4-20mA CURRENT TRANSMITTER with Sensor Excitation and Linearization

FEATURES
- LOW UNADJUSTED ERROR
- TWO PRECISION CURRENT SOURCES: 800µA each
- LINEARIZATION
- 2- OR 3-WIRE RTD OPERATION
- LOW OFFSET DRIFT: 0.4µV/°C
- LOW OUTPUT CURRENT NOISE: 30nApp
- HIGH PSR: 110dB minimum
- HIGH CMR: 86dB minimum
- WIDE SUPPLY RANGE: 7.5V to 36V
- DIP-14 AND SO-14 PACKAGES

APPLICATIONS
- INDUSTRIAL PROCESS CONTROL
- FACTORY AUTOMATION
- SCADA REMOTE DATA ACQUISITION
- REMOTE TEMPERATURE AND PRESSURE TRANSDUCERS

DESCRIPTION
The XTR105 is a monolithic 4-20mA, 2-wire current transmitter with two precision current sources. It provides complete current excitation for platinum RTD temperature sensors and bridges, instrumentation amplifiers, and current output circuitry on a single integrated circuit.

Versatile linearization circuitry provides a 2nd-order correction to the RTD, typically achieving a 40:1 improvement in linearity.

Instrumentation amplifier gain can be configured for a wide range of temperature or pressure measurements. Total unadjusted error of the complete current transmitter is low enough to permit use without adjustment in many applications. This includes zero output current drift, span drift, and nonlinearity. The XTR105 operates on loop power-supply voltages down to 7.5V.

The XTR105 is available in DIP-14 and SO-14 surface-mount packages and is specified for the −40°C to +85°C industrial temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.
**FUNCTIONAL BLOCK DIAGRAM**

**PIN CONFIGURATION**

- **Top View**
- **DIP and SO**

**ABSOLUTE MAXIMUM RATINGS**

- Power Supply, V+ (referenced to the I_O pin) ................. 40V
- Input Voltage, V_{IN+}, V_{IN-} (referenced to the I_O pin) .......... 0V to V+
- Storage Temperature Range ........................................... −55°C to +125°C
- Lead Temperature (soldering, 10s) ................................. +300°C
- Output Current Limit .................................................. Continuous
- Junction Temperature .................................................. +165°C

**ELECTROSTATIC DISCHARGE SENSITIVITY**

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

**PACKAGE/ORDERING INFORMATION**

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE-LEAD</th>
<th>PACKAGE DESIGNATOR</th>
<th>SPECIFIED TEMPERATURE RANGE</th>
<th>PACKAGE MARKING</th>
<th>ORDERING NUMBER</th>
<th>TRANSPORT MEDIA, QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR105</td>
<td>DIP-14</td>
<td>N</td>
<td>−40°C to +85°C</td>
<td>XTR105PA</td>
<td>XTR105PA</td>
<td>Rails, 25</td>
</tr>
<tr>
<td></td>
<td>SO-14 Surface-Mount</td>
<td>D</td>
<td>−40°C to +85°C</td>
<td>XTR105P</td>
<td>XTR105P</td>
<td>Rails, 25</td>
</tr>
<tr>
<td></td>
<td>SO-14 Surface-Mount</td>
<td>D</td>
<td>−40°C to +85°C</td>
<td>XTR105UA</td>
<td>XTR105UA</td>
<td>Rails, 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XTR105UA2K5</td>
<td>XTR105UA2K5</td>
<td>Tape and Reel, 2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XTR105U</td>
<td>XTR105U</td>
<td>Rails, 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XTR105U2K5</td>
<td>XTR105U2K5</td>
<td>Tape and Reel, 2500</td>
</tr>
</tbody>
</table>

**NOTE:** (1) Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

**NOTE:** (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.
**ELECTRICAL CHARACTERISTICS**

At $T_A = +25^\circ C$, $V_+ = 24V$, and TIP29C external transistor, unless otherwise noted.

### OUTPUT

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>XTR105P, U</th>
<th>XTR105PA, UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current Equation</td>
<td>$I_O = V_{IN} \cdot (40/R_G) + 4mA$, $V_{IN}$ in Volts, $R_G$ in $\Omega$</td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>Output Current, Specified Range</td>
<td></td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Over-Scale Limit</td>
<td></td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Under-Scale Limit</td>
<td>$I_{REG} = 0V$</td>
<td>1.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

**ZERO OUTPUT**

- **Initial Error**
  - $V_{IN} = 0V$, $R_G = \infty$
  - $\pm5 \pm25 \pm50 \mu Amps$
- **vs Temperature**
  - $\pm0.07 \pm0.5 \pm0.9 \mu Amps/\degree C$
- **vs Supply Voltage, $V_+$**
  - $V_+ = 7.5V$ to $36V$
  - $0.04 \pm0.2 \mu Amps/V$
- **vs Common-Mode Voltage**
  - $V_{CM} = 1.25V$ to $3.5V$
  - $0.02 \mu Amps/V$
- **vs $V_{REG}$ Input Current**
  - $0.3 \mu Amps$
  - $0.03 \mu Amps$

**SPAN**

- **Span Equation (transconductance)**
  - $S = 40/R_G$
  - $2.4 \mu Amps/V$
- **Span (transconductance)**
  - $4 mA$
  - $20 mA$
- **Span Limit**
  - $24 mA$
  - $27 mA$
  - $30 mA$

**ZERO OUTPUT**

- **Initial Error (1)**
  - Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero.
- **vs Temperature**
  - $0.04 \pm0.2 \mu Amps/V$
- **vs Supply Voltage, $V_+$**
  - $0.04 \pm0.2 \mu Amps/V$
- **vs Common-Mode Voltage**
  - $0.02 \mu Amps/V$
- **vs $V_{REG}$ Input Current**
  - $0.3 \mu Amps$
  - $0.03 \mu Amps$

**INPUT**

- **Offset Voltage**
  - $V_{CM} = 2V$
  - $\pm50 \pm100 \pm250 \mu V$
- **vs Temperature**
  - $\pm0.4 \pm1.5 \pm3 \mu V/\degree C$
- **vs Supply Voltage, $V_+$**
  - $\pm0.3 \pm3 \mu V$
- **vs Common-Mode Voltage, RTI (CMRR)**
  - $\pm10 \pm50 \pm100 \mu V/V$
- **Common-Mode Input Range**
  - $1.25V$ to $3.5V$
  - $1 \mu V$
- **Input Bias Current**
  - $52 \pm50 pA$
  - $20 \pm30 pA/\degree C$
- **Input Offset Current**
  - $0.2 \pm3 \pm10 nA$
- **Impedance, Differential**
  - $0.1 \parallel 1 \Omega$
  - $10 \parallel 10 \Omega$
- **Impedance, Common-Mode**
  - $0.1 \parallel 1 \Omega$
  - $10 \parallel 10 \Omega$
- **Noise, 0.1Hz to 10Hz**
  - $0.03 \mu V$
  - $0.01 \mu V$

**CURRENT SOURCES**

- **Output Current**
  - $IO = V_{IN} \cdot (40/R_G) + 4mA$, $V_{IN}$ in Volts, $R_G$ in $\Omega$
  - $800 \mu Amps$
  - $5 \pm0.1 \pm0.2 \pm0.4 \mu A/V$
  - $5 \pm0.1 \pm0.2 \mu A/V$
- **Accuracy**
  - $\pm0.05 \pm0.2 \pm0.4 \%$
  - $\pm0.1 \pm0.1 \pm0.1 \%$
- **Power Supply, $V_+$**
  - $V_+ = 7.5V$ to $36V$
  - $\pm10 \pm25 \pm50 \mu A/V$
- **Matching**
  - $\pm0.02 \pm0.1 \pm0.2 \%$
  - $\pm0.02 \pm0.1 \pm0.2 \%$
- **vs Supply Voltage, $V_+$**
  - $\pm3 \pm15 \pm30 \mu A/V$
- **vs Power Supply, $V_+$**
  - $\pm1 \pm10 \pm5 \mu A/V$
- **Compliance Voltage, Positive**
  - $2.5V$
  - $1V$
  - $0.2V$
- **Negative**
  - $V+$
  - $V$ (2)
  - $V_{REG}$
- **Output Impedance**
  - $150 \Omega$
  - $75 \Omega$
  - $10 \Omega$
- **Noise, 0.1Hz to 10Hz**
  - $0.03 \mu V_{pp}$
  - $0.01 \mu V_{pp}$

**LINEARIZATION**

- **$R_{LIN}$ (internal)**
  - $1 \kOmega$
- **Accuracy**
  - $\pm0.2 \pm0.5 \pm1 \%$
- **vs Temperature**
  - $\pm25 \pm100 \pm25 \%$
- **$V_{REG}$ (3)**
  - $5.1 \mu V$
  - $0.02 \mu V$
- **Accuracy**
  - $\pm0.2 \pm0.1 \mu V$
  - $\pm0.2 \mu V/V$
- **vs Supply Voltage, $V_+$**
  - $1 \mu V$
  - $1 \mu V$
- **Output Current**
  - $\pm1 \mu A$
  - $\pm1 \mu A$
- **Output Impedance**
  - $75 \Omega$
  - $75 \Omega$
  - $75 \Omega$

**POWER SUPPLY**

- **Specified Voltage Range**
  - $+24V$
  - $+36V$
  - $+40V$
  - $+55V$
  - $+55V$
- **Temperature Range**
  - $-40^\circ C$ to $+85^\circ C$
  - $-55^\circ C$ to $+125^\circ C$
- **Thermal Resistance, $\theta_{JA}$**
  - $1k\Omega$
  - $1k\Omega$
  - $1k\Omega$
- **DIP-14**
  - $80 \kOmega$
  - $100 \kOmega$
- **SO-14 Surface-Mount**
  - $100 \kOmega$

* Specification same as XTR105P and XTR105U.

**NOTES:**

1. Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero.
2. Voltage measured with respect to $I_{REG}$ pin.
3. Does not include initial error or TCR of gain-setting resistor, $R_G$.
4. Increasing the full-scale input range improves nonlinearity.
5. Does not include Zero Output initial error.
6. Current source output voltage with respect to $I_{REG}$ pin.
TYPICAL CHARACTERISTICS

At $T_A = +25^\circ C$ and $V_+ = 24V$, unless otherwise noted.

**Transconductance vs Frequency**

- $R_G = 500\,\Omega$
- $R_G = 2\,k\,\Omega$

**Common-Mode Rejection vs Frequency**

- $R_G = 500\,\Omega$
- $R_G = 2\,k\,\Omega$

**Power-Supply Rejection vs Frequency**

- $R_G = 500\,\Omega$
- $R_G = 2\,k\,\Omega$

**Step Response**

- $R_G = 2\,k\,\Omega$
- $R_G = 125\,\Omega$

**Over-Scale Current vs Temperature**

- $V_+ = 24V$
- $V_+ = 7.5V$
- $V_+ = 36V$

**Under-Scale Current vs Temperature**

- $V_+ = 7.5V$ to $36V$
TYPICAL CHARACTERISTICS (Cont.)

At $T_A = +25°C$ and $V+ = 24V$, unless otherwise noted.

**INPUT VOLTAGE AND CURRENT NOISE DENSITY vs FREQUENCY**

- Voltage Noise
- Current Noise

**ZERO OUTPUT AND REFERENCE CURRENT NOISE vs FREQUENCY**

- Zero Output Current
- Reference Current

**INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE**

- $+I_B$
- $-I_B$

**ZERO OUTPUT CURRENT ERROR vs TEMPERATURE**

**INPUT OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION**

- Typical Production Distribution of Packaged Units.

**ZERO OUTPUT DRIFT PRODUCTION DISTRIBUTION**

- Typical Production Distribution of Packaged Units.
TYPICAL CHARACTERISTICS (Cont.)

At $T_A = +25^\circ C$ and $V_+ = 24V$, unless otherwise noted.

**CURRENT SOURCE DRIFT PRODUCTION DISTRIBUTION**

Typical Production Distribution of Packaged Units. $I_{r1}$ AND $I_{r2}$ Included.

**CURRENT SOURCE MATCHING DRIFT PRODUCTION DISTRIBUTION**

Typical Production Distribution of Packaged Units.

**V\text{\textsubscript{REG}} OUTPUT VOLTAGE vs V\text{\textsubscript{REG}} OUTPUT CURRENT**

$V_{\text{REG}}$ Output Voltage (V) vs $V_{\text{REG}}$ Output Current (mA)

125°C

25°C

−55°C

NOTE: Above 1mA, Zero Output Degrades

**REFERENCE CURRENT ERROR vs TEMPERATURE**

Reference Current Error (%) vs Temperature (°C)
APPLICATION INFORMATION

Figure 1 shows the basic connection diagram for the XTR105. The loop power supply, $V_{PS}$, provides power for all circuitry. Output loop current is measured as a voltage across the series load resistor, $R_L$.

Two matched 0.8mA current sources drive the RTD and zero-setting resistor, $R_Z$. The instrumentation amplifier input of the XTR105 measures the voltage difference between the RTD and $R_Z$. The value of $R_Z$ is chosen to be equal to the resistance of the RTD at the low-scale (minimum) measurement temperature. $R_Z$ can be adjusted to achieve 4mA output at the minimum measurement temperature to correct for input offset voltage and reference current mismatch of the XTR105.

$R_CM$ provides an additional voltage drop to bias the inputs of the XTR105 within their common-mode input range. $R_CM$ should be bypassed with a 0.01µF capacitor to minimize common-mode noise. Resistor $R_G$ sets the gain of the instrumentation amplifier according to the desired temperature range. $R_{LIN1}$ provides 2nd-order linearization correction to the RTD, typically achieving a 40:1 improvement in linearity. An additional resistor is required for 3-wire RTD connections (see Figure 3).

The transfer function through the complete instrumentation amplifier and voltage-to-current converter is:

$$I_O = 4mA + V_{IN} \times \left(\frac{40}{R_G}\right)$$

where $V_{IN}$ is the differential input voltage. As evident from the transfer function, if no $R_G$ is used the gain is zero and the output is simply the XTR105's zero current. The value of $R_G$ varies slightly for 2-wire RTD and 3-wire RTD connections with linearization. $R_G$ can be calculated from the equations given in Figure 1 (2-wire RTD connection) and Table I (3-wire RTD connection).

The $I_{RET}$ pin is the return path for all current from the current sources and $V_{REG}$. The $I_{RET}$ pin allows any current used in external circuitry to be sensed by the XTR105 and to be included in the output current without causing an error.

The $V_{REG}$ pin provides an on-chip voltage source of approximately 5.1V and is suitable for powering external input circuitry (refer to Figure 6). It is a moderately accurate voltage reference—it is not the same reference used to set the 800µA current references. $V_{REG}$ is capable of sourcing approximately 1mA of current. Exceeding 1mA may affect the 4mA zero output.

FIGURE 1. Basic 2-Wire RTD Temperature Measurement Circuit with Linearization.
A negative input voltage, $V_{IN}$, will cause the output current to be less than 4mA. Increasingly negative $V_{IN}$ will cause the output current to limit at approximately 2.2mA. Refer to the typical characteristic Under-Scale Current vs Temperature.

Increasingly positive input voltage (greater than the full-scale input) will produce increasing output current according to the transfer function, up to the output current limit of approximately 27mA. Refer to the typical characteristic Over-Scale Current vs Temperature.

### TABLE I. $R_Z$, $R_G$, $R_{LIN1}$, and $R_{LIN2}$ Standard 1% Resistor Values for 3-Wire Pt100 RTD Connection with Linearization.

<table>
<thead>
<tr>
<th>$T_{MIN}$</th>
<th>100°C</th>
<th>200°C</th>
<th>300°C</th>
<th>400°C</th>
<th>500°C</th>
<th>600°C</th>
<th>700°C</th>
<th>800°C</th>
<th>900°C</th>
<th>1000°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°C)</td>
<td></td>
</tr>
<tr>
<td>−200°C</td>
<td>18.7/86.6</td>
<td>18.7/7169</td>
<td>18.7/2550</td>
<td>18.7/3400</td>
<td>18.7/4220</td>
<td>18.7/5110</td>
<td>18.7/5900</td>
<td>18.7/6550</td>
<td>18.7/7500</td>
<td>18.7/8450</td>
</tr>
<tr>
<td>0°C</td>
<td>100/78.7</td>
<td>100/158</td>
<td>100/237</td>
<td>100/316</td>
<td>100/392</td>
<td>100/475</td>
<td>100/549</td>
<td>100/634</td>
<td>100/732</td>
<td></td>
</tr>
<tr>
<td>+100°C</td>
<td>60.4/60.6</td>
<td>60.4/162</td>
<td>60.4/243</td>
<td>60.4/324</td>
<td>60.4/402</td>
<td>60.4/487</td>
<td>60.4/562</td>
<td>60.4/649</td>
<td>60.4/732</td>
<td></td>
</tr>
<tr>
<td>+100°C</td>
<td>274/1540</td>
<td>1540/10500</td>
<td>1540/8660</td>
<td>1540/6780</td>
<td>1540/6400</td>
<td>1540/4990</td>
<td>1540/4220</td>
<td>1540/3570</td>
<td>1540/3090</td>
<td></td>
</tr>
<tr>
<td>+100°C</td>
<td>294/1780</td>
<td>1780/13000</td>
<td>1780/10200</td>
<td>1780/8660</td>
<td>1780/6780</td>
<td>1780/6400</td>
<td>1780/4990</td>
<td>1780/4220</td>
<td>1780/3570</td>
<td></td>
</tr>
<tr>
<td>+100°C</td>
<td>357/1870</td>
<td>1870/13000</td>
<td>1870/10200</td>
<td>1870/8660</td>
<td>1870/6780</td>
<td>1870/6400</td>
<td>1870/4990</td>
<td>1870/4220</td>
<td>1870/3570</td>
<td></td>
</tr>
</tbody>
</table>

### Method 1: Table Look Up

For $T_{MIN} = -100°C$ and $\Delta T = -300°C$, the 1% values are:

- $R_Z = 60.4$ Ω
- $R_G = 10.5$ kΩ
- $R_{LIN1} = 10.413$ kΩ
- $R_{LIN2} = 13$ kΩ

### Method 2: Calculation

**Step 1:** Determine $R_Z$, $R_G$, and $R_{LIN}$.

$R_Z$ is the RTD resistance at the minimum measured temperature, $T_{MIN} = -100°C$.

Using Equation 1 at right gives:

$$R_Z = 100 \times \left[ 1 + 3.90802 \times 10^{-3} \times (T_{MIN} - 0) \right]$$

4.27350

$R_G$ is the RTD resistance at the maximum measured temperature, $T_{MAX} = 200°C$.

Using Equation 2 at right gives:

$$R_G = 2(R_2 - R_1)(R_2 - R_1)$$

**Step 2:** Calculate $R_Z$, $R_{LIN1}$, and $R_{LIN2}$ using equations above.

- $R_G = 242.3\Omega$ (1% value is 243Ω)
- $R_{LIN1} = 10.413\Omega$ (1% value is 10.5kΩ)
- $R_{LIN2} = 12.936\Omega$ (1% value is 13kΩ)

## Calculation of Pt100 Resistance Values

(covering DIN IEC 751)

(Equation 1) Temperature range from −200°C to 0°C:

$$R_{\text{MIN}} = 100 \times \left[ 1 + 3.90802 \times 10^{-3} \times T - 0.5802 \times 10^{-6} \right]$$

(Equation 2) Temperature range from 0°C to +850°C:

$$R_{\text{MIN}} = 100 \times \left[ 1 + 3.90802 \times 10^{-3} \times T - 0.5802 \times 10^{-6} \times T_2 \right]$$

where: $R_{\text{MIN}}$ is the resistance in Ω at temperature $T$.

$T$ is the temperature in °C.

NOTE: Most RTD manufacturers provide reference tables for resistance values at various temperatures.
EXTERNAL TRANSISTOR

Transistor Q₁ conducts the majority of the signal-dependent 4-20mA loop current. Using an external transistor isolates the majority of the power dissipation from the precision input and reference circuitry of the XTR105, maintaining excellent accuracy.

Since the external transistor is inside a feedback loop, its characteristics are not critical. Requirements are: \( V_{CEO} = 45 \text{V min}, \beta = 40 \text{ min}, \) and \( P_D = 800 \text{mW} \). Power dissipation requirements may be lower if the loop power-supply voltage is less than 36V. Some possible choices for Q₁ are listed in Figure 1.

The XTR105 can be operated without this external transistor, however, accuracy will be somewhat degraded due to the internal power dissipation. Operation without Q₁ is not recommended for extended temperature ranges. A resistor (R = 3.3kΩ) connected between the \( I_{REF} \) pin and the E (emitter) pin may be needed for operation below 0°C without Q₁ to ensure the full 20mA full-scale output, especially with V+ near 7.5V.

It is recommended to design for V+ equal or greater than 7.5V with loop currents up to 30mA to allow for out-of-range input conditions.

The low operating voltage (7.5V) of the XTR105 allows operation directly from personal computer power supplies (12V ±5%). When used with the RCV420 current loop receiver (see Figure 7), the load resistor voltage drop is limited to 3V.

ADJUSTING INITIAL ERRORS

Many applications require adjustment of initial errors. Input offset and reference current mismatch errors can be corrected by adjustment of the zero resistor, \( R_Z \). Adjusting the gain-setting resistor, \( R_G \), corrects any errors associated with gain.

2- AND 3-WIRE RTD CONNECTIONS

In Figure 1, the RTD can be located remotely simply by extending the two connections to the RTD. With this remote 2-wire connection to the RTD, line resistance will introduce error. This error can be partially corrected by adjusting the values of \( R_Z \), \( R_G \), and \( R_{LIN1} \).

A better method for remotely located RTDs is the 3-wire RTD connection (see Figure 3). This circuit offers improved accuracy. \( R_Z \)'s current is routed through a third wire to the RTD. Assuming line resistance is equal in RTD lines 1 and 2, this produces a small common-mode voltage that is rejected by the XTR105. A second resistor, \( R_{LIN2} \), is required for linearization.

Note that although the 2-wire and 3-wire RTD connection circuits are very similar, the gain-setting resistor, \( R_G \), has slightly different equations:

2-wire: \[ R_G = \frac{2(R_1 + R_2) - 4R_2}{R_2 - R_1} \]

3-wire: \[ R_G = \frac{2(R_2 - R_1)(R_1 - R_2)}{R_2 - R_1} \]

where:

- \( R_Z \) = RTD resistance at \( T_{MIN} \)
- \( R_1 \) = RTD resistance at \( (T_{MIN} + T_{MAX})/2 \)
- \( R_2 \) = RTD resistance at \( T_{MAX} \)

To maintain good accuracy, at least 1% (or better) resistors should be used for \( R_G \). Table I provides standard 1% \( R_G \) resistor values for a 3-wire Pt100 RTD connection with linearization.

LINEARIZATION

RTD temperature sensors are inherently (but predictably) nonlinear. With the addition of one or two external resistors, \( R_{LIN1} \) and \( R_{LIN2} \), it is possible to compensate for most of this nonlinearity resulting in 40:1 improvement in linearity over the uncompensated output.

See Figure 1 for a typical 2-wire RTD application with linearization. Resistor \( R_{LIN1} \) provides positive feedback and controls linearity correction. \( R_{LIN1} \) is chosen according to the desired temperature range. An equation is given in Figure 1.

![FIGURE 2. Operation Without an External Transistor.](image)
In 3-wire RTD connections, an additional resistor, R_{LIN2}, is required. As with the 2-wire RTD application, R_{LIN1} provides positive feedback for linearization. R_{LIN2} provides an offset canceling current to compensate for wiring resistance encountered in remotely located RTDs. R_{LIN1} and R_{LIN2} are chosen such that their currents are equal. This makes the voltage drop in the wiring resistance to the RTD a common-mode signal that is rejected by the XTR105. The nearest standard 1% resistor values for R_{LIN1} and R_{LIN2} should be adequate for most applications. Table I provides the 1% resistor values for a 3-wire Pt100 RTD connection.

If no linearity correction is desired, the V_{LIN} pin should be left open. With no linearization, R_G = 2500 \cdot V_{FS}, where V_{FS} = full-scale input range.

RTDs
The text and figures thus far have assumed a Pt100 RTD. With higher resistance RTDs, the temperature range and input voltage variation should be evaluated to ensure proper common-mode biasing of the inputs. As mentioned earlier, R_{CM} can be adjusted to provide an additional voltage drop to bias the inputs of the XTR105 within their common-mode input range.

ERROR ANALYSIS
See Table II for how to calculate the effect various error sources have on circuit accuracy. A sample error calculation for a typical RTD measurement circuit (Pt100 RTD, 200°C measurement span) is provided. The results reveal the XTR105’s excellent accuracy, in this case 1.1% unadjusted. Adjusting resistors R_G and R_Z for gain and offset errors improves circuit accuracy to 0.32%. Note that these are worst-case errors; ensured maximum values were used in the calculations and all errors were assumed to be positive (additive). The XTR105 achieves performance that is difficult to obtain with discrete circuitry and requires less space.

OPEN-CIRCUIT PROTECTION
The optional transistor Q_2 in Figure 3 provides predictable behavior with open-circuit RTD connections. It assures that if any one of the three RTD connections is broken, the XTR105’s output current will go to either its high current limit (≈ 27mA) or low current limit (≈ 2.2mA). This is easily detected as an out-of-range condition.

![Figure 3. Remotely Located RTDs with 3-Wire Connection.](image-url)
SAMPLE ERROR CALCULATION

<table>
<thead>
<tr>
<th>ERROR SOURCE</th>
<th>ERROR EQUATION</th>
<th>SAMPLE ERROR CALCULATION$^1$</th>
<th>ERROR (ppm of Full Scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td>Unadj.</td>
<td>Adjust.</td>
</tr>
<tr>
<td>Input Offset Voltage vs Common-Mode</td>
<td>$V_{CM}/(V_{IN,MAX}) \cdot 10^6$</td>
<td>100µV/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6</td>
<td>1645</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>$I_{OB}/I_{REF} \cdot 10^6$</td>
<td>50µV/0.1V/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6</td>
<td>82</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$I_{OB} \cdot R_{RTD,MIN}/(V_{IN,MAX}) \cdot 10^6$</td>
<td>0.025µA/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3nA \cdot 100Ω/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6</td>
<td>5</td>
</tr>
<tr>
<td><strong>Total Input Error:</strong></td>
<td></td>
<td>1763</td>
<td>82</td>
</tr>
<tr>
<td>EXCITATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Reference Accuracy vs Supply</td>
<td>$I_{REF}/I_{REF} \cdot 10^6$</td>
<td>$0.2%/100% \cdot 10^6$</td>
<td>2000</td>
</tr>
<tr>
<td>Current Reference Matching vs Supply</td>
<td>$I_{REF}/I_{REF} \cdot 10^6$</td>
<td>$0.1%/100% \cdot 800µA \cdot 100Ω/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6$</td>
<td>1316</td>
</tr>
<tr>
<td></td>
<td>$R_{RTD,MIN}/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$10µm/100% \cdot 800µA \cdot 100Ω/(800µA \cdot 0.38Ω/°C \cdot 200°C)$</td>
<td>66</td>
</tr>
<tr>
<td><strong>Total Excitation Error:</strong></td>
<td></td>
<td>3507</td>
<td>191</td>
</tr>
<tr>
<td>GAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>$100µm/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$0.2%/100% \cdot 10^6$</td>
<td>2000</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>$100µm/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$0.01%/100% \cdot 10^6$</td>
<td>100</td>
</tr>
<tr>
<td><strong>Total Gain Error:</strong></td>
<td></td>
<td>2100</td>
<td>100</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Output vs Supply</td>
<td>$(I_{ZERO} - 4mA)/16000µA \cdot 10^6$</td>
<td>$0.2µA/5V/16000µA \cdot 10^6$</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td>$(I_{ZERO} - 4mA)/16000µA \cdot 10^6$</td>
<td>$0.2µA/16000µA \cdot 10^6$</td>
<td>63</td>
</tr>
<tr>
<td><strong>Total Output Error:</strong></td>
<td></td>
<td>1626</td>
<td>63</td>
</tr>
<tr>
<td>DRIFT (ΔT$_A$ = 20°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$1.5µV/°C \cdot 20°C/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6$</td>
<td>493</td>
</tr>
<tr>
<td>Input Bias Current (typical)</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$20µA/°C \cdot 200°C/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6$</td>
<td>0.5</td>
</tr>
<tr>
<td>Input Offset Current (typical)</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$5µA/°C \cdot 20°C/(100Ω/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6$</td>
<td>5</td>
</tr>
<tr>
<td>Current Reference Accuracy</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$35µm/°C \cdot 20°C$</td>
<td>700</td>
</tr>
<tr>
<td>Current Reference Matching</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$0.5µA/°C \cdot 20°C$</td>
<td>700</td>
</tr>
<tr>
<td>Span</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$15µm/°C \cdot 20°C/(800µA \cdot 100Ω/(800µA \cdot 0.38Ω/°C \cdot 200°C)$</td>
<td>395</td>
</tr>
<tr>
<td>Zero Output</td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$25µm/°C \cdot 20°C$</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>$Drift \cdot ΔT_A/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$0.5µA/°C \cdot 20°C/(16000µA \cdot 10^6$</td>
<td>626</td>
</tr>
<tr>
<td><strong>Total Drift Error:</strong></td>
<td></td>
<td>2715</td>
<td>2715</td>
</tr>
<tr>
<td>NOISE (0.1Hz to 10Hz, typ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>$V_{NOISE}/(V_{IN,MAX}) \cdot 10^6$</td>
<td>$0.6µV/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6$</td>
<td>10</td>
</tr>
<tr>
<td>Current Reference</td>
<td>$I_{REF}/I_{REF} \cdot 10^6$</td>
<td>$3nA/(100Ω/(800µA \cdot 0.38Ω/°C \cdot 200°C) \cdot 10^6$</td>
<td>5</td>
</tr>
<tr>
<td>Zero Output</td>
<td>$I_{REF}/I_{REF} \cdot 10^6$</td>
<td>$0.03µA/(16000µA \cdot 10^6$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$I_{REF}/I_{REF} \cdot 10^6$</td>
<td>$0.03µA/(16000µA \cdot 10^6$</td>
<td>2</td>
</tr>
<tr>
<td><strong>Total Noise Error:</strong></td>
<td></td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

**TOTAL ERROR:** 11728 (1.17%) 3168 (0.32%)

NOTE (1): All errors are min/max and referred to input unless otherwise stated.

---

TABLE II. Error Calculation.
REVERSE-VOLTAGE PROTECTION

The XTR105's low compliance rating (7.5V) permits the use of various voltage protection methods without compromising operating range. Figure 4 shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two diode drop (approximately 1.4V) loss in loop-supply voltage. This results in a compliance voltage of approximately 9V—satisfactory for most applications. If a 1.4V drop in loop supply is too much, a diode can be inserted in series with the loop-supply voltage and the V+ pin. This protects against reverse output connection lines with only a 0.7V loss in loop-supply voltage.

SURGE PROTECTION

Remote connections to current transmitters can sometimes be subjected to voltage surges. It is prudent to limit the maximum surge voltage applied to the XTR105 to as low as practical. Various zener diodes and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36V protection diode will assure proper transmitter operation at normal loop voltages, yet will provide an appropriate level of protection against voltage surges. Characterization tests on three production lots showed no damage to the XTR105 within loop-supply voltages up to 65V.

Most surge protection zener diodes have a diode characteristic in the forward direction that will conduct excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, a series diode or diode bridge should be used for protection against reversed connections.

RADIO FREQUENCY INTERFERENCE

The long wire lengths of current loops invite radio frequency (RF) interference. RF can be rectified by the sensitive input circuitry of the XTR105 causing errors. This generally appears as an unstable output current that varies with the position of loop supply or input wiring.

If the RTD sensor is remotely located, the interference may enter at the input terminals. For integrated transmitter assemblies with short connections to the sensor, the interference more likely comes from the current loop connections.

Bypass capacitors on the input reduce or eliminate this input interference. Connect these bypass capacitors to the \( I_{\text{RET}} \) terminal (see Figure 5). Although the dc voltage at the \( I_{\text{RET}} \) terminal is not equal to 0V (at the loop supply, \( V_{\text{PS}} \)), this circuit point can be considered the transmitter's "ground." The 0.01\( \mu \)F capacitor connected between V+ and \( I_{\text{O}} \) may help minimize output interference.

![Diagram](image.png)

**NOTE:** (1) Zener Diode 36V: 1N4753A or General Semiconductor Transorb™ 1N6286A. Use lower voltage zener diodes with loop-power supply voltages less than 30V for increased protection. See the Surge Protection section.
FIGURE 5. Input Bypassing Technique with Linearization.

FIGURE 6. Thermocouple Low Offset, Low Drift Loop Measurement with Diode Cold Junction Compensation.
FIGURE 7. ±12V Powered Transmitter/Receiver Loop.

FIGURE 8. Isolated Transmitter/Receiver Loop.

NOTE: (1) Use $R_{CM}$ to adjust the common-mode voltage to within 1.25V to 3.5V.

$1.6mA$
## PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR105P</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
<td></td>
<td>XTR105P</td>
</tr>
<tr>
<td>XTR105PA</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
<td></td>
<td>XTR105PA</td>
</tr>
<tr>
<td>XTR105PAG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
<td></td>
<td>XTR105P</td>
</tr>
<tr>
<td>XTR105PG4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
<td></td>
<td>XTR105P</td>
</tr>
<tr>
<td>XTR105U</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
<td></td>
<td>XTR105U</td>
</tr>
<tr>
<td>XTR105UA</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
<td></td>
<td>XTR105U</td>
</tr>
<tr>
<td>XTR105UAG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
<td></td>
<td>XTR105U</td>
</tr>
<tr>
<td>XTR105UG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-3-260C-168 HR</td>
<td></td>
<td></td>
<td>XTR105U</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Draw.</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR105UA/2K5</td>
<td>SOIC D</td>
<td>14</td>
<td>2500</td>
<td></td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

A0: Dimension designed to accommodate the component width
B0: Dimension designed to accommodate the component length
K0: Dimension designed to accommodate the component thickness
W: Overall width of the carrier tape
P1: Pitch between successive cavity centers

*All dimensions are nominal.
# TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR105UA/2K5</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
N (R-PDIP-T**)  
16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

<table>
<thead>
<tr>
<th>DIM</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>0.775</td>
<td>0.775</td>
<td>0.920</td>
<td>1.060</td>
</tr>
<tr>
<td></td>
<td>(19.69)</td>
<td>(19.69)</td>
<td>(23.37)</td>
<td>(26.92)</td>
</tr>
<tr>
<td>A MIN</td>
<td>0.745</td>
<td>0.745</td>
<td>0.850</td>
<td>0.940</td>
</tr>
<tr>
<td></td>
<td>(18.92)</td>
<td>(18.92)</td>
<td>(21.59)</td>
<td>(23.88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIATION</th>
<th>AA</th>
<th>BB</th>
<th>AC</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:  
A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).  
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.
NOTES:  
A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Publication IPC-7351 is recommended for alternate designs.  
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.  
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to additional restrictions.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td><a href="http://www.ti.com/audio">www.ti.com/audio</a></td>
</tr>
<tr>
<td>Amplifiers</td>
<td><a href="http://www.ti.com/automotive">www.ti.com/automotive</a></td>
</tr>
<tr>
<td>Data Converters</td>
<td><a href="http://www.ti.com/communications">www.ti.com/communications</a></td>
</tr>
<tr>
<td>DLP® Products</td>
<td><a href="http://www.ti.com/computers">www.ti.com/computers</a></td>
</tr>
<tr>
<td>DSP</td>
<td><a href="http://www.ti.com/consumer-apps">www.ti.com/consumer-apps</a></td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td><a href="http://www.ti.com/energy">www.ti.com/energy</a></td>
</tr>
<tr>
<td>Interface</td>
<td><a href="http://www.ti.com/industrial">www.ti.com/industrial</a></td>
</tr>
<tr>
<td>Logic</td>
<td><a href="http://www.ti.com/medical">www.ti.com/medical</a></td>
</tr>
<tr>
<td>Power Mgmt</td>
<td><a href="http://www.ti.com/security">www.ti.com/security</a></td>
</tr>
<tr>
<td>Microcontrollers</td>
<td><a href="http://www.ti.com/video">www.ti.com/video</a></td>
</tr>
<tr>
<td>RFID</td>
<td><a href="http://www.ti.com/video">www.ti.com/video</a></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td><a href="http://www.ti.com/omap">www.ti.com/omap</a></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td><a href="http://www.ti.com/wirelessconnectivity">www.ti.com/wirelessconnectivity</a></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated