1 Features

- User-Selectable: Current or Voltage Output
- $V_{OUT}: \pm 10 \text{ V (up to } \pm 17.5 \text{ V at } \pm 20-\text{V supply)}$
- $I_{OUT}: \pm 20 \text{ mA (Linear up to } \pm 24 \text{ mA)}$
- 40-V Supply Voltage
- Diagnostic Features:
 - Short- or Open-Circuit Fault Indicator Pin
 - Thermal Protection
 - Overcurrent Protection
- No Current Shunt Required
- Output Disable for Single Input Mode
- Separate Driver and Receiver Channels
- Designed For Testability

2 Applications

- Motor Drives Analog Outputs: 4-20 mA and ±10 V
- PLC Output Programmable Driver
- Industrial Cross-Connectors
- Industrial High-Voltage I/O
- Three-Wire Sensor Current or Voltage Output
- ±10-V Two- and Four-Wire Voltage Output

U.S. Patent Nos. 7,427,898, 7,425,848, and 7,449,873

3 Description

The XTR305 is a complete output driver for cost-sensitive industrial and process control applications. The output can be configured as current or voltage by the digital I/V select pin. No external shunt resistor is required. Only external gain-setting resistors and a loop compensation capacitor are required.

The separate driver and receiver channels provide flexibility. The instrumentation amplifier (IA) can be used for remote voltage sense or as a high-voltage, high-impedance measurement channel. In voltage-output mode, a copy of the output current is provided, allowing calculation of load resistance.

The digital output-selection capability, together with the error flags and monitor pins, makes remote configuration and troubleshooting possible. Fault conditions on the output and on the IA input, as well as overtemperature conditions, are indicated by the error flags. The monitoring pins provide continuous feedback about load power or impedance. For additional protection, the maximum output current is limited, and thermal protection is provided.

The XTR305 is specified over the $-40^\circ\text{C to } +85^\circ\text{C}$ industrial temperature range and for supply voltages up to 40 V, and is operational over the extended industrial temperature range ($-55^\circ\text{C to } +125^\circ\text{C}$).

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR305</td>
<td>VQFN (20)</td>
<td>5.00 mm × 5.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

![Typical Application Diagram]

Copyright © 2017, Texas Instruments Incorporated

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications .. 1
3 Description ... 1
4 Revision History .. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics: Voltage Output Mode 5
 6.6 Electrical Characteristics: Current Output Mode 6
 6.7 Electrical Characteristics: Operational Amplifier (OPA) 7
 6.8 Electrical Characteristics: Instrumentation Amplifier (IA) 8
 6.9 Electrical Characteristics: Current Monitor 9
 6.10 Electrical Characteristics: Power and Digital 9
 6.11 Typical Characteristics 10
7 Detailed Description .. 16
 7.1 Overview ... 16
7.2 Functional Block Diagrams 16
7.3 Feature Description ... 18
7.4 Device Functional Modes 20
8 Application and Implementation 21
 8.1 Application Information 21
 8.2 Typical Application .. 21
9 Power Supply Recommendations 29
10 Layout ... 30
 10.1 Layout Guidelines .. 30
 10.2 Layout Example .. 30
 10.3 VQFN Package and Heat Sinking 31
 10.4 Power Dissipation .. 32
11 Device and Documentation Support 33
 11.1 Documentation Support 33
 11.2 Receiving Notification of Documentation Updates 33
 11.3 Community Resources 33
 11.4 Trademarks ... 33
 11.5 Electrostatic Discharge Caution 33
 11.6 Glossary ... 33
12 Mechanical, Packaging, and Orderable Information 33

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2018</td>
<td></td>
<td>Initial release</td>
</tr>
</tbody>
</table>
5 Pin Configuration and Functions

RGW Package
20-Pin VQFN With Thermal Pad
Top View

Pin Functions

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M2</td>
<td>I</td>
<td>Mode input</td>
</tr>
<tr>
<td>2</td>
<td>M1</td>
<td>I</td>
<td>Mode input</td>
</tr>
<tr>
<td>3</td>
<td>VIN</td>
<td>I</td>
<td>Noninverting signal input</td>
</tr>
<tr>
<td>4</td>
<td>SET</td>
<td>I</td>
<td>Input for gain setting; inverting input</td>
</tr>
<tr>
<td>5</td>
<td>IMON</td>
<td>O</td>
<td>Current monitor output</td>
</tr>
<tr>
<td>6</td>
<td>IAOUT</td>
<td>O</td>
<td>Instrumentation amplifier signal output</td>
</tr>
<tr>
<td>7</td>
<td>IRA–</td>
<td>I</td>
<td>Instrumentation amplifier inverting input</td>
</tr>
<tr>
<td>8</td>
<td>IRA+</td>
<td>I</td>
<td>Instrumentation amplifier noninverting input</td>
</tr>
<tr>
<td>9</td>
<td>RG1</td>
<td>I</td>
<td>Instrumentation amplifier gain resistor</td>
</tr>
<tr>
<td>10</td>
<td>RG2</td>
<td>I</td>
<td>Instrumentation amplifier gain resistor</td>
</tr>
<tr>
<td>11</td>
<td>V–</td>
<td>-</td>
<td>Negative power supply</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>-</td>
<td>No internal connection</td>
</tr>
<tr>
<td>13</td>
<td>DRV</td>
<td>O</td>
<td>Operational amplifier output</td>
</tr>
<tr>
<td>14</td>
<td>NC</td>
<td>-</td>
<td>No internal connection</td>
</tr>
<tr>
<td>15</td>
<td>V+</td>
<td>-</td>
<td>Positive power supply</td>
</tr>
<tr>
<td>16</td>
<td>DGND</td>
<td>-</td>
<td>Ground for digital I/O</td>
</tr>
<tr>
<td>17</td>
<td>EF_CM</td>
<td>O</td>
<td>Error flag for common mode over range, active low</td>
</tr>
<tr>
<td>18</td>
<td>EF_LD</td>
<td>O</td>
<td>Error flag for load error, active low</td>
</tr>
<tr>
<td>19</td>
<td>EF_OT</td>
<td>O</td>
<td>Error flag for over temperature, active low</td>
</tr>
<tr>
<td>20</td>
<td>OD</td>
<td>I</td>
<td>Output disable, disabled low</td>
</tr>
<tr>
<td>Pad</td>
<td>Exposed Pad</td>
<td>-</td>
<td>Exposed thermal pad must be connected to V–</td>
</tr>
</tbody>
</table>

Exposed Pad
Exposed thermal pad must be connected to V–
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{\text{SP}})</td>
<td>+44</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Signal input terminals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage(^{(2)})</td>
<td>((V-) - 0.5)</td>
<td>((V+) + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Current(^{(2)})</td>
<td>±25</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>DGND</td>
<td>±25</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output short circuit(^{(3)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>−55</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>−55</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{\text{stg}})</td>
<td>−55</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be current limited. DRV pin allows a peak current of 50 mA. See the Output Protection section in Application and Implementation.

(3) See Driver Output Disable in Application and Implementation for thermal protection.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{ESD}})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified temperature range</td>
<td>−40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>−55</td>
<td>125(^{(1)})</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) EFO\(_T\) not connected with OD.

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>XTR305 RGW (VQFN)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient thermal resistance (R_{\text{JA}})</td>
<td>32.9</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance (R_{\text{JC(top)}})</td>
<td>25.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance (R_{\text{JB}})</td>
<td>12.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter (\psi_{\text{JT}})</td>
<td>0.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter (\psi_{\text{JB}})</td>
<td>12.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-case (bottom) thermal resistance (R_{\text{JC(bot)}})</td>
<td>3.1</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics: Voltage Output Mode

All specifications at $T_A = 25^\circ C$, $V_S = \pm 20 \text{ V}$, $R_{LOAD} = 800 \text{ } \Omega$, $R_{SET} = 2 \text{ } k\Omega$, $R_{OS} = 2 \text{ } k\Omega$, $V_{REF} = 4 \text{ V}$, $R_{GAIN} = 10 \text{ } k\Omega$, input signal span 0 V to 4 V, and $C_C = 100 \text{ pF}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Offset voltage, RT1</td>
<td>±0.4</td>
<td>±2.5</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>dV_{OS}/dT</td>
<td>Offset voltage vs temperature, $T_A = -40^\circ C$ to $85^\circ C$</td>
<td>±1.6</td>
<td>±10</td>
<td>μV/°C</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Offset voltage vs power supply, $V_S = \pm 5 \text{ V}$ to $\pm 22 \text{ V}$</td>
<td>±0.2</td>
<td>±10</td>
<td>μV/V</td>
<td></td>
</tr>
</tbody>
</table>

INPUT VOLTAGE RANGE

Nominal setup for ±10-V output

| Input voltage for linear operation | (V−) + 3 | (V+) − 3 | V |

NOISE

Voltage noise, $f = 0.1 \text{ Hz}$ to 10 Hz, RT1

| e_n | Voltage noise density, $f = 1 \text{ kHz}$, RT1 | 40 | nV/√Hz |

OUTPUT

Voltage output swing from rail, $I_{DRV} \leq 15 \text{ mA}$, $T_A = -40^\circ C$ to $85^\circ C$

Gain nonlinearity	± 0.01	± 0.2	%FS		
Gain nonlinearity vs temperature, $T_A = -40^\circ C$ to $85^\circ C$	± 0.1	± 1	ppm/°C		
I_G	Gain error	± 0.04	± 0.2	%FS	
Gain error vs temperature, $T_A = -40^\circ C$ to $85^\circ C$	± 0.2	± 1	ppm/°C		
Output impedance, dV_{DRV}/dI_{DRV}	7	mΩ			
Output leakage current while output disabled, OD pin = L(1), $T_A = -40^\circ C$ to $85^\circ C$	30	mA			
I_{SC}	Short-circuit current, $T_A = -40^\circ C$ to $85^\circ C$	±15	±20	±24	mA
C_{LOAD}	Capacitive load drive, $C_C = 10 \text{ nF}$, $R_C = 15\text{(2)}$	1	μF		
Rejection of voltage difference between GND1 and GND2, RTO	130	dB			

FREQUENCY RESPONSE

Bandwidth(3)	-3 dB, $G = 5$	300	kHz	
SR	Slew rate(2)	$C_C = 10 \text{ nF}$, $C_{LOAD} = 1 \text{ μF}$, $R_C = 15 \text{ Ω}$	0.015	V/μs
Setting time (2)(4), 0.1%, small signal	$V_{DRV} = \pm 1 \text{ V}$	8	μs	
Overload recovery time	50% overdrive	12	μs	

(1) Output leakage includes input bias current of INA.

(2) Refer to Driving Capacitive Loads and Loop Compensation section in Application and Implementation.

(3) Small signal with no capacitive load.

(4) $8 \mu s$ plus number of chopping periods. See Application and Implementation, Internal Current Sources, Switching Noise, and Settling Time section.
6.6 Electrical Characteristics: Current Output Mode

All specifications at \(T_A = 25^\circ C \), \(V_S = \pm 20 \text{ V} \), \(R_{LOAD} = 800 \Omega \), \(R_{SET} = 2 \text{ k}\Omega \), \(R_{OS} = 2 \text{ k}\Omega \), \(V_{REF} = 4 \text{ V} \), input signal span 0 V to 4 V, and \(C_C = 100 \text{ pF} \), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Input offset voltage</td>
<td>Output current < 1 (\mu A)</td>
<td>(\pm 0.4)</td>
<td>(\pm 2.5)</td>
<td>mV</td>
</tr>
<tr>
<td>(dV_{OS}/dT)</td>
<td>Input offset voltage vs temperature</td>
<td></td>
<td>(\pm 1.5)</td>
<td>(\pm 10)</td>
<td>(\mu V/^\circ C)</td>
</tr>
<tr>
<td>PSRR</td>
<td>Input offset voltage vs power supply</td>
<td>(V_S = \pm 5 \text{ V}) to (\pm 22 \text{ V})</td>
<td>(\pm 0.2)</td>
<td>(\pm 10)</td>
<td>(\mu V/V)</td>
</tr>
</tbody>
</table>

INPUT VOLTAGE RANGE

Nominal setup for \(\pm 20\text{-mA} \) output

Maximum input voltage for linear operation

\[(V-) + 3 \quad (V+) - 3 \quad \text{V} \]

NOISE

Voltage noise, \(f = 0.1\text{Hz} \) to \(10\text{Hz} \), \(\text{RTI} \)

\(e_n \) Voltage noise density, \(f = 1\text{kHz} \), \(\text{RTI} \)

\(e_n \) Voltage noise density, \(f = 1\text{kHz} \), \(\text{RTI} \)

\(33 \text{ nV}/\sqrt{\text{Hz}} \)

OUTPUT

Compliance voltage swing from rail

\(I_{DRV} = \pm 24 \text{ mA} \)

\((V-) + 3 \quad (V+) - 3 \quad \text{V} \)

Output conductance \((dI_{DRV}/dV_{DRV}) \)

\(dV_{DRV} = \pm 15 \text{ V}, \quad dI_{DRV} = \pm 24 \text{ mA} \)

0.7 \(\mu A/\text{V} \)

Transconductance

See transfer function in Figure 36

Gain error

\(I_{DRV} = \pm 24 \text{ mA} \)

\(\pm 0.04 \quad \pm 0.2 \quad %\text{FS} \)

Gain error vs temperature

\(I_{DRV} = \pm 24 \text{ mA} \)

\(\pm 3.6 \quad \pm 10 \quad \text{ppm}/^\circ C \)

\(I_B \) Linearity error

\(I_{DRV} = \pm 24 \text{ mA} \)

\(\pm 0.01 \quad \pm 0.2 \quad %\text{FS} \)

\(I_B \) Linearity error vs temperature

\(I_{DRV} = \pm 24 \text{ mA} \)

\(\pm 1.5 \quad \pm 10 \quad \text{ppm}/^\circ C \)

Output leakage current while output disabled

OD pin = L

0.6 \(\text{nA} \)

\(I_{SC} \) Short-circuit current

\(\pm 24.5 \quad \pm 32 \quad \pm 38.5 \quad \text{mA} \)

\(C_{LOAD} \) Capacitive load drive \(^{(1)(2)}\)

1 \(\mu F \)

FREQUENCY RESPONSE

Bandwidth

\(-3 \text{ dB} \)

160 \(\text{kHz} \)

SR Slew rate \(^{(2)}\)

1.3 \(\text{mA}/\mu \text{s} \)

Settling time \(^{(2)(3)}\), 0.1%, Small Signal

\(I_{DRV} = \pm 2 \text{ mA} \)

8 \(\mu \text{s} \)

Overload recovery time

\(C_{LOAD} = 0.50\% \) overdrive

1 \(\mu \text{s} \)

\(^{(1)}\) Refer to Driving Capacitive Loads and Loop Compensation section in Application and Implementation.

\(^{(2)}\) With capacitive load, the slew rate can be limited by the short circuit current and the load error flag can trigger during slewing.

\(^{(3)}\) 8 \(\mu \text{s} \) plus number of chopping periods. See Application and Implementation, Internal Current Sources, Switching Noise, and Settling Time section.
6.7 Electrical Characteristics: Operational Amplifier (OPA)

All specifications at $T_A = 25°C$, $V_S = ±20$ V, and $R_{LOAD} = 800 \, Ω$, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS} Offset voltage, RTI</td>
<td>$I_{DRV} = 0$ A</td>
<td>±0.4</td>
<td>±2.5</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>dV_{OS}/dT Offset voltage drift</td>
<td>$T_A = –40°C$ to $85°C$</td>
<td>±1.5</td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>PSRR</td>
<td>Offset voltage vs power supply</td>
<td>$V_S = ±5$ V to ±22 V</td>
<td>±0.2</td>
<td>±1.0</td>
<td>μV/V</td>
</tr>
</tbody>
</table>

INPUT VOLTAGE RANGE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CM}</td>
<td>Common-mode voltage range</td>
<td>$(V−) + 3$</td>
<td>$(V+) − 3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>$(V−) + 3 V < V_{CM} < (V+) − 3 V$</td>
<td>95</td>
<td>126</td>
<td>dB</td>
</tr>
</tbody>
</table>

INPUT BIAS CURRENT

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I_B Input bias current</td>
<td></td>
<td>±20</td>
<td>±35</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_{OS} Input offset current</td>
<td></td>
<td>±0.3</td>
<td>±10</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

INPUT IMPEDANCE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential</td>
<td>$10^9 \parallel 5 , Ω \parallel pF$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-mode</td>
<td>$10^9 \parallel 5 , Ω \parallel pF$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPEN-LOOP GAIN

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{OL} Open-loop voltage gain</td>
<td>$(V−) + 3 V < V_{DRV} < (V+) − 3 V, $ $I_{DRV} = ±24$ mA</td>
<td>95</td>
<td>126</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

OUTPUT

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage output swing from rail</td>
<td>$I_{DRV} = ±24$ mA</td>
<td>$(V−) + 3$</td>
<td>$(V+) − 3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{LIMIT} Short-circuit current</td>
<td>$M2 = high$</td>
<td>±25.5</td>
<td>±32</td>
<td>±38.5</td>
<td>mA</td>
</tr>
<tr>
<td>I_{LIMIT} M2 = low</td>
<td>$±16$</td>
<td>±20</td>
<td>±24</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{LEAK,DRV}$ Output leakage current while output disabled</td>
<td>OD pin = L</td>
<td>10</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
</tbody>
</table>

FREQUENCY RESPONSE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GBW Gain-bandwidth product</td>
<td>$G = 1$</td>
<td>2</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>SR Slew rate</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>V/μs</td>
</tr>
</tbody>
</table>
6.8 Electrical Characteristics: Instrumentation Amplifier (IA)

All specifications at $T_A = 25^\circ C$, $V_S = \pm 20$ V, $R_{IA} = 2$ kΩ, and $R_{GAIN} = 2$ kΩ, unless otherwise noted. See Figure 37.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Offset voltage, RTI $I_{DRV} = 0$ A</td>
<td>±0.7</td>
<td>±2.7</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>dV_{OS}/dT</td>
<td>Offset voltage vs temperature $T_A = -40^\circ C$ to $85^\circ C$</td>
<td>±2.4</td>
<td>±10</td>
<td>μV/$^\circ C$</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Offset voltage vs power supply $V_S = \pm 5$ V to ± 22 V</td>
<td>±0.8</td>
<td>±10</td>
<td>μV/V</td>
<td></td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input voltage range $(V-) + 3$ $(V+) - 3$</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio RTI</td>
<td>100</td>
<td>130</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>INPUT BIAS CURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_B</td>
<td>Input bias current</td>
<td>±20</td>
<td>±35</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input offset current</td>
<td>±1</td>
<td>±10</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>INPUT IMPEDANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential</td>
<td></td>
<td>10^5</td>
<td></td>
<td>5</td>
<td>Ω</td>
</tr>
<tr>
<td>Common-mode</td>
<td></td>
<td>10^5</td>
<td></td>
<td>5</td>
<td>Ω</td>
</tr>
<tr>
<td>**TRANSCONDUCTANCE (Gain)$^{(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transconductance error $I_{AOUT} = \pm 2.4$ mA, $(V-) + 3$ V < $V_{IAOUT} < (V+) - 3$ V</td>
<td>±0.04</td>
<td>±0.1</td>
<td>%FS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transconductance error vs temperature $T_A = -40^\circ C$ to $85^\circ C$</td>
<td>±0.2</td>
<td></td>
<td>ppm/$^\circ C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linearity error $(V-) + 3$ V < $V_{IAOUT} < (V+) - 3$ V</td>
<td>±0.01</td>
<td>±0.1</td>
<td>%FS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input bias current to G1, G2</td>
<td>±20</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset current to G1, G2$^{(2)}$</td>
<td>±1</td>
<td></td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output swing to the rail $I_{AOUT} = \pm 2.4$ mA $(V-) + 3$ $(V+) - 3$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output impedance $I_{AOUT} = \pm 2.4$ mA</td>
<td>600</td>
<td></td>
<td>mΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LIMIT}</td>
<td>Short-circuit current M2 = High</td>
<td>±7.2</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>M2 = Low</td>
<td>±4.5</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-bandwidth product $G = 1$, $R_{GAIN} = 10$ kΩ, $R_{IA} = 5$ kΩ</td>
<td>1</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate $G = 1$, $R_{GAIN} = 10$ kΩ, $R_{IA} = 5$ kΩ</td>
<td>1</td>
<td></td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td>Settling time$^{(3)}$, 0.1% $I_{AOUT} = \pm 40$ μA, $R_{GAIN} = 10$ kΩ, $R_{IA} = 5$ kΩ, $C_L = 100$ pF</td>
<td>6</td>
<td></td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overload recovery time, 50% $R_{GAIN} = 10$ kΩ, $R_{IA} = 15$ kΩ, $C_L = 100$ pF</td>
<td>10</td>
<td></td>
<td>μs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ Use equation: $I_{AOUT} = 2 \cdot (I_{B\text{IN}} - I_{B\text{IN}-}) / R_{GAIN}$

$^{(2)}$ See typical characteristics curve (Figure 3).

$^{(3)}$ 6 μs plus number of chopping periods. See Application and Implementation, Internal Current Sources, Switching Noise, and Settling Time.
6.9 Electrical Characteristics: Current Monitor

All specifications at \(T_A = 25^\circ\text{C} \) and \(V_S = \pm 20 \text{ V} \), unless otherwise noted. See Figure 37.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{OS}) Offset current</td>
<td>(I_{DRV} = 0 \text{ A})</td>
<td>(\pm 30)</td>
<td>(\pm 100)</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>(\frac{di_{OS}}{dT}) Offset current drift</td>
<td>(T_A = -40^\circ\text{C}) to (85^\circ\text{C})</td>
<td>(\pm 0.05)</td>
<td>nA/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR Offset current vs power supply</td>
<td>(V_S = \pm 5 \text{ V}) to (\pm 22 \text{ V})</td>
<td>(\pm 0.1)</td>
<td>(\pm 10)</td>
<td>nA/V</td>
<td></td>
</tr>
<tr>
<td>Monitor output swing to the rail</td>
<td>(I_{MON} = \pm 2.4 \text{ mA})</td>
<td></td>
<td>((V-) + 3)</td>
<td>((V+) - 3)</td>
<td>V</td>
</tr>
<tr>
<td>Monitor output impedance</td>
<td>(I_{MON} = \pm 2.4 \text{ mA})</td>
<td>200</td>
<td></td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>MONITOR CURRENT GAIN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current gain error</td>
<td>(I_{DRV} = \pm 24 \text{ mA})</td>
<td>(\pm 0.04)</td>
<td>(\pm 0.12)</td>
<td>%FS</td>
<td></td>
</tr>
<tr>
<td>Current gain error vs temperature</td>
<td>(I_{DRV} = \pm 24 \text{ mA}, T_A = -40^\circ\text{C}) to (85^\circ\text{C})</td>
<td>(\pm 3.6)</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linearity error</td>
<td>(I_{DRV} = \pm 24 \text{ mA})</td>
<td>(\pm 0.01)</td>
<td>(\pm 0.1)</td>
<td>%FS</td>
<td></td>
</tr>
<tr>
<td>Linearity error vs temperature</td>
<td>(I_{DRV} = \pm 24 \text{ mA}, T_A = -40^\circ\text{C}) to (85^\circ\text{C})</td>
<td>(\pm 1.5)</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Use equation: \(I_{MON} = I_{DRV} / 10 \)

6.10 Electrical Characteristics: Power and Digital

All specifications at \(T_A = 25^\circ\text{C} \) and \(V_S = \pm 20 \text{ V} \), unless otherwise noted. See Figure 37.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_S) Specified voltage range</td>
<td></td>
<td>(\pm 5)</td>
<td>(\pm 20)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating voltage range</td>
<td></td>
<td>(\pm 5)</td>
<td>(\pm 22)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_Q) Quiescent current</td>
<td>(I_{DRV} = I_{A_{OUT}} = 0 \text{ A})</td>
<td>1.8</td>
<td>2.3</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Quiescent current over temperature</td>
<td>(T_A = -40^\circ\text{C}) to (85^\circ\text{C})</td>
<td>2.8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL FLAG (EF_{OT}) OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm (EF_{OT} pin LOW)</td>
<td></td>
<td>140</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Return to normal operation (EF_{OT} pin HIGH)</td>
<td></td>
<td>125</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>DIGITAL INPUTS (M1, M2, (\overline{OD}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_L) low-level input voltage</td>
<td></td>
<td>(\leq 0.8)</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_H) high-level input voltage</td>
<td></td>
<td>(> 1.4)</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td></td>
<td>(\pm 1)</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>DIGITAL OUTPUTS (EF_{LD}, EF_{CM}, EF_{OT})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OH}) high-level leakage current (open-drain)</td>
<td>(I_{OL} = 5 \text{ mA})</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OL}) low-level output voltage</td>
<td>(I_{OL} = 2.8 \text{ mA})</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIGITAL GROUND PIN(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current input</td>
<td>(M1 = M2 = L, \overline{OD} = H), all digital outputs H</td>
<td></td>
<td>(-25)</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

(1) Use equation: \((V-) \leq DGND \leq (V+) - 7 \text{ V}\)
6.11 Typical Characteristics

at $T_A = 25^\circ C$ and $V_+ = \pm 20$ V, unless otherwise noted

Figure 1. Quiescent Current vs Temperature

Figure 2. Quiescent Current vs Supply Voltage

Figure 3. Input Bias Current vs Temperature

Figure 4. OPA Output Swing to Rail vs Temperature

Figure 5. OPA Gain and Phase vs Frequency

Figure 6. IA Gain and Phase vs Frequency
Typical Characteristics (continued)

at $T_A = 25^\circ C$ and $V_+ = \pm 20$ V, unless otherwise noted

Figure 7. OPA CMRR and PSRR vs Frequency

![Graph of CMRR and PSRR vs Frequency](image1)

Figure 8. IA CMRR and PSRR vs Frequency

![Graph of CMRR and PSRR vs Frequency](image2)

Figure 9. Small-Signal Step Response

Current Mode

![Graph of Small-Signal Step Response](image3)

Figure 10. Large-Signal Step Response

Current Mode

![Graph of Large-Signal Step Response](image4)

Figure 11. Small-Signal Step Response

Voltage Mode

![Graph of Small-Signal Step Response](image5)

Figure 12. Large-Signal Step Response

Voltage Mode

![Graph of Large-Signal Step Response](image6)
Typical Characteristics (continued)

at $T_A = 25^\circ C$ and $V_+ = \pm 20 \text{ V}$, unless otherwise noted

<table>
<thead>
<tr>
<th>G</th>
<th>Frequency (Hz)</th>
<th>Input-Referred Noise (nV/√Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$100k, 10k, 1k$</td>
<td>10, 100, 1k</td>
</tr>
<tr>
<td>10</td>
<td>$100k, 10k, 1k$</td>
<td>100, 1000, 10k</td>
</tr>
<tr>
<td>20</td>
<td>$100k, 10k, 1k$</td>
<td>1000, 10k00, 100k</td>
</tr>
</tbody>
</table>

Figure 13. Input-Referred Noise Spectrum

Voltage Output Mode

Figure 14. Input-Referred 0.1-Hz to 10-Hz Noise

Voltage Output Mode

Figure 15. Input-Referred Noise Spectrum

Current Output Mode

Figure 16. Input-Referred 0.1-Hz to 10-Hz Noise

Current Output Mode

Figure 17. IA Input-Referred Noise Spectrum

Figure 18. IA Input-Referred 0.1-Hz to 10-Hz Noise
Typical Characteristics (continued)

at $T_A = 25^\circ C$ and $V_+ = \pm 20$ V, unless otherwise noted

Figure 19. OPA Offset Voltage Distribution

Figure 20. IA Offset Voltage Distribution

Figure 21. OPA Offset Voltage Drift Distribution

Figure 22. IA Offset Voltage Drift Distribution

Figure 23. Voltage Mode Gain Error Distribution

Figure 24. Current Mode Gain Error Distribution
Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$ and $V_+ = \pm 20\ \text{V}$, unless otherwise noted

Figure 25. Voltage Mode Nonlinearity Distribution

Figure 26. Current Mode Nonlinearity Distribution

Figure 27. Voltage Mode Gain Error Drift Distribution

Figure 28. Current Mode Gain Error Drift Distribution

Figure 29. Voltage Mode Nonlinearity Drift Distribution

Figure 30. Current Mode Nonlinearity Drift Distribution
Typical Characteristics (continued)

at $T_A = 25^\circ$C and $V_+ = \pm 20$ V, unless otherwise noted

![Figure 31. Positive Current Limit vs Temperature](image1)

![Figure 32. Negative Current Limit vs Temperature](image2)

![Figure 33. Nonlinearity vs Output Current](image3)

![Figure 34. Nonlinearity vs Output Current](image4)

(±24-mA End Point Calibration)

(±20-mA End Point Calibration)
7 Detailed Description

7.1 Overview
Built on a robust high-voltage BiCMOS process, the XTR305 is designed to interface the 5-V or 3-V supply domain used for processors, signal converters, and amplifiers to the high-voltage and high-current industrial signal environment. The device is specified for up to ±20-V supply, but can also be powered asymmetrically (for example, +24 V and −5 V). It is designed to allow insertion of external circuit protection elements and drive large capacitive loads.

7.2 Functional Block Diagrams

![Figure 35. Standard Circuit for Voltage Output Mode](image-url)
Functional Block Diagrams (continued)

Transfer Function:
\[
i_{\text{OUT}} = 10 \left(\frac{V_{\text{IN}}}{R_{\text{SET}}} + \frac{V_{\text{IN}} - V_{\text{REF}}}{R_{\text{OS}}} \right)
\]

Figure 36. Standard Circuit for Current Output Mode
7.3 Feature Description

7.3.1 Functional Features

The XTR305 provides two basic functional blocks: an instrumentation amplifier (IA) and a driver that is a unique operational amplifier (OPA) for current or voltage output. This combination represents an analog output stage which can be digitally configured to provide either current or voltage output to the same terminal pin. Alternatively, it can be configured for independent measurement channels.

Three open collector error signals are provided to indicate output related errors such as overcurrent or open-load (EF_{LD}) or exceeding the common-mode input range at the IA inputs (EF_{CM}). An overtemperature flag (EF_{OT}) can be used to control output disable to protect the circuit. The monitor outputs (I_{MON} and IA_{OUT}) and the error flags offer optimal testability during operation and configuration. The I_{MON} output represents the current flowing into the load in voltage output mode, while the IA_{OUT} represents the voltage across the connectors in current output mode. Both monitor outputs can be connected together when used in current or voltage output mode because the monitor signals are multiplexed accordingly.

7.3.2 Current Monitor

In current output mode (M2 = high), the XTR305 provides high output impedance. A precision current mirror generates an exact 1/10th copy of the output current and this current is either routed to the summing junction of the OPA to close the feedback loop (in the current output mode) or to the I_{MON} pin for output current monitoring in other operating modes.

The high accuracy and stability of this current split results from a cycling chopper technique. This design eliminates the need for a precise shunt resistor or a precise shunt voltage measurement, which would require high common-mode rejection performance.
Feature Description (continued)

During a saturation condition of the DRV output (the error flag is active), the monitor output (I_{MON}) shows a current peak because the loop opens. Glitches from the current mirror chopper appear during this time in the monitor signal. This part of the signal cannot be used for measurement.

7.3.3 Error Flags

The XTR305 is designed for testability of its proper function and allows observation of the conditions at the load connection without disrupting service.

If the output signal is not in accordance to the transfer function, an error flag is activated (limited by the dynamic response capabilities). These error flags are in addition to the monitor outputs, I_{MON} and I_{AOUT}, which allow the momentary output current (in voltage mode) or output voltage (in current mode) to be read back.

This combination of error flag and monitor signal allows easy observation of the XTR305 for function and working condition, providing the basis for not only remote control, but also for remote diagnosis.

All error flags of the XTR305 have open collector outputs with a weak pullup of approximately 1 μA to an internal 5 V. External pullup resistors to the logic voltage are required when driving 3-V or 5-V logic.

The output sink current should not exceed 5 mA. This is just enough to directly drive optical-couplers, but a current-limiting resistor is required.

There are three error flags:

1. **IA Common-Mode Over Range (EF\textsubscript{CM})**: goes low as soon as the inputs of the IA reach the limits of the linear operation for the input voltage. This flag shows noise from the saturated current mirrors which can be filtered with a capacitor to GND.

2. **Load Error (EF\textsubscript{LD})**: indicates fault conditions driving voltage or current into the load. In voltage output mode it monitors the voltage limits of the output swing and the current limit condition caused from short or low load resistance. In current output mode it indicates a saturation into the supply rails from a high load resistance or open load.

3. **Overtemperature Flag (EF\textsubscript{OT})**: a digital output that goes low if the chip temperature reaches a temperature of 140°C and resets as soon as it cools down to 125°C. It does not automatically shut down the output; it allows the user system to take action on the situation. If desired, this output can be connected to output disable (OD) which disables the output and therefore removes the source of power. This connection acts like an automatic shut down, but requires a 2.2-kΩ external pullup resistor to safely override the internal current sources. The IA channel is not affected, which allows continuous observation of the voltage at the output.

7.3.4 Power On/Off Glitch

When power is turned on or off, most analog amplifiers generate some glitching of the output because of internal circuit thresholds and capacitive charges. Characteristics of the supply voltage, as well as its rise and fall time, directly influence output glitches. Load resistance and capacitive load also affect the amplitude.

The output disable control (OD) cannot fully suppress glitches during power-on and power-off, but reduces the energy significantly. The glitch consists of a small amount of current and capacitive charge (voltage) that reacts with the resistive and capacitive load. The bias current of the IA inputs that are normally connected to the output also generate a voltage across the load.
Feature Description (continued)

Figure 38 indicates no glitches when transitioning between disable and enable. This measurement is made with a load resistance of 1 kΩ and tested in the circuit configuration of Figure 40.

![Image of circuit configuration](image)

Figure 38. Output Signal During Toggle of OD

When the power is off or with low supply, the output is diode clamped to the momentary supply voltage, but can float while output disabled within those limits unless terminated. Only an external switch (relays or opto-relays) can isolate the output under such conditions. Refer to Figure 39 for an illustration of this configuration. The same consideration applies if low impedance zero output is required, even during power off.

![Image of example](image)

Figure 39. Example for Opto-Relay Output Isolation

7.4 Device Functional Modes

The XTR305 has a three functional modes: voltage output mode as shown in Figure 35, current output mode as shown in Figure 36, and externally configured mode as shown in Figure 37.
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The following sections provide details regarding the typical application of the XTR305 using three different functional modes: voltage output mode as shown in Figure 35, current output mode as shown in Figure 36, and externally configured mode as shown in Figure 37.

8.2 Typical Application

Figure 40. Standard Circuit Configuration

(1) See the **Electrical Characteristics: Power and Digital** and **Digital I/O and Ground Considerations** section for operating limits of DGND.

(2) Connect thermal pad to V-.

Copyright © 2017, Texas Instruments Incorporated
8.2.1 Design Requirements

Consider the following information during XTR305 circuit configuration:

- **Recommended bypassing:** 100 nF or more for supply bypassing at each supply.
- **R\textsubscript{IMON}** can be in the k\(\Omega\) range or short-circuited if not used. Do not leave this current output unconnected — it would saturate the internal current source. The current at this I\textsubscript{MON} output is I\textsubscript{DRV} / 10. Therefore, V\textsubscript{IMON} = R\textsubscript{IMON} (I\textsubscript{DRV} / 10).
- R\textsubscript{3} is not required but can match R\textsubscript{SET} (or R\textsubscript{SET}||R\textsubscript{OS}) to compensate for the bias current.
- R\textsubscript{IA} can be short-circuited if not used. Do not leave this current output unconnected. R\textsubscript{GAIN} is selected to 10 k\(\Omega\) to match the output of 10 V with 20 mA for the equal input signal.
- R\textsubscript{C} ensures stability for unknown load conditions and limits the current into the internal protection diodes. C\textsubscript{4} helps protect the device. Overvoltage clamp diodes (standard 1N4002) might be necessary to protect the output.
- R\textsubscript{6}, R\textsubscript{7}, and C\textsubscript{5} protect the IA.
- R\textsubscript{LOAD} and C\textsubscript{LOAD} represent the load resistance and load capacitance.
- R\textsubscript{SET} defines the transfer gain. It can be split to allow a signal offset and, therefore, allow a 5-V single-supply digital-to-analog converter (DAC) to control a ±10-V or ±20-mA output signal.

The XTR305 can be used with asymmetric supply voltages; however, the minimum negative supply voltage must be equal to or more negative than −3 V (typically −5 V). This supply value ensures proper control of 0 V and 0 mA with wire resistance, ground offsets, and noise added to the output. For positive output signals, the current requirement from this negative voltage source is less than 5 mA.

GND1 through GND4 must be selected to fulfill specified operating ranges. DGND must be in the range of (V−) ≤ DGND ≤ (V+) − 7 V.

8.2.2 Detailed Design Procedure

8.2.2.1 Voltage Output Mode

In voltage output mode (M1 and M2 are connected low or left unconnected), the feedback loop through the IA provides high impedance remote sensing of the voltage at the destination, compensating the resistance of a protection circuit, switches, wiring, and connector resistance. The output of the IA is a current that is proportional to the input voltage. This current is internally routed to the OPA summing junction through a multiplexer, as shown in Figure 41.

A 1:10 copy of the output current of the OPA can be monitored at the I\textsubscript{MON} pin. This output current and the known output voltage can be used to calculate the load resistance or load power.

During an output short-circuit or an overcurrent condition the XTR305 output current is limited and EF\textsubscript{LD} (load error, active low) flag is activated.
Figure 41. Simplified Voltage Output Mode Configuration

Applications not requiring the remote sense feature can use the OPA in stand-alone operation (M1 = high). In this case, the IA is available as a separate input channel.

The IA gain can be set by two resistors, R_{GAIN} and R_{SET} (Equation 1):

$$V_{OUT} = \frac{R_{GAIN}}{2R_{SET}} V_{IN}$$

or when adding an offset, V_{REF}, to get bidirectional output with a single-ended input shown in Equation 2:

$$V_{OUT} = \frac{R_{GAIN}}{2} \left(\frac{V_{IN}}{R_{SET}} + \frac{V_{IN} - V_{REF}}{R_{DS}} \right)$$

The R_{SET} resistor is also used in current output mode. Therefore, it is useful to define R_{SET} for the current mode, then set the ratio between current and voltage span with R_{GAIN}.

8.2.2.2 Current Output Mode

The XTR305 does not require a shunt resistor for current control because it uses a precise current mirror arrangement.

In current output mode (M1 connected low, or left unconnected and M2 connected high), a precise copy of 1/10th of the output is internally routed back to the summing junction of the OPA through a multiplexer, closing the control loop for the output current.

The OPA driver can deliver more than ±24 mA within a wide output voltage range. An open-output condition or high-impedance load that prevents the flow of the required current activates the EF_{LD} flag and the IA can become overloaded and draw greater than 7-mA saturation current.

While in current output mode, a current (I_{IA}) that is proportional to the voltage at the IA input is routed to IA_{OUT} and can be used to monitor the load voltage. A resistor converts this current into voltage. This arrangement makes level shifting easy.
Alternatively, the IA can be used as an independent monitoring channel. If this output is not used, connect it to GND to maintain proper function of the monitor stage, as shown in Figure 42.

\[
I_{\text{OUT}} = \frac{10}{R_{\text{SET}}} V_{\text{IN}}
\] \hspace{1cm} (3)

or when adding an offset \(V_{\text{REF}} \) to get bidirectional output with a single-ended input shown in Equation 4:

\[
I_{\text{OUT}} = 10 \left(\frac{V_{\text{IN}}}{R_{\text{SET}}} + \frac{V_{\text{IN}} - V_{\text{REF}}}{R_{\text{OS}}} \right)
\] \hspace{1cm} (4)
8.2.2.3 Input Signal Connection

It is possible to drive the XTR305 with a unidirectional input signal and still get a bidirectional output by adding an additional resistor, R_{OS}, and an offset voltage signal, V_{REF}. It can be a mid-point voltage or a signal to shift the output voltage to a desired value.

This design is illustrated in Figure 43a, Figure 43b, and Figure 43c. As with a normal operational amplifier, there are several options for offset-shift circuits. The input can be connected for inverting or noninverting gain. Unlike many op amp input circuits, however, this configuration uses current feedback, which removes the voltage relationship between the noninverting input and output potential because there is no feedback resistor.

The input bias current effect on the offset voltage can be reduced by connecting a resistor in series with the positive input that matches the approximate resistance at the negative input. This resistor placed close to the input pin acts as a damping element and makes the design less sensitive to RF noise. See R_3 in Figure 40.

8.2.2.4 Externally-Configured Mode: OPA and IA

It is possible to use the precision of the operational amplifier (OPA) and instrumentation amplifier (IA) independently from each other by configuring the digital control pins (M1 high). In this mode, the IA output current is routed to IA_{OUT} and the copy of the OPA output current is routed to I_{MON}, as shown in Figure 37.

This mode allows external configuration of the analog signal routing and feedback loop.

The current output IA has high input impedance, low offset voltage and drift, and very high common-mode rejection ratio. An external resistor (R_{IA}) can be used to convert the output current of the IA (I_{IA}) to an output voltage. The gain is given by Equation 5:
\[I_A = \frac{2}{R_{\text{GAIN}}} V_{\text{IN}} \quad \text{or} \quad V_A = \frac{2R_{\text{IA}}}{R_{\text{GAIN}}} V_{\text{IN}} \]

(5)

The OPA provides low drift and high voltage output swing that can be used like a common operational amplifier by connecting a feedback network around it. In this mode, the copy of the output current is available at the \(I_{\text{MON}} \) pin (it includes the current into the feedback network). It provides an output current limit for protection, which can be set between two ranges by \(M_2 \). The error flag indicates an overcurrent condition, as well as indicating driving the output into the supply rails.

Alternatively, the feedback can be closed through the \(I_{\text{MON}} \) pin to create a precise voltage-to-current converter.

8.2.2.5 Driver Output Disable

The OPA output (DRV) can be switched to a high-impedance mode by driving the \(\overline{\text{OD}} \) control pin low. This input can be connected to the overtemperature flag, \(E_{\text{FOT}} \), and a pullup resistor to protect the IC from over-temperature by disconnecting the load.

The output disable mode can be used to sense and measure the voltage at the \(\text{IA} \) input pins without loading from the DRV output. This mode allows testing of any voltage present at the I/O connector. However, consider the bias current of the \(\text{IA} \) input pins.

The digital control inputs, \(M_1 \) and \(M_2 \), set the four operation modes of the XTR305 as shown in Table 1. When \(M_1 \) is asserted low, \(M_2 \) determines voltage or current mode and the corresponding appropriate current limit (\(I_{\text{SC}} \)) setting. When \(M_1 \) is high, the internal feedback connections are opened; \(I_{\text{AOUT}} \) and \(I_{\text{MON}} \) are both connected to the output pins; and \(M_2 \) only determines the current limit (\(I_{\text{SC}} \)) setting.

\(M_1 \) and \(M_2 \) are pulled low internally with 1 \(\mu \)A. Terminate these two pins to avoid noise coupling. Output disable (\(\overline{\text{OD}} \)) is internally pulled high with approximately 1 \(\mu \)A. When connecting \(\overline{\text{OD}} \) to \(E_{\text{FOT}} \), a 2.2-k\(\Omega \) pullup resistor is recommended.

Table 1. Summary of Configuration Modes

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
<th>MODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>(V_{\text{OUT}})</td>
<td>Voltage output mode, (I_{\text{SC}} = 20 \text{ mA})</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>(I_{\text{OUT}})</td>
<td>Current output mode, (I_{\text{SC}} = 32 \text{ mA})</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Ext</td>
<td>(\text{IA}) and (I_{\text{MON}}) on external pins, (I_{\text{SC}} = 20 \text{ mA})</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Ext</td>
<td>(\text{IA}) and (I_{\text{MON}}) on external pins, (I_{\text{SC}} = 32 \text{ mA})</td>
</tr>
</tbody>
</table>

(1) \(\overline{\text{OD}} \) is a control pin independent of \(M_1 \) or \(M_2 \).

8.2.2.6 Driving Capacitive Loads and Loop Compensation

For normal operation, the driver OPA and the \(\text{IA} \) are connected in a closed loop for voltage output. In current output mode, the current copy closes the loop directly.

In current output mode, loop compensation is not critical, even for large capacitive loads. However, in voltage output mode, the capacitive load, together with the source impedance and the impedance of the protection circuit, generates additional phase lag. The \(\text{IA} \) input might also be protected by a low-pass filter that influences phase in the closed loop.

The loop compensation low-pass filter consists of \(C_\text{C} \) and the parallel resistance of \(R_{\text{OS}} \) and \(R_{\text{SET}} \). For loop stability with large capacitive load, the external phase shift has to be added to the OPA phase. With \(C_\text{C} \), the voltage gain of the OPA has to approach zero at the frequency where the total phase approaches \(180^\circ + 135^\circ \).

The best stability for large capacitive loads is provided by adding a small resistor, \(R_\text{C} \) (15 \(\Omega \)). See the Output Protection section.

An empirical method of evaluation is using a square wave input signal and observing the settling after transients. Use small signal amplitudes only—steep signal edges cause excessive current to flow into the capacitive load and may activate the current limit, which hides or prevents oscillation. A small-signal oscillation can be hidden from large capacitive loads, but observing the \(I_{\text{MON}} \) output on an appropriate resistor (use a similar value like \(R_{\text{SET}}||R_{\text{OS}} \)) would indicate stability issues. Note that noise pulses at \(I_{\text{MON}} \) during load (\(E_{\text{FLD}} \) active) are normal and are caused by cycling of the current mirror.
The voltage output mode includes the IA in the loop. An additional low-pass filter in the input reverses the phase and therefore increases the signal bandwidth of the loop, but also increases the delay. Again, loop stability has to be observed. Overloading the IA disconnects the closed loop and the output voltage rails.

8.2.2.7 Internal Current Sources, Switching Noise, and Settling Time

The accuracy of the current output mode and the DC performance of the IA rely on dynamically-matched current mirrors.

Identical current sources are rotated to average out mismatch errors. It can take several clock cycles of the internal 100-kHz oscillator (or a submultiple of that frequency) to reach full accuracy. This may dominate the settling time to the 0.1% accuracy level and can be as much as 100 μs in current output mode or 40 μs in voltage output mode.

A small portion of the switching glitches appear at the DRV output, and also at the \(I_{\text{MON}} \) and \(\text{IA}_{\text{MON}} \) outputs. The standard circuit configuration, with \(R_C \), \(C_4 \), and \(C_C \), which are required for loop compensation and output protection, also helps reduce the noise to negligible levels at the signal output. If necessary, the monitor outputs can be filtered with a shunt capacitor.

8.2.2.8 IA Structure, Voltage Monitor

The instrumentation amplifier has high-impedance NPN transistor inputs that do not load the output signal, which is especially important in current output mode. The output signal is a controlled current that is multiplexed either to the SET pin (to close the voltage output loop) or to \(\text{IA}_{\text{OUT}} \) (for external access).

The principal circuit is shown in Figure 44. The two input buffer amplifiers reproduce the input difference voltage across \(R_{\text{GAIN}} \). The resulting current through this resistor is bidirectionally mirrored to the output. That mirroring results in the transfer function of Equation 6:

\[
I_{\text{IA}} = I_{\text{OUT}} = 2 \frac{(I_{\text{IN}+} - I_{\text{IN}-})}{R_{\text{GAIN}}}
\]

(6)

The accuracy and drift of \(R_{\text{GAIN}} \) defines the accuracy of the voltage to current conversion. The high accuracy and stability of the current mirrors result from a cycling chopper technique.

Figure 44. IA Block Diagram
The output current, \(I_{A\text{OUT}} \), of the instrumentation amplifier is limited to protect the internal circuitry. This current limit has two settings controlled by the state of M2 (see Electrical Characteristics: Instrumentation Amplifier (IA), Short-Circuit Current specification).

NOTE

If \(R_{\text{SET}} \) is too small, the current output limitation of the instrumentation amplifier can disrupt the closed loop of the XTR305 in voltage output mode.

With \(M2 = \text{low} \), the nominal \(R_{\text{GAIN}} \) of 10 k\(\Omega \) allows an input voltage of 20 V\(\text{PP} \), which produces an output current of 4 mA\(\text{PP} \). When using lower resistors for \(R_{\text{GAIN}} \) that can allow higher currents, the IA output current limitation must be taken into account.

8.2.2.9 Digital I/O and Ground Considerations

The XTR305 offers voltage output mode, current output mode, external configuration, and instrumentation mode (voltage input). In addition, the internal feedback mode can be disconnected and external loop connections can be made. These modes are controlled by M1 and M2 (see Table 1). The OD input pin controls enable or disable of the output stage (OD is active low).

The digital I/O is referenced to DGND and signals on this pin must remain within 5 V of the DGND potential. This DGND pin carries the output low-current (sink current) of the logic outputs. DGND can be connected to a potential within the supply voltage but needs to be 8 V below the positive supply. Proper connection avoids current from the digital outputs flowing into the analog ground.

CAUTION

The DGND has normally reverse-biased diodes connected to the supply. Therefore, high and destructive currents could flow if DGND is driven beyond the supply rails by more than a diode forward voltage. *Avoid this condition during power on and power off.*

8.2.2.10 Output Protection

The XTR305 is intended to operate in a harsh industrial environment. Therefore, a robust semiconductor process was chosen for this design. However, some external protection is still required.

The instrumentation amplifier inputs can be protected by external resistors that limit current into the protection cell behind the IC pins, as shown in Figure 45. This cell conducts to the power-supply connection through a diode as soon as the input voltage exceeds the supply voltage. The circuit configuration example shows how to arrange these two external resistors.

The bias current is best cancelled if both resistors are equal. The additional capacitor reduces RF noise in the input signal to the IA.

Figure 45. Current-Limiting Resistors

The load connection to the DRV output must be low impedance; therefore, external protection diodes may be necessary to handle excessive currents, as shown in Figure 46. The internal protection diodes start to conduct earlier than a normal external PN-type diode because they are affected by the higher die temperature. Therefore, either Schottky diodes are required, or an additional resistor (\(R_C \)) can be placed in series with the input. An example of this protection is shown in Figure 46. Assuming the standard diodes limit the voltage to 1.4 V and the internal diodes clamp at 0.7 V, this resistor can limit the current into the internal protection diodes to 50 mA shown in Equation 7:
\[
\frac{(1.4V - 0.7V)}{15\Omega} = 47mA
\] (7)

R_C is also part of the recommended loop compensation. C_4 helps protect the output against RFI and high-voltage spikes.

![Diagram](https://via.placeholder.com/150)

Figure 46. Example for DRV Output Protection

8.2.3 Application Curves

The nonlinearity of the XTR305 when operating in current output mode is shown in **Figure 47** and **Figure 48**.

![Diagram](https://via.placeholder.com/150)

![Diagram](https://via.placeholder.com/150)

Figure 47. Nonlinearity vs Output Current

Figure 48. Nonlinearity vs Output Current

9 Power Supply Recommendations

Built on a robust high-voltage BiCMOS process, the XTR305 is designed to interface the 5-V or 3-V supply domain used for processors, signal converters, and amplifiers to the high-voltage and high-current industrial signal environment. The device is specified for up to ±20-V supply, but can also be powered asymmetrically (for example, +24 V and −5 V). XTR305 is designed to allow insertion of external circuit protection elements and drive large capacitive loads.
10 Layout

10.1 Layout Guidelines

Supply bypass capacitors must be close to the package and connected with low-impedance conductors. Avoid noise coupled into \(R_{\text{GAIN}} \), and observe wiring resistance. For thermal management, see the VQFN Package and Heat Sinking section.

Layout for the XTR305 is not critical; however, its internal current chopping works best with good (low dynamic impedance) supply decoupling. Therefore, avoid through-hole contacts in the connection to the bypass capacitors or use multiple through-hole contacts. Switching noise from power supplies should be filtered enough to reduce influence on the circuit. Small resistors (2-\(\Omega \), for example) or damping inductors in series with the supply connection (between the DC-DC converter and the XTR circuit) act as a decoupling filter together with the bypass capacitor as shown in Figure 49.

Resistors connected close to the input pins help dampen environmental noise coupled into conductor traces. Therefore, place the OPA input- and IA input-related resistors close to the package. Also, avoid additional wire resistance in series to \(R_{\text{SET}} \), \(R_{\text{OS}} \), and \(R_{\text{GAIN}} \) (observe the reliability of the through-hole contacts), because this resistance could produce gain and offset error as well as drift; 1 \(\Omega \) is already 0.1% of the 1-k\(\Omega \) resistor.

The exposed lead-frame die pad on the bottom of the package must be connected to \(V^- \), pin 11 (see the VQFN Package and Heat Sinking section for more details).

![Figure 49. Suggested Supply Decoupling for Noisy Chopper-Type Supplies](image)

10.2 Layout Example

A detailed layout example can be found in the technical document XTR300EVM. This document is available for download at www.ti.com. The example layout is also shown in Figure 50.
10.3 VQFN Package and Heat Sinking

The XTR305 is available in a VQFN package. This leadless, near-chip-scale package maximizes board space and enhances thermal and electrical characteristics of the device through an exposed thermal pad.

Packages with an exposed thermal pad are specifically designed to provide excellent power dissipation, but printed circuit board (PCB) layout greatly influences overall heat dissipation. The thermal resistance from junction-to-ambient (θ_{JA}) is specified for the packages with the exposed thermal pad soldered to a normalized PCB, as described in the technical brief *PowerPAD™ Thermally-Enhanced Package*. See also *EIA/JEDEC Specifications JESD51-0 to 7, VQFN/SON PCB Attachment*, and *Quad Flatpack No-Lead Logic Packages*. These documents are available for download at www.ti.com.

NOTE

All thermal models have an accuracy variation of ±20%.

Component population, layout of traces, layers, and air flow strongly influence heat dissipation. Worst-case load conditions should be tested in the real environment to ensure proper thermal conditions. Minimize thermal stress for proper long-term operation with a junction temperature well below +125°C.

The exposed lead-frame die pad on the bottom of the package must be connected to the V– pin.
10.4 Power Dissipation

Power dissipation depends on power supply, signal, and load conditions. It is dominated by the power dissipation of the output transistors of the OPA. For DC signals, power dissipation is equal to the product of output current, \(I_{\text{OUT}} \), and the output voltage across the conducting output transistor (\(V_S - V_{\text{OUT}} \)).

It is very important to note that the temperature protection does not shut the device down in overtemperature conditions, unless the EF\(_{\text{OT}}\) pin is connected to the output enable pin OD; see the Driver Output Disable section.

The power that can be safely dissipated in the package is related to the ambient temperature and the heat sink design and conditions. The VQFN package with an exposed thermal pad is specifically designed to provide excellent power dissipation, but board layout greatly influences the heat dissipation.

To appropriately determine the required heat sink area, calculate required power dissipation; also consider the relationship between power dissipation and thermal resistance to minimize overheat conditions and allow for reliable long-term operation.

The heat-sinking efficiency can be tested using the EF\(_{\text{OT}}\) output signal. This output goes low at nominally 140°C junction temperature (assume 6% tolerance). With full power dissipation (for example, maximum current into a 0-\(\Omega \) load), the ambient temperature can be slowly raised until the OT flag goes low. This flag would indicate the minimum heat sinking for the usable operation condition.

The recommended landing pattern for the VQFN package is shown at the end of this data sheet.
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation
For related documentation see the following:
- *PowerPAD™ Thermally-Enhanced Package*
- *EIA/JEDEC Specifications JESD51-0 to 7, VQFN/SON PCB Attachment*
- *Quad Flatpack No-Lead Logic Packages*

11.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's *Terms of Use.*

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks
PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR305IRGWR</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGW</td>
<td>20</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-55 to 125</td>
<td>XTR 305</td>
<td></td>
</tr>
<tr>
<td>XTR305IRGWT</td>
<td>ACTIVE</td>
<td>VQFN</td>
<td>RGW</td>
<td>20</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-55 to 125</td>
<td>XTR 305</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5–1994.
B. This drawing is subject to change without notice.
C. Quad Flat pack, No-leads (QFN) package configuration
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO–220.
THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated