1 Functional Errata Revision History

Errata impacting device’s operation, function or parametrics.

✓ The check mark indicates that the issue is present in the specified revision.

<table>
<thead>
<tr>
<th>Errata Number</th>
<th>Rev B</th>
<th>Rev A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC25</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ADC42</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ADC69</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>COMP10</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CPU37</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CPU46</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CPU47</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DAC5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DMA4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DMA7</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DMA10</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM11</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM12</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM14</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM15</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM18</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM20</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PMM26</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PORT15</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PORT19</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PORT26</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RTC16</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UCS11</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USB11</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>USB12</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USCI26</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USCI34</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USCI35</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USCI39</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USCI40</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
2 Preprogrammed Software Errata Revision History

Errata impacting pre-programmed software into the silicon by Texas Instruments.
✓ The check mark indicates that the issue is present in the specified revision.

<table>
<thead>
<tr>
<th>Errata Number</th>
<th>Rev B</th>
<th>Rev A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSL14</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

3 Debug only Errata Revision History

Errata only impacting debug operation.
✓ The check mark indicates that the issue is present in the specified revision.

<table>
<thead>
<tr>
<th>Errata Number</th>
<th>Rev B</th>
<th>Rev A</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEM16</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EEM17</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EEM19</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EEM23</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JTAG26</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JTAG27</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

4 Fixed by Compiler Errata Revision History

Errata completely resolved by compiler workaround. Refer to specific erratum for IDE and compiler versions with workaround.
✓ The check mark indicates that the issue is present in the specified revision.

<table>
<thead>
<tr>
<th>Errata Number</th>
<th>Rev B</th>
<th>Rev A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU21</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CPU22</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CPU40</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Refer to the following MSP430 compiler documentation for more details about the CPU bugs workarounds.

TI MSP430 Compiler Tools (Code Composer Studio IDE)
- MSP430 Optimizing C/C++ Compiler: Check the --silicon_errata option
- MSP430 Assembly Language Tools

MSP430 GNU Compiler (MSP430-GCC)
- MSP430 GCC Options: Check -msilicon-errata= and -msilicon-errata-warn= options
- MSP430 GCC User's Guide

IAR Embedded Workbench
- IAR workarounds for msp430 hardware issues
5 Package Markings

PZ100
LQFP (PZ) 100 Pin

![PZ100 Markings](image)

ZQW113
BGA (ZQW), 113 Pin

![ZQW113 Markings](image)

6 Memory-Mapped Hardware Revision (TLV Structure)

<table>
<thead>
<tr>
<th>Die Revision</th>
<th>TLV Hardware Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev B</td>
<td>11h</td>
</tr>
<tr>
<td>Rev A</td>
<td>10h</td>
</tr>
</tbody>
</table>

Further guidance on how to locate the TLV structure and read out the HW_ID can be found in the device User's Guide.
7 Detailed Bug Description

ADC25 ADC12_A Module
Category Functional
Function Write to ADC12CTL0 triggers ADC12 when CONSEQ = 00
Description If ADC conversions are triggered by the Timer_B module and the ADC12 is in single-channel single-conversion mode (CONSEQ = 00), ADC sampling is enabled by write access to any bit(s) in the ADC12CTL0 register. This is contrary to the expected behavior that only the ADC12 enable conversion bit (ADC12ENC) triggers a new ADC12 sample.

Workaround When operating the ADC12 in CONSEQ=00 and a Timer_B output is selected as the sample and hold source, temporarily clear the ADC12ENC bit before writing to other bits in the ADC12CTL0 register. The following capture trigger can then be re-enabled by setting ADC12ENC = 1.

ADC42 ADC12_A Module
Category Functional
Function ADC stops converting when successive ADC is triggered before the previous conversion ends
Description Subsequent ADC conversions are halted if a new ADC conversion is triggered while ADC is busy. ADC conversions are triggered manually or by a timer. The affected ADC modes are:
- sequence-of-channels
- repeat-single-channel
- repeat-sequence-of-channels (ADC12CTL1.ADC12CONSEQx)
In addition, the timer overflow flag cannot be used to detect an overflow (ADC12IFGR2.ADC12TOVIFG).

Workaround 1. For manual trigger mode (ADC12CTL0.ADC12SC), ensure each ADC conversion is completed by first checking ADC12CTL1.ADC12BUSY bit before starting a new conversion.
2. For timer trigger mode (ADC12CTL1.ADC12SHP), ensure the timer period is greater than the ADC sample and conversion time.
To recover the conversion halt:
1. Disable ADC module (ADC12CTL0.ADC12ENC = 0 and ADC12CTL0.ADC12ON = 0)
2. Re-enable ADC module (ADC12CTL0.ADC12ON = 1 and ADC12CTL0.ADC12ENC = 1)
3. Re-enable conversion

ADC69 ADC12_A Module
Category Functional
Function ADC stops operating if ADC clock source is changed from SMCLK to another source while SMCLKOFF = 1.
Detailed Bug Description

Description

When SMCLK is used as the clock source for the ADC (ADC12CTL1.ADC12SSELx = 11) and CSCTL4.SMCLKOFF = 1, the ADC will stop operating if the ADC clock source is changed by user software (e.g. in the ISR) from SMCLK to a different clock source. This issue appears only for the ADC12CTL1.ADC12DIVx settings /3/5/7. The hang state can be recovered by PUC/POR/BOR/Power cycle.

Workaround

1. Set CSCTL4.SMCLKOFF = 0 before switch ADC clock source.

 OR

2. Only use ADC12CTL1.ADC12DIVx as /1, /2, /4, /6, /8

BSL14

BSL Module

Category

Software in ROM

Function

BSL request to unlock the JTAG

Description

The feature in the BSL to keep the JTAG unlocked by setting the bit BSL_REQ_JTAG_OPEN in the return value has been disabled in this device.

Workaround

None

COMP10

COMP_B Module

Category

Functional

Function

Comparator port output toggles when entering or leaving LPM3/LPM4

Description

The comparator port pin output (CECTL1.CEOUT) erroneously toggles when device enters or leaves LPM3/LPM4 modes under the following conditions:

1) Comparator is disabled (CECTL1.CEON = 0)

 AND

2) Output polarity is enabled (CECTL1.CEOUTPOL = 1)

 AND

3) The port pin is configured to have CEOUT functionality.

 For example, if the CEOUT pin is high when the device is in Active Mode, CEOUT pin becomes low when the device enters LPM3/LPM4 modes.

Workaround

When the comparator is disabled, ensure at least one of the following:

1) Output inversion is disabled (CECTL.CEOUTPOL = 0)

 OR

2) Change pin configuration from CEOUT to GPIO with output low.

CPU21

CPU Module

Category

Compiler-Fixed

Function

Using POPM instruction on Status register may result in device hang up

Description

When an active interrupt service request is pending and the POPM instruction is used to set the Status Register (SR) and initiate entry into a low power mode , the device may hang up.
Detailed Bug Description

Workaround
None. It is recommended not to use POPM instruction on the Status Register.

Refer to the table below for compiler-specific fix implementation information.

<table>
<thead>
<tr>
<th>IDE/Compiler</th>
<th>Version Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAR Embedded Workbench</td>
<td>Not affected</td>
<td></td>
</tr>
<tr>
<td>TI MSP430 Compiler Tools (Code Composer Studio)</td>
<td>v4.0.x or later</td>
<td>User is required to add the compiler or assembler flag option below.</td>
</tr>
<tr>
<td>MSP430 GNU Compiler (MSP430-GCC)</td>
<td>MSP430-GCC 4.9 build 167 or later</td>
<td></td>
</tr>
</tbody>
</table>

CPU22

CPU Module

Category
Compiler-Fixed

Function
Indirect addressing mode with the Program Counter as the source register may produce unexpected results

Description
When using the indirect addressing mode in an instruction with the Program Counter (PC) as the source operand, the instruction that follows immediately does not get executed.

For example in the code below, the ADD instruction does not get executed.

```assembly
mov @PC, R7
add #1h, R4
```

Workaround
Refer to the table below for compiler-specific fix implementation information.

<table>
<thead>
<tr>
<th>IDE/Compiler</th>
<th>Version Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAR Embedded Workbench</td>
<td>Not affected</td>
<td></td>
</tr>
<tr>
<td>TI MSP430 Compiler Tools (Code Composer Studio)</td>
<td>v4.0.x or later</td>
<td>User is required to add the compiler or assembler flag option below.</td>
</tr>
<tr>
<td>MSP430 GNU Compiler (MSP430-GCC)</td>
<td>MSP430-GCC 4.9 build 167 or later</td>
<td></td>
</tr>
</tbody>
</table>

CPU37

CPU Module

Category
Functional

Function
Wrong program trace display in the debugger while using conditional jump instructions

Description
The state storage window displays an incorrect sequence of instructions when:
1. Conditional jump instructions are used to form a software loop
 AND
2. A false condition on the jump breaks out of the loop

In such cases the trace buffer incorrectly displays the first instruction of the loop as the instruction that is executed immediately after exiting the loop.

Example:
Actual Code:
```
mov #4,R4
LABEL mov #1,R5
```
dec R4
jnz LABEL
mov #2,R6
nop

State Storage Window Displays:
LABEL mov #1,R5
dec R4
jnz LABEL
mov #1,R5
nop

Workaround

None

Note: This erratum affects the trace buffer display only. It does not affect code execution in debugger or free run mode

CPU40

CPU Module

Category

Compiler-Fixed

Function

PC is corrupted when executing jump/conditional jump instruction that is followed by instruction with PC as destination register or a data section

Description

If the value at the memory location immediately following a jump/conditional jump instruction is 0X40h or 0X50h (where X = don't care), which could either be an instruction opcode (for instructions like RRCM, RRAM, RLAM, RRUM) with PC as destination register or a data section (const data in flash memory or data variable in RAM), then the PC value is auto-incremented by 2 after the jump instruction is executed; therefore, branching to a wrong address location in code and leading to wrong program execution.

For example, a conditional jump instruction followed by data section (0140h).

@0x8012 Loop DEC.W R6
@0x8014 DEC.W R7
@0x8016 JNZ Loop
@0x8018 Value1 DW 0140h

Workaround

In assembly, insert a NOP between the jump/conditional jump instruction and program code with instruction that contains PC as destination register or the data section.

Refer to the table below for compiler-specific fix implementation information.

<table>
<thead>
<tr>
<th>IDE/Compiler</th>
<th>Version Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAR Embedded Workbench</td>
<td>IAR EW430 v5.51 or later</td>
<td>For the command line version add the following information Compiler: --hw_workaround=CPU40 Assembler:-v1</td>
</tr>
<tr>
<td>TI MSP430 Compiler Tools (Code Composer Studio)</td>
<td>v4.0.x or later</td>
<td>User is required to add the compiler or assembler flag option below. --silicon_errata=CPU40</td>
</tr>
<tr>
<td>MSP430 GNU Compiler (MSP430-GCC)</td>
<td>Not affected</td>
<td></td>
</tr>
</tbody>
</table>
CPU46

CPU Module

Category
Functional

Function
POPM performs unexpected memory access and can cause VMAIFG to be set

Description
When the POPM assembly instruction is executed, the last Stack Pointer increment is followed by an unintended read access to the memory. If this read access is performed on vacant memory, the VMAIFG will be set and can trigger the corresponding interrupt (SFRIE1.VMAIE) if it is enabled. This issue occurs if the POPM assembly instruction is performed up to the top of the STACK.

Workaround
If the user is utilizing C, they will not be impacted by this issue. All TI/IAR/GCC pre-built libraries are not impacted by this bug. To ensure that POPM is never executed up to the memory border of the STACK when using assembly it is recommended to either

1. Initialize the SP to
 a. TOP of STACK - 4 bytes if POPM.A is used
 b. TOP of STACK - 2 bytes if POPM.W is used

OR

2. Use the POPM instruction for all but the last restore operation. For the last restore operation use the POP assembly instruction instead.

 For instance, instead of using:
   ```assembly
   POPM.W #5,R13
   ```
 Use:
   ```assembly
   POPM.W #4,R12
   POP.W R13
   ```

 Refer to the table below for compiler-specific fix implementation information.

<table>
<thead>
<tr>
<th>IDE/Compiler</th>
<th>Version Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAR Embedded Workbench</td>
<td>Not affected</td>
<td>C code is not impacted by this bug. User using POPM instruction in assembler is required to implement the above workaround manually.</td>
</tr>
<tr>
<td>TI MSP430 Compiler Tools (Code Composer Studio)</td>
<td>Not affected</td>
<td>C code is not impacted by this bug. User using POPM instruction in assembler is required to implement the above workaround manually.</td>
</tr>
<tr>
<td>MSP430 GNU Compiler (MSP430-GCC)</td>
<td>Not affected</td>
<td>C code is not impacted by this bug. User using POPM instruction in assembler is required to implement the above workaround manually.</td>
</tr>
</tbody>
</table>

CPU47

CPU Module

Category
Functional

Function
An unexpected Vacant Memory Access Flag (VMAIFG) can be triggered

Description
An unexpected Vacant Memory Access Flag (VMAIFG) can be triggered, if a PC-modifying instruction (e.g. - ret, push, call, pop, jmp, br) is fetched from the last
addresses (last 4 or 8 byte) of a memory (e.g.- FLASH, RAM, FRAM) that is not contiguous to a higher, valid section on the memory map.

In debug mode using breakpoints the last 8 bytes are affected.
In free running mode the last 4 bytes are affected.

Workaround

Edit the linker command file to make the last 4 or 8 bytes of affected memory sections unavailable, to avoid PC-modifying instructions on these locations.

Remaining instructions or data can still be stored on these locations.

DAC5

DAC12 Module

Category

Functional

Function

Switching events on alternative DAC output pins can change output level of active DAC output pin.

Description

When the DAC output has multiple pin output options, switching events on unused alternate pin output options, such as GPIO output voltage level transitions and pulses or input signals that pass GPIO high or low thresholds, dynamically affect the output voltage level of the DAC output in use. This effect only lasts for a short period after the switching event.

Workaround

If the dynamic voltage level effect on the chosen DAC output cannot be tolerated, see the workarounds below:

A. Avoid high to low or low to high transitions on the alternate DAC output pin when selected DAC output pin is active. Keep alternate pin pulled high or low when DAC is in use.

B. Do not use pin featuring alternative DAC output, and keep in an output low state.

DMA4

DMA Module

Category

Functional

Function

Corrupted write access to 20-bit DMA registers

Description

When a 20-bit wide write to a DMA address register (DMAxSA or DMAxDA) is interrupted by a DMA transfer, the register contents may be unpredictable.

Workaround

1. Design the application to guarantee that no DMA access interrupts 20-bit wide accesses to the DMA address registers.

OR

2. When accessing the DMA address registers, enable the Read Modify Write disable bit (DMARMWDIS = 1) or temporarily disable all active DMA channels (DMAEN = 0).

OR

3. Use word access for accessing the DMA address registers. Note that this limits the values that can be written to the address registers to 16-bit values (lower 64K of Flash).

DMA7

DMA Module

Category

Functional

Function

DMA request may cause the loss of interrupts

Description

If a DMA request starts executing during the time when a module register containing an
interrupt flags is accessed with a read-modify-write instruction, a newly arriving interrupt from the same module can get lost. An interrupt flag set prior to DMA execution would not be affected and remain set.

Workaround

1. Use a read of Interrupt Vector registers to clear interrupt flags and do not use read-modify-write instruction.

OR

2. Disable all DMA channels during read-modify-write instruction of specific module registers containing interrupts flags while these interrupts are activated.

DMA10

DMA Module

Category

Functional

Function

DMA access may cause invalid module operation

Description

The peripheral modules MPY, CRC, USB, RF1A and FRAM controller in manual mode can stall the CPU by issuing wait states while in operation. If a DMA access to the module occurs while that module is issuing a wait state, the module may exhibit undefined behavior.

Workaround

Ensure that DMA accesses to the affected modules occur only when the modules are not in operation. For example with the MPY module, ensure that the MPY operation is completed before triggering a DMA access to the MPY module.

EEM16

EEM Module

Category

Debug

Function

The state storage display does not work reliably when used on instructions with CPU Wait cycles.

Description

When executing instructions that require wait states; the state storage window updates incorrectly. For example a flash erase instruction causes the CPU to be held until the erase is completed i.e. the flash puts the CPU in a wait state. During this time if the state storage window is enabled it may incorrectly display any previously executed instruction multiple times.

Workaround

Do not enable the state storage display when executing instructions that require wait states. Instead set a breakpoint after the instruction is completed to view the state storage display.

NOTE:

This erratum affects debug mode only.

EEM17

EEM Module

Category

Debug

Function

Wrong Breakpoint halt after executing Flash Erase/Write instructions

Description

Hardware breakpoints or Conditional Address triggered breakpoints on instructions that follow Flash Erase/Write instructions, stops the debugger at the actual Flash Erase/Write instruction even though the flash erase/write operation has already been executed. The hardware/conditional address triggered breakpoints that are placed on either the next
two single opcode instructions OR the next double opcode instruction that follows the Flash Erase/Write instruction are affected by this erratum.

Workaround

None. Use other conditional/advanced triggered breakpoints to halt the debugger right after Flash erase/write instructions.

NOTE: This erratum affects debug mode only.

EEM19

EEM Module

Category

Debug

Function

DMA may corrupt data in debug mode

Description

When the DMA is enabled and the device is in debug mode, the data written by the DMA may be corrupted when a breakpoint is hit or when the debug session is halted.

Workaround

This erratum has been addressed in MSPDebugStack version 3.5.0.1. It is also available in released IDE EW430 IAR version 6.30.3 and CCS version 6.1.1 or newer.

If using an earlier version of either IDE or MSPDebugStack, do not halt or use breakpoints during a DMA transfer.

NOTE: This erratum applies to debug mode only.

EEM23

EEM Module

Category

Debug

Function

EEM triggers incorrectly when modules using wait states are enabled

Description

When modules using wait states (USB, MPY, CRC and FRAM controller in manual mode) are enabled, the EEM may trigger incorrectly. This can lead to an incorrect profile counter value or cause issues with the EEMs data watch point, state storage, and breakpoint functionality.

Workaround

None.

NOTE: This erratum affects debug mode only.

JTAG26

JTAG Module

Category

Debug

Function

LPMx.5 Debug Support Limitations

Description

The JTAG connection to the device might fail at device-dependent low or high supply voltage levels if the LPMx.5 debug support feature is enabled. To avoid a potentially unreliable debug session or general issues with JTAG device connectivity and the resulting bad customer experience Texas Instruments has chosen to remove the LPMx.5 debug support feature from common MSP430 IDEs including TI's Code Composer Studio 6.1.0 with msp430.emu updated to version 6.1.0.7 and IARs Embedded Workbench.
Detailed Bug Description

6.30.2, which are based on the MSP430 debug stack MSP430.DLL 3.5.0.1
http://www.ti.com/tool/MSPDS

TI plans to re-introduce this feature in limited capacity in a future release of the debug stack by providing an IDE override option for customers to selectively re-activate LPMx.5 debug support if needed. Note that the limitations and supply voltage dependencies outlined in this erratum will continue to apply.

For additional information on how the LPMx.5 debug support is handled within the MSP430 IDEs including possible workarounds on how to debug applications using LPMx.5 without toolchain support refer to Code Composer Studio User’s Guide for MSP430 chapter F.4 and IAR Embedded Workbench User’s Guide for MSP430 chapter 2.2.5.

Workaround

1. If LPMx.5 debug support is deemed functional and required in a given scenario:
 a) Do not update the IDE to continue using a previous version of the debug stack such as MSP430.DLL v3.4.3.4.
 OR
 b) Roll back the debug stack by either performing a clean re-installation of a previous version of the IDE or by manually replacing the debug stack with a prior version such as MSP430.DLL v3.4.3.4 that can be obtained from http://www.ti.com/tool/MSPDS.

2. In case JTAG connectivity fails during the LPMx.5 debug mode, the device supply voltage level needs to be raised or lowered until the connection is working.

Do not enable the LPMx.5 debug support feature during production programming.

JTAG27

JTAG Module

Category Debug

Function Unintentional code execution after programming via JTAG/SBW

Description The device can unintentionally start executing code from uninitialized RAM addresses 0x0006 or 0x0008 after being programmed via the JTAG or SBW interface. This can result in unpredictable behavior depending on the contents of the address location.

Workaround

1. If using programming tools purchased from TI (MSP-FET, LaunchPad), update to CCS version 6.1.3 later or IAR version 6.30 or later to resolve the issue.

2. If using the MSP-GANG Production Programmer, use v1.2.3.0 or later.

3. For custom programming solutions refer to the specification on MSP430 Programming Via the JTAG Interface User’s Guide (SLAU320) revision V or newer and use MSPDebugStack v3.7.0.12 or later.

For MSPDebugStack (MSP430.DLL) in CCS or IAR, download the latest version of the development environment or the latest version of the MSPDebugStack

NOTE: This only affects debug mode.

PMM11

PMM Module

Category Functional

Function MCLK comes up fast on exit from LPM3 and LPM4

Description The DCO exceeds the programmed frequency of operation on exit from LPM3 and LPM4 for up to 6 us. This behavior is masked from affecting code execution by default: SVSL and SVML run in normal-performance mode and mask CPU execution for 150 us on wakeup from LPM3 and LPM4. However, when the low-side SVS and the SVM are
disabled or are operating in full-performance mode (SVMLE = 0 and SVSLE = 0, or SVMMLFP = 1 and SVSMLFP = 1) AND MCLK is sourced from the internal DCO running over 5 MHz, 7.5 MHz, 10 MHz, or 12.5 MHz at core voltage levels 0, 1, 2, and 3, respectively, the mask lasts only 2 us. MCLK is, therefore, susceptible to run out of spec for 4 us.

Workaround

Set the MCLK divide bits in the Unified Clock System Control 5 Register (UCSCTL5) to divide MCLK by two prior to entering LPM3 or LPM4 (set DIVMx = 001). This prevents MCLK from running out of spec when the CPU wakes from the low-power mode. Following the wakeup from the low-power mode, wait 32, 48, 64, or 80 cycles for core voltage levels 0, 1, 2, and 3, respectively, before resetting DIVMx to zero and running MCLK at full speed [for example, __delay_cycles(32)].

PMM12

PMM Module

Category

Functional

Function

SMCLK comes up fast on exit from LPM3 and LPM4

Description

The DCO exceeds the programmed frequency of operation on exit from LPM3 and LPM4 for up to 6 us. When SMCLK is sourced by the DCO, it is not masked on exit from LPM3 or LPM4. Therefore, SMCLK exceeds the programmed frequency of operation on exit from LPM3 and LPM4 for up to 6 us. The increased frequency has the potential to change the expected timing behavior of peripherals that select SMCLK as the clock source.

Workaround

- Use XT2 as the SMCLK oscillator source instead of the DCO.

 or

- Do not disable the clock request bit for SMCLKREQEN in the Unified Clock System Control 8 Register (UCSCTL8). This means that all modules that depend on SMCLK to operate successfully should be halted or disabled before entering LPM3 or LPM4. If the increased frequency prevents the proper function of an affected module, wait 32, 48, 64, or 80 cycles for core voltage levels 0, 1, 2, and 3, respectively, before re-enabling the module [for example, __delay_cycles(32)].

PMM14

PMM Module

Category

Functional

Function

Increasing the core level when SVS/SVM low side is configured in full-performance mode causes device reset

Description

When the SVS/SVM low side is configured in full performance mode (SVSMLCTL.SVSLFP = 1), the setting time delay for the SVS comparators is ~2us. When increasing the core level in full-performance mode, the core voltage does not settle to the new level before the settling time delay of the SVS/SVM comparator expires. This results in a device reset.

Workaround

When increasing the core level; enable the SVS/SVM low side in normal mode (SVSMLCTL.SVSLFP=0). This provides a settling time delay of approximately 150us allowing the core sufficient time to increase to the expected voltage before the delay expires.

PMM15

PMM Module

Category

Functional
Detailed Bug Description

Function
Device may not wake up from LPM2, LPM3, or LPM4

Description
Device may not wake up from LPM2, LPM3, or LPM4 if an interrupt occurs within 1 us after the entry to the specified LPMx; entry can be caused either by user code or automatically (for example, after a previous ISR is completed). Device can be recovered with an external reset or a power cycle. Additionally, a PUC can also be used to reset the failing condition and bring the device back to normal operation (for example, a PUC caused by the WDT).

This effect is seen when:

- A write to the SVSMHCTL and SVSMLCTL registers is immediately followed by an LPM2, LPM3, or LPM4 entry without waiting the requisite settling time ((PMMIFG.SVSMLDLYIFG = 0 and PMMIFG.SVSMHDLYIFG = 0)).

or

The following two conditions are met:

- The SVSL module is configured for a fast wake-up or when the SVSL/SVML module is turned off. The affected SVSMLCTL register settings are shaded in the following table.

<table>
<thead>
<tr>
<th>SVSLE</th>
<th>SVSLMD</th>
<th>SVSLFP</th>
<th>AM, LPM0/I SVSL state</th>
<th>Manual SVSMLACE = 0</th>
<th>Automatic SVSMLACE = 1</th>
<th>Wakeup Time LPM2/3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>Wakeup Fast</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Normal</td>
<td>OFF</td>
<td>OFF</td>
<td>Wakeup Slow</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Full Performance</td>
<td>OFF</td>
<td>OFF</td>
<td>Wakeup Fast</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Normal</td>
<td>Normal</td>
<td>OFF</td>
<td>Wakeup Slow</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Full Performance</td>
<td>Full Performance</td>
<td>Normal</td>
<td>Wakeup Fast</td>
</tr>
</tbody>
</table>

and

- The SVSH/SVMH module is configured to transition from Normal mode to an OFF state when moving from Active/LPM0/LPM1 into LPM2/LPM3/LPM4 modes. The affected SVSMHCTL register settings are shaded in the following table.
Workaround

Any write to the SVSMxCTL register must be followed by a settling delay (PMMIFG.SVSMLDLYIFG = 0 and PMMIFG.SVSMHDLYIFG = 0) before entering LPM2, LPM3, LPM4.

and

1. Ensure the SVSx, SVMx are configured to prevent the issue from occurring by the following:

- Configure the SVSL module for slow wake up (SVSLFP = 0). Note that this will increase the wakeup time from LPM2/3/4 to twakeupslow (~150 us).

or

- Do not configure the SVSH/SVMH such that the modules transition from Normal mode to an OFF state on LPM entry and ensure SVSH/SVMH is in manual mode. Instead force the modules to remain ON even in LPMx. Note that this will cause increased power consumption when in LPMx.

Refer to the MSP430 Driver Library (MSPDRIVERLIB) for proper PMM configuration functions.

Use the following function, PMM15Check (void), to determine whether or not the existing PMM configuration is affected by the erratum. The return value of the function is 1 if the configuration is affected, and 0 if the configuration is not affected.

```c
unsigned char PMM15Check (void)
{
    // First check if SVSLS/SVSM is configured for fast wake-up
    if ( !(SVSMLCTL & SVSLE)) || ((SVSMLCTL & SVSLE) && (SVSMLCTL & SVSLFP)) ||
        ((SVSMLCTL & SVSMLE)) || ((SVSMLCTL & SVSMLE) && (SVSMLCTL & SVMLFP))
    {
        // Next Check SVSH/SVMH settings to see if settings are affected by PMM15
        if ((SVSMHCTL & SVSHE) && !(SVSMHCTL & SVSHFP))
    }
    if ( !(SVSMHCTL & SVSMHD)) || ((SVSMHCTL & SVSMHD) &&
        (SVSMHCTL & SVSMHACE))
}
return 1; // SVSH affected configurations

if ((SVSMHCTL & SVMHE) && (!(SVSMHCTL & SVMHFP)) && (SVSMHCTL & SVSMHACE))
return 1; // SVMH affected configurations
}
return 0; // SVS/M settings not affected by PMM15
}

2. If fast servicing of interrupts is required, add a 150us delay either in the interrupt service routine or before entry into LPM3/LPM4.

PMM18

PMM Module

Category
Functional

Function
PMM supply overvoltage protection falsely triggers POR

Description
The PMM Supply Voltage Monitor (SVM) high side can be configured as overvoltage protection (OVP) using the SVMHOVPE bit of SVSMHCTL register. In this mode a POR should typically be triggered when DVCC reaches ~3.75V.

If the OVP feature of SVM high side is enabled going into LPM234, the SVM might trigger at DVCC voltages below 3.6V (~3.5V) within a few ns after wake-up. This can falsely cause an OVP-triggered POR. The OVP level is temperature sensitive during fail scenario and decreases with higher temperature (85 degC ~3.2V).

Workaround
Use automatic control mode for high-side SVS & SVM (SVSMHCTL.SVSMHACE=1). The SVM high side is inactive in LPM2, LPM3, and LPM4.

PMM20

PMM Module

Category
Functional

Function
Unexpected SVSL/SVML event during wakeup from LPM2/3/4 in fast wakeup mode

Description
If PMM low side is configured to operate in fast wakeup mode, during wakeup from LPM2/3/4 the internal VCORE voltage can experience voltage drop below the corresponding SVSL and SVML threshold (recommendation according to User's Guide) leading to an unexpected SVSL/SVML event. Depending on PMM configuration, this event triggers a POR or an interrupt.

NOTE: As soon the SVSL or the SVML is enabled in Normal performance mode the device is in slow wakeup mode and this erratum does not apply.

In addition, this erratum has sporadic characteristic due to an internal asynchronous circuit. The drop of Vcore does not have an impact on specified device performance.

Workaround
If SVSL or SVML is required for application (to observe external disruptive events at Vcore pin) the slow wakeup mode has to be used to avoid unexpected SVSL/SVML events. This is achieved if the SVSL or the SVML is configured in "Normal" performance mode (not disabled and not in "Full" Performance Mode).
### PMM26

**PMM Module**

**Category**
Functional

**Function**
Device lock-up if RST pin pulled low during write to SVSMHCTL or SVSMLCTL

**Description**
Device results in lock-up condition under one of the two scenarios below:

1. If RST pin is pulled low during write access to SVSMHCTL, with the RST/NMI pin is configured to reset function and is pulled low (reset event) the device will stop code execution and is continuously held in reset state. RST pin is no longer functional. The only way to come out of the lock-up situation is a power cycle.

OR

2. If RST pin is pulled low during write access to SVSMLCTL and only if the code that checks for SVSMLDLYIFG==1 is implemented without a timeout. The device will be stuck in the polling loop polling since SVSMLDLYIFG will never be cleared.

**Workaround**
Follow the sequence below to prevent the lock-up for both use cases:

1. Disable RST pin reset function and switch to NMI before access SVSMHCTL or SVSMLCTL.

   then

2. Activate NMI interrupt and handle reset events in this time by SW (optional if reset functionality required during access SVSMHCTL or SVSMLCTL)

   then

3. Enable RST pin reset function after access to SVSMHCTL or SVSMLCTL

To prevent lock-up caused by use case #2 a timeout for the SVSMLDLYIFG flag check should be implemented to 300us.

### PORT15

**PORT Module**

**Category**
Functional

**Function**
In-system debugging causes the PMALOCKED bit to be always set

**Description**
The port mapping controller registers cannot be modified when single-stepping or halting at break points between a valid password write to the PMAPWD register and the expected lock of the port mapping (PMAP) registers. This causes the PMAPLOCKED bit to remain set and not clear as expected.

Note: This erratum only applies to in-system debugging and is not applicable when operating in free-running mode.

**Workaround**
Do not single step through or place break points in the port mapping configuration section of code.

### PORT19

**PORT Module**

**Category**
Functional

**Function**
Port interrupt may be missed on entry to LPMx.5

**Description**
If a port interrupt occurs within a small timing window (~1MCLK cycle) of the device entry into LPM3.5 or LPM4.5, it is possible that the interrupt is lost. Hence this interrupt will not trigger a wakeup from LPMx.5.
PORT26

**PORT Module**

**Category**
Functional

**Function**
Incorrect values for P1.1 / P1.2 input pins during power-up

**Description**
If P1.1/P1.2 is pulled up externally to DVCC during power-up the logical HIGH value might not be read correctly by the device (ZERO is read instead of ONE).

**Workaround**
1) Switch the P1.1/P1.2 Port to logical ZERO after power cycle by:
   a) Switch critical GPIO to output-low (with series resistance to limit current) or
   b) Remove external pull up connection to pull GPIO via internal pull-down
   OR
2) Use different GPIOs (not P1.1 & P1.2)
   OR
3) Change the polarity of the logical check in SW (enable internal pull-up resistor for the GPIO and pull the external pin to DVSS)

RTC16

**RTC_B Module**

**Category**
Functional

**Function**
RTC_B module can seem stuck or function abnormally (jumping RTC)

**Description**
If VBAT and DVCC (VPRIM) power up slowly and cross around the VBAK switching threshold, internal functions may not reset properly.
This can lead to a stuck RTC_B module or to unexpected functionality e.g. RTC_B is running faster which causes the observed time value to jump or skip forward.

**Workaround**
Prevent DVCC (VPRIM) and VBAT from crossing each other below 2V during power up. It does not matter which signal comes up first.

UCS11

**UCS Module**

**Category**
Functional

**Function**
Modifying UCSCTL4 clock control register triggers an additional erroneous clock request

**Description**
Changing the SELM/SELS/SELA bits in the UCSCTL4 register will correctly configure the respective clock to use the intended clock source but might also erroneously set XT1/XT2 fault flag if the crystals are not present at XT1/XT2 or not configured in the application firmware. If the NMI interrupt for the OFIFG is enabled, an unintentional NMI interrupt will be triggered and needs to be handled.

**NOTE:**
The XT1/XT2 fault flag can be set regardless of which SELM/SELS/SELA bit combinations are being changed.

**Workaround**
Clear all the fault flags in UCSCTL7 register once after changing any of the SELM/SELS/SELA bits in the UCSCTL4 register.
If OFIFG-NMI is enabled during clock switching, disable OFIFG-NMI interrupt during changing the SELM/SELS/SELA bits in the UCSCTL4 register to prevent unintended
NMI.
Alternatively it can be handled accordingly (clear falsely set fault flags) in the Interrupt Service Routine to ensure proper OFIFG clearing.

**USB11**

**USB Module**

*Category*: Functional

*Function*: USB BSL invoke

*Description*: For devices with USB BSL, when externally invoking BSL according SLAU319 chapter 1.3.3. a critical setup time may not be met. In this case the BSL will not start. The pass/fail condition is temperature-dependent, where if a unit passes at a certain temperature, it will always pass at the same or higher temperature condition.

*Workaround*: 1. Invoke the BSL from the application code and ensure VCore is set to level 2 or 3 prior to BSL entry.

OR

2. Update the device BSL. The CustomBSL source code implements the fix for this errata in versions 1.00.05.00 and newer. The CustomBSL package can be download at Custom BSL package

**USB12**

**USB Module**

*Category*: Functional

*Function*: The 2nd byte of a slave-to-host transmission is sent twice.

*Description*: In extremely rare cases, when the USB module's PLL is disabled (by clearing the UPLLLEN bit), the USB module can be placed into an undetermined state, resulting in an extra byte being sent to the host over the bus. The PLL is usually disabled by software when the USB module detects that the USB device has been suspended by the host. Suspend events can occur at any time, but are typically invoked during periods of inactivity.

*Workaround*: Once this error occurs, the USB module needs to be reset (by clearing the USBEN bit), and then the module can be re-initialized. For example, software can call the MSP430 USB API USB_disable() followed by USB_enable(). These actions are taken by the USB APIs when the user unplugs and replugs the USB cable, which is likely to happen when the user realizes the bus is no longer working.

If automatic detection of the error is required, then software on the host and device could implement a CRC check on the data payload (above the USB API) to detect the extra byte. If detected, software could then disable/re-enable the USB module. (The CRC inherent in the USB protocol calculates over the data packet, and thus cannot detect the erroneously added byte.)

**USCI26**

**USCI Module**

*Category*: Functional

*Function*: Tbuf parameter violation in I2C multi-master mode

*Description*: In multi-master I2C systems the timing parameter Tbuf (bus free time between a stop condition and the following start) is not guaranteed to match the I2C specification of 4.7us in standard mode and 1.3us in fast mode. If the UCTXSTT bit is set during a running I2C transaction, the USCI module waits and issues the start condition on bus
Detailed Bug Description

release causing the violation to occur.

Note: It is recommended to check if UCBBUSY bit is cleared before setting UCTXSTT=1.

Workaround

None

USCI34

USCI Module

Category

Functional

Function

I2C multi-master transmit may lose first few bytes.

Description

In an I2C multi-master system (UCMM =1), under the following conditions:
(1)the master is configured as a transmitter (UCTR =1)
AND
(2)the start bit is set (UCTXSTT =1);
if the I2C bus is unavailable, then the USCI module enters an idle state where it waits and checks for bus release. While in the idle state it is possible that the USCI master updates its TXIFG based on clock line activity due to other master/slave communication on the bus. The data byte(s) loaded in TXBUF while in idle state are lost and transmit pointers initialized by the user in the transmit ISR are updated incorrectly.

Workaround

Verify that the START condition has been sent (UCTXSTT =0) before loading TXBUF with data.

Example:

```c
#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_ISR(void)
{
 // Workaround for USCI34
 if(UCB0CTL1&UCTXSTT)
 {
 // TXData = pointer to the transmit buffer start
 // PTxData = pointer to transmit in the ISR
 PTxData = TXData; // restore the transmit buffer pointer if the Start bit is set
 }
 if(IFG2&UCB0TXIFG)
 {
 if (PTxData<=PTxDataEnd) // Check TX byte counter
 {
 UCB0TXBUF = *PTxData++; // Load TX buffer
 }
 else
 {
```

```c
```
USCI35

**USCI Module**

**Category**
Functional

**Function**
Violation of setup and hold times for (repeated) start in I2C master mode

**Description**
In I2C master mode, the setup and hold times for a (repeated) START, $t_{SU,STA}$ and $t_{HD,STA}$ respectively, can be violated if SCL clock frequency is greater than 50kHz in standard mode (100kbps). As a result, a slave can receive incorrect data or the I2C bus can be stalled due to clock stretching by the slave.

**Workaround**
If using repeated start, ensure SCL clock frequencies is < 50kHz in I2C standard mode (100 kbps).

USCI39

**USCI Module**

**Category**
Functional

**Function**
USCI I2C IFGs UCSTTIFG, UCSTPIFG, UCNACKIFG

**Description**
Unpredictable code execution can occur if one of the hardware-clear-able IFGs UCSTTIFG, UCSTPIFG or UCNACKIFG is set while the global interrupt enable is set by software (GIE=1). This erratum is triggered if ALL of the following events occur in following order:

1. Pending Interrupt: One of the UCxIFG=1 AND UCxIE=1 while GIE=0
2. The GIE is set by software (e.g. EINT)
3. The pending interrupt is cleared by hardware (external I2C event) in a time window of 1 MCLK clock cycle after the "EINT" instruction is executed.

**Workaround**
Disable the UCSTTIE, UCSTPIE and UCNACKIE before the GIE is set. After GIE is set, the local interrupt enable flags can be set again.

Assembly example:

```
bic #UCNACKIE+UCSTPIE+UCSTTIE, UCBxIE ; disable all self-clearing interrupts
NOP
EINT
bis #UCNACKIE+UCSTPIE+UCSTTIE, UCBxIE ; enable all self-clearing interrupts
```

USCI40

**USCI Module**

**Category**
Functional

**Function**
SPI Slave Transmit with clock phase select = 1

**Description**
In SPI slave mode with clock phase select set to 1 (UCAxCTLW0.UCCKPH=1), after the...
first TX byte, all following bytes are shifted by one bit with shift direction dependent on UCMSB. This is due to the internal shift register getting pre-loaded asynchronously when writing to the USCIA TXBUF register. TX data in the internal buffer is shifted by one bit after the RX data is received.

**Workaround**

Reinitialize TXBUF before using SPI and after each transmission.

If transmit data needs to be repeated with the next transmission, then write back previously read value:

```
UCAxTXBUF = UCAxTXBUF;
```
8 Document Revision History

Changes from device specific erratasheet to document Revision A.
1. DMA10 Description was updated.
2. DMA10 Function was updated.

Changes from document Revision A to Revision B.
1. Package Markings section was updated.

Changes from document Revision B to Revision C.
1. DMA10 Description was updated.
2. Errata EEM23 was added to the errata documentation.

Changes from document Revision C to Revision D.
1. Device TLV Hardware Revision information added to erratasheet.

Changes from document Revision D to Revision E.
1. Errata PMM20 was added to the errata documentation.
2. Errata USCI35 was added to the errata documentation.

Changes from document Revision E to Revision F.
1. EEM19 Workaround was updated.
2. EEM17 Workaround was updated.
3. Errata BSL12 was added to the errata documentation.
4. EEM23 Workaround was updated.
5. EEM17 Description was updated.
6. EEM16 Description was updated.
7. EEM23 Description was updated.
8. EEM19 Description was updated.
9. EEM16 Workaround was updated.

Changes from document Revision F to Revision G.
1. DMA10 Workaround was updated.
2. DMA10 Description was updated.
3. Errata BSL12 was removed from the errata documentation.
4. DMA10 Function was updated.
5. Errata USB11 was added to the errata documentation.

Changes from document Revision G to Revision H.
1. CPU40 Workaround was updated.
2. EEM19 Workaround was updated.
3. Errata USCI39 was added to the errata documentation.
4. Package Markings section was updated.
5. EEM23 Workaround was updated.
6. EEM23 Description was updated.
7. Errata ADC42 was added to the errata documentation.
8. EEM23 Function was updated.
9. Errata USB12 was added to the errata documentation.
10. EEM19 Description was updated.

Changes from document Revision H to Revision I.
1. Errata USCI40 was added to the errata documentation.
2. Errata DMA7 was added to the errata documentation.
3. PMM18 Workaround was updated.
   Changes from document Revision I to Revision J.
   1. DMA7 Workaround was updated.
   2. Silicon Revision B was added to the errata documentation.
   3. EEM23 Description was updated.
   4. DMA7 Description was updated.

Changes from document Revision J to Revision K.
1. USCI39 Description was updated.

Changes from document Revision K to Revision L.
1. Errata BSL14 was added to the errata documentation.
2. Errata JTAG26 was added to the errata documentation.

Changes from document Revision L to Revision M.
1. EEM19 Workaround was updated.
2. Errata PMM26 was added to the errata documentation.

Changes from document Revision M to Revision N.
1. UCS11 Workaround was updated.
2. UCS11 Description was updated.
3. UCS11 Function was updated.

Changes from document Revision N to Revision O.
1. Errata JTAG27 was added to the errata documentation.
2. Errata PORT26 was added to the errata documentation.
3. Errata COMP10 was added to the errata documentation.

Changes from document Revision O to Revision P.
1. USCI39 Workaround was updated.
2. Errata CPU46 was added to the errata documentation.

Changes from document Revision P to Revision Q.
1. CPU21 was added to the errata documentation.
2. CPU22 was added to the errata documentation.
3. ADC25 is no longer impacting silicon Revision B
4. Workaround for CPU40 was updated.
5. Workaround for CPU46 was updated.
6. Workaround for PMM15 was updated.

Changes from document Revision Q to Revision R.
1. TLV hardware revision ID for Rev B was updated.
2. Workaround for CPU46 was updated.

Changes from document Revision R to Revision S.
1. Workaround for PMM15 was updated.

Changes from document Revision S to Revision T.
1. DAC5 was added to the errata documentation.

Changes from document Revision T to Revision U.
1. Erratasheet format update.
2. Added errata category field to "Detailed bug description" section

Changes from document Revision U to Revision V.
1. Workaround for CPU40 was updated.
Changes from document Revision V to Revision W.
1. CPU47 was added to the errata documentation.
2. ADC69 was added to the errata documentation.
Changes from document Revision W to Revision X.
1. USCI34 was added to the errata documentation.
Changes from document Revision X to Revision Y.
1. RTC16 was added to the errata documentation.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated