin.
- \(C_{\text{OUT}} \): minimum output capacitance required.

11.1.1.1.2 Duty Cycle Terms
- \(D_{\text{MAGCC}} \): secondary diode conduction duty cycle in CC, 0.425.
- \(D_{\text{MAX}} \): transistor on-time duty cycle.

11.1.1.1.3 Frequency Terms in Hertz
- \(f_{\text{LINE}} \): minimum line frequency.
- \(f_{\text{MAX}} \): target full-load maximum switching frequency of the converter.
- \(f_{\text{MIN}} \): minimum switching frequency of the converter, add 15% margin over the \(f_{\text{SW(min)}} \) limit of the device.
- \(f_{\text{SW(min)}} \): minimum switching frequency (see Electrical Characteristics).

11.1.1.1.4 Current Terms in Amperes
- \(I_{\text{OCC}} \): converter output constant-current target.
- \(I_{\text{PP(max)}} \): maximum transformer primary current.
- \(I_{\text{START}} \): start-up bias supply current (see Electrical Characteristics).
- \(I_{\text{TRAN}} \): required positive load-step current.
- \(I_{\text{VSL(run)}} \): VS pin run current (see Electrical Characteristics).
- \(I_{\text{DRS}} \): Driver source current (see Electrical Characteristics).

11.1.1.1.5 Current and Voltage Scaling Terms
- \(K_{\text{AM}} \): maximum-to-minimum peak primary current ratio (see Electrical Characteristics).
- \(K_{\text{LC}} \): current-scaling constant (see Electrical Characteristics).

11.1.1.1.6 Transformer Terms
- \(L_{p} \): transformer primary inductance.
- \(N_{\text{AS}} \): transformer auxiliary-to-secondary turns ratio.
- \(N_{\text{PA}} \): transformer primary-to-auxiliary turns ratio.
- \(N_{\text{PS}} \): transformer primary-to-secondary turns ratio.

11.1.1.1.7 Power Terms in Watts
- \(P_{\text{IN}} \): converter maximum input power.
- \(P_{\text{OUT}} \): full-load output power of the converter.
- \(P_{\text{SB}} \): total stand-by power.
- \(P_{\text{SB CONV}} \): \(P_{\text{SB}} \) minus start-up resistor and snubber losses.

11.1.1.1.8 Resistance Terms in \(\Omega \)
- \(R_{\text{CS}} \): primary current programming resistance.
- \(R_{\text{ESR}} \): total ESR of the output capacitor(s).
- \(R_{\text{PL}} \): preload resistance on the output of the converter.
- \(R_{S1} \): high-side VS pin resistance.
- \(R_{S2} \): low-side VS pin resistance.
Device Support (continued)

11.1.1.1.9 Timing Terms in Seconds

- \(t_D \): current-sense delay including transistor turn-off delay; add 50 ns to transistor delay.
- \(t_{DMAG\text{(min)}} \): minimum secondary rectifier conduction time.
- \(t_{ON\text{(min)}} \): minimum transistor on time.
- \(f_R \): resonant frequency during the DCM (discontinuous conduction mode) time.

11.1.1.1.10 Voltage Terms in Volts

- \(V_{BLK} \): highest bulk capacitor voltage for stand-by power measurement.
- \(V_{BULK\text{(min)}} \): minimum voltage on \(C_B1 \) and \(C_B2 \) at full power.
- \(V_{OCBC} \): target cable compensation voltage at the output terminals.
- \(V_{CBC\text{(max)}} \): maximum voltage at the CBC pin at the maximum converter output current (see Electrical Characteristics).
- \(V_{CCR} \): constant-current regulating voltage (see Electrical Characteristics).
- \(V_{CST\text{(max)}} \): CS pin maximum current-sense threshold (see Electrical Characteristics).
- \(V_{CST\text{(min)}} \): CS pin minimum current-sense threshold (see Electrical Characteristics).
- \(V_{DD\text{(off)}} \): UVLO turn-off voltage (see Electrical Characteristics).
- \(V_{DD\text{(on)}} \): UVLO turn-on voltage (see Electrical Characteristics).
- \(V_{DA} \): output voltage drop allowed during the load-step transient.
- \(V_{CPK} \): peak transistor collector to emitter voltage at high line.
- \(V_F \): secondary rectifier forward voltage drop at near-zero current.
- \(V_{FA} \): auxiliary rectifier forward voltage drop.
- \(V_{LK} \): estimated leakage inductance energy reset voltage.
- \(V_{OCC} \): regulated output voltage of the converter.
- \(V_{OCC} \): target lowest converter output voltage in constant-current regulation.
- \(V_{REV} \): peak reverse voltage on the secondary rectifier.
- \(V_{RIPPLE} \): output peak-to-peak ripple voltage at full-load.
- \(V_{VSR} \): CV regulating level at the VS input (see Electrical Characteristics).

11.1.1.1.11 AC Voltage Terms in \(V_{RMS} \)

- \(V_{IN\text{(max)}} \): maximum input voltage to the converter.
- \(V_{IN\text{(min)}} \): minimum input voltage to the converter.
- \(V_{IN\text{(run)}} \): converter input start-up (run) voltage.

11.1.1.1.12 Efficiency Terms

- \(\eta_{SB} \): estimated efficiency of the converter at no-load condition, not including start-up resistance or bias losses. For a 5-V USB charger application, 60% to 65% is a good initial estimate.
- \(\eta \): converter overall efficiency.
- \(\eta_{XFMR} \): transformer primary-to-secondary power transfer efficiency.

11.2 Documentation Support

11.2.1 Related Documentation

See the following: Using the UCC28720EVM-212, Evaluation Module, SLUUA92.
11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks
E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCC28720D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>7</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>U28720</td>
<td></td>
</tr>
<tr>
<td>UCC28720DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>7</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>U28720</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD:** The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCC28720DR</td>
<td>SOIC</td>
<td>D</td>
<td>7</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

Dimensions:
- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

Diagram Notes:
- **Reel Diameter**: Diameter of the reel
- **Reel Width (W1)**: Width of the tape reel
- **Pocket Quadrants**: Quadrants for orientation
- **Sprocket Holes**: Holes for sprocket engagement
- **User Direction of Feed**: Direction of tape feed

www.ti.com 14-Aug-2015
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCC28720DR</td>
<td>SOIC</td>
<td>D</td>
<td>7</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated