
TMS470R1A384

TMS470 Microcontroller

Silicon Errata

Silicon Revision E

SPNZ148B
January 2007

Copyright 2007, Texas Instruments Incorporated

SPNZ148BTMS470R1A384 Silicon Errata Revision E

2

REVISION HISTORY

This silicon errata revision history highlights the technical changes made to the SPNZ148 for each revision. Page
numbers refer to the specified revision.

REVISION ADDITIONS/CHANGES/DELETIONS

SPNZ148 Initial release

SPNZ148A Added ADM#11 through ADM#14; pages 6−7
Added DEV#42; page 8
Added I2C#1 through I2C#34; pages 13−20
Added Known Exceptions to Timing Specifications; page 25

SPNZ148B Corrected page headers; all pages

SPNZ148BTMS470R1A384 Silicon Revision E Errata

3

Contents
1 Known Design Marginality/Exceptions to Functional Specifications 5.

ADM#8 − Stopping and Starting ADC When Conversions Are Ongoing 5.

ADM#9 − Freeze Feature Error for Conversion Groups 6.

ADM#10 − Data Not Written to MibADC FIFO 6.

ADM#11 − Disabling ADC EN Bit Does Not Properly Stop and Restart the ADC 6.

ADM#12 − Clearing Channel Selection Register Does Not Clear FIFO Completely 7.

ADM#13 − Current Channel Conversion Does Not Complete When Suspend Mode is Entered 7.

ADM#14 − Calibration Results Get Written to Group FIFO 7.

CCM#1 − ICLK Not 50% Duty Cycle 8.

DEV#42 − 5V Tolerant Pins Do Not Have Internal Clamp Diode to Positive Voltage 8.

DMA#4 − BMSS=1 Mode Not Supported 8.

DMA#15 − CPU Reads of DMA Control Packet Memory 8.

DMA#17 − Reads of MPU Registers Corrupt Data 8.

DMA#19 − No Exception for Illegal DMA Access on Expansion Bus 9.

DMA#20 − No Exception for DMA Access to Unmapped Memory on Expansion Bus 9.

DMA#21 − One Transfer with Zero Transfer Count 9.

DMA#23 − DMA Stop Corrupts Command Buffer Memory 9.

DMA#24 − DMA Writes to Read-Only Memory Do Not Generate an Illegal Address 9.

DMA#25 − DMA Channel Switch Size Not Properly Documented 10.

DMA#26 − Half-Word and Byte Writes to Unimplemented Bits Corrupt Register 10.

DMA#27 − Data Chaining With More Than One Active Channel 10.

DMA#28 − DMA Fails During Execution of the SWP Instruction 10.

DMA#29 − DMA Corrupts PSA 10.

EBM#1 − Only 22 Address Lines Supported 11.

FW#3 − Configuration Mode Required for Sleep or Standby 11.

FW#13 − Fails Initial Read of 0x0−0x7 in Pipeline Mode 11.

FW#15 − No Wakeup from Powerdown in Pipeline Mode 11.

FW#18 − No Read from Last Word in Pipeline Mode if Bank is in Sleep or Standby 12.

GIO#1 − Reading the Interrupt Offset Registers 12.

HET#15 − Auto Read Clear Malfunction 12.

HET#16 − MCMP Causes a Constant Signal, Not PWM 13.

HET#19 − Reading the Interrupt Offset Registers 13.

I2C#1 − Slave Cannot Detect Stop Condition 13.

I2C#2 − Extra Transmit Interrupt By Slave 13.

I2C#3 − Stop Condition Clears TXRDY 14.

I2C#4 − Resetting the IRS Bit Does Not Clear the Bus Busy Bit in Master Mode 14.

I2C#5 − Unexpected Behavior with 10-bit Addressing W-R Format 14.

I2C#6 − ISCPSC Affects Real Dividing Value 14.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

4

I2C#7 − Resetting During Transfer 15.

I2C#8 − Bus Busy Bit Not Cleared by Resetting the IRS Bit 15.

I2C#9 − Bus Fails to Go Busy in Master Transmitter Mode 15.

I2C#10 − I2CMDR Bit Count Bit Description 15.

I2C#11 − Module Appears to Hang When SCL Low 16.

I2C#12 − ARDY Bit Set and Cleared Without Being Written To 16.

I2C#13 − I2C Write of I2CMDR Followed by Read Miscompare 16.

I2C#14 − RSFULL Bit Set on First Data Byte After Start 16.

I2C#15 − SDA Data Transition While SCL is High 17.

I2C#16 − RXRDY and TXRDY Not Cleared by Reading I2CIVR 17.

I2C#17 − TXRDY Not Reset by Writing 1 17.

I2C#18 − I2CCLKH and I2CCLKL Not Functioning as Simple Clock Dividers 17.

I2C#19 − Clearing I2CIVR Not Specified in Register Description 17.

I2C#20 − Unused Bits Not Cleared in Bits Mode 18.

I2C#21 − I2COAR/I2CSAR Register Description Update 18.

I2C#22 − Unexpected ICXEVT Event and ICXRDY Interrupt 18.

I2C#23 − Contents of I2CDRR Not Lost At an Overrun 18.

I2C#25 − False ARDY Status 18.

I2C#26 − No NACK Status 19.

I2C#27 − Peripheral Clock Frequency Range 19.

I2C#28 − No NACK Status When Received in Master STB Mode 19.

I2C#29 − Stop Not Cleared on NACK in STB Mode 19.

I2C#31 − Slave Transmit with Extended Address Fails After Repeat Start 20.

I2C#32 − BB Bit Does Not Reflect I2C Bus Status Correctly 20.

I2C#33 − AAS Bit Not Cleared by START Condition 20.

I2C#34 − False Start Condition on Reset 20.

RTI#3 − Tap Interrupt When Clearing Counter 21.

RTI#4 − Tap Interrupt When Clearing Counter in Suspend Mode 21.

RTI#6 − Asynchronous Clear of RTI Tap Flag Not Recommended 21.

SCC#4 − CAN Does Not Perform Resynchronization As Expected 22.

SCC#6 − CANHRX Must be High During Self-test 22.

SCC#7 − Abort Acknowledge Bit Not Set After Transmission Request Reset 23.

SPI#1 − Slave Baud Rate Setting 23.

SPI#2 − Clearing, Setting SPI EN Bit Does Not Clear Internal Flag 24.

ZPLL#1 − Clock Corruption When Changing Multiplier 24.

2 Known Exceptions to Timing Specifications 25.

SPIn Master Mode Timing Parameters Correction at 125C 25.

EBM Timing Modifications 25.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

5

1 Known Design Marginality/Exceptions to Functional Specifications

The following is a list of advisories on modules in this version of silicon, errata matrix version 8.89. Documentation
may differ from the user guide or data sheet. The advisory reference number is shown first (i.e.; ADM#8), followed
by a description and any known workarounds. The reference numbers may not always be sequential for this
device.

Modules include the following:

Multi-buffered analog-to-digital converter (ADM)

Clock control module (CCM)

Device specific (DEV)

Direct memory access controller (DMA)

Expansion bus module (EBM)

Flash wrapper (FW)

General-purpose input/output (GIO)

High-end timer (HET)

Inter-integrated circuit (I2C)

Real-time interrupt (RTI)

Standard CAN controller (SCC)

Serial peripheral interface (SPI)

Zero-pin phase-locked loop (ZPLL)

Stopping and Starting ADC When Conversions Are OngoingAdvisory ADM#8

Description : When used in FIFO mode, if the A to D module is disabled or if the channel select registers
are cleared while conversions are still ongoing, the operation will be unpredictable when the
module is restarted.

Workaround : Stop the ADC by clearing ADCR1(5).
Restart the ADC by setting ADCR1(5) again.
Configure all groups to be in single conversion mode.
Configure one channel to be converted in all three groups and start the conversions.
Wait for these conversions to end by polling the ”conversion end” flags in the ADSR register.
Clear the channel select registers for the three groups.
Continue with the desired configuration for the ADC.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

6

Freeze Feature Error for Conversion GroupsAdvisory ADM#9

Description : When multiple conversion groups are being used and the ADC is used in the multi-buffered
mode, the use of the freeze feature for conversion groups can lead to conversion results being
written to the wrong FIFO. If a conversion group (say group A) is configured to be ”freezable”,
and if there is a request for servicing another conversion group (say group B) while group A
conversion is still ongoing, then the conversion result for the last channel converted in group A
will be written to the FIFO for group B.

Workaround : Do not use the freeze ability for the conversion groups.
OR
For applications that must use the freeze ability, please use only the compatibility mode of the
ADC.

Data Not Written to MibADC FIFOAdvisory ADM#10

Description : In buffered mode, if the channel select register is written and if no other MibADC registers are
accessed, the converted data does not get written to the FIFO but the threshold counter is
updated upon each conversion. This occurs only when the ICLK/SYSCLK ratio is more than 2.

Workaround : Do a read operation from the same group input channel select register after writing it.

Disabling EN Bit Does Not Properly Stop and Restart the ADCAdvisory ADM#11

Description : Disabling the ADC by clearing the ADC EN bit of the ADCR1 register does not reset some
internal flags used to store the conversion statuses of the three groups, causing problems
when stopping and restarting the ADC conversions in buffered mode.

Workaround : TBD

SPNZ148BTMS470R1A384 Silicon Revision E Errata

7

Clearing Channel Selection Register Does Not Clear FIFO CompletelyAdvisory ADM#12

Description : Clearing the channel selection register does not clear FIFO completely under certain
conditions.

Workaround : Depending upon the number of selected channels, the overhead on ”time” is in the increasing
order with each workaround. Depending upon the requirement and criticality, any of them can
be chosen.

1. Irrespective of whether a group is in continuous or single conversion mode, read out the
corresponding group’s FIFO data until it’s empty, write all 0s to the Group Channel Select
Register. After this, wait for the duration of one Channel Conversion completion including the
sampling and the conversion time, before writing the next set of channels to the Channel
Select Register.

2. Alternatively, if the group conversion is in continuous mode, and an application wants to
change the Group Channel Select Register, then first change the mode of the group to single
conversion. Read out all the conversion data from the FIFO, until the FIFO becomes empty.
Write a single channel into the Channel Select Register. Wait until the Group Conversion End
flag gets set. Write the next set of channels to the Group Channel Select Register.

3. If the group is in Single conversion mode, wait until the Group Conversion End flag is set,
read out the FIFO data until it’s empty and then write the new set of Channels to the Group
Channel Select Register.

Current Channel Conversion Does Not Complete When Suspend Mode Is EnteredAdvisory ADM#13

Description : Ongoing conversion is not completed on entering suspend mode when COS = 1.

Workaround : TBD

Calibration Results Are Written to Group FIFOAdvisory ADM#14

Description : If calibration is started during a group conversion, the result of the calibration is written to that
group FIFO until the end of group conversion.

Workaround : Do not do calibration during a group conversion. The documentation will be updated to reflect
this requirement. (SPNU193, 9/2002)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

8

ICLK Not 50% Duty CycleAdvisory CCM#1

Description : The ICLK signal output from the CCM is not a 50% duty cycle signal when the SYSCLK to
ICLK divide ratio is odd. This affects the SCI and SPI modules and occurs when the divide
ratio is 3 or above.

Workaround : None

5V Tolerant Pins Do Not Have Internal Clamp Diode to Positive VoltageAdvisory DEV#42

Description : Pins with 100-µA internal pullups should be specified with an input current of between
−200 µA to −100 µA.

Workaround : The documentation will be updated to reflect this requirement. (SPNU193, 9/2002)

BMSS=1 Mode Not SupportedAdvisory DMA#4

Description : DMA transfers in BMSS=1 mode will be corrupted due to a bug in the DMA state machine.

Workaround : BMSS=1 mode is no longer supported. Use BMSS=0. The documentation will be updated.
(SPNU194, 11/2002)

CPU Reads of DMA Control Packet MemoryAdvisory DMA#15

Description : If the ARM7 CPU is reading the DMA control packet memory while the DMA is operating, the
DMA control packet configuration word or the DMA control packet transfer count can be
corrupted.

Workaround : The DMA SPD version 1:10 avoids this problem by keeping a copy of the DMA control packet
configuration words in RAM. Using the latest version of this SPD will avoid the problem. Do
not read the DMA control packet memory while the DMA is operating. Be careful to avoid
instructions that perform a read-modify-write operation on the DMA control packet memory
while the DMA is operating.

Reads of MPU Registers Corrupt DataAdvisory DMA#17

Description : If the ARM7 CPU is reading a memory protection unit (MPU) register while the DMA is
operating, the data read or written by the DMA can be corrupted.

Workaround : Avoid any reads of the MPU registers while the DMA is operating. CPU reads of the MPU
registers while the DMA is operating are not supported. The documentation will be updated.
(SPNU194, 11/2002)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

9

No Exception for DMA Access to Unmapped Memory on Expansion BusAdvisory DMA#19

Description : No reset or abort occurs when the source or destination address of the DMA is an unmapped
memory area on the expansion bus.

Workaround : None.

No Exception for DMA Access to Unmapped Memory on Expansion BusAdvisory DMA#20

Description : No reset or abort occurs when the source or destination address of the DMA is an unmapped
memory area on the expansion bus.

Workaround : None. The documentation will be updated to clarify that memory bounds checking is not
supported on DMA accesses to the expansion bus. (SPNU194, 11/2002)

One Transfer With Zero Transfer CountAdvisory DMA#21

Description : If a control packet is set up and enabled with a transfer count of zero, one DMA transfer
occurs.

Workaround : Do not enable a DMA control packet with a transfer count of zero.

DMA Stop Corrupts Command Buffer MemoryAdvisory DMA#23

Description : Using DMA Stop may corrupt the DMA command buffer memory.

Workaround : Use DMA Halt, not DMA Stop.

DMA Writes to Read-Only Memory Do Not Generate an Illegal AddressAdvisory DMA#24

Description : When a particular region of memory is set as read only by the address decoder or the MPU,
any write to that memory region should generate an illegal access. This works properly in the
case of CPU writes, but DMA writes do not cause an illegal access. In both cases, writes to
the RAM are blocked by blocking the chip selects.

Workaround : None

SPNZ148BTMS470R1A384 Silicon Revision E Errata

10

DMA Channel Switch Size Not Properly DocumentedAdvisory DMA#25

Description : For DMA transfers on the expansion bus, the channel switch size is documented properly −
that is, values of 0 to 15 give a switch size of 1 to 16. For transfers on the CPU bus, channel
switch size of zero gives one transfer. Channel switch sizes 1 to15 give 1 to15 transfers.

Workaround : The documentation will be updated. (SPNU194, 11/2002)

Half-Word and Byte Writes to Unimplemented Bits Corrupt RegisterAdvisory DMA#26

Description : Half-word or bytes to the high-order bytes of DMA Global Control register or the DMA Global
Disable register will corrupt these registers.

Workaround : The documentation will be updated to warn users about this condition. There is no reason to
write to these unimplemented bits. (SPNU194, 11/2002)

Data Chaining With More Than One Active ChannelAdvisory DMA#27

Description : When more than one DMA channel is active and data chaining is used on one or more
channels, one extra transfer is done on a previously serviced DMA channel even if a new
request comes on a different higher priority channel.

Workaround : Either do not use data chaining, or do not use more than one channel.

DMA Fails During Execution of the SWP InstructionAdvisory DMA#28

Description : When a DMA transaction is supposed to happen during the CPU execution of an SWP
instruction that accesses memory, the DMA transaction does not happen.

Workaround : Halt the DMA whenever the SWP instruction must be used.

DMA Corrupts PSAAdvisory DMA#29

Description : If a DMA transaction occurs on the cycle before writing to the PSA enable bit to disable the
PSA, the PSA will be corrupted.

Workaround : Halt the DMA before disabling PSA.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

11

Only 22 Address Lines SupportedAdvisory EBM#1

Description : The specification indicates that the EBM module supports a 27-bit address when using the
8-bit access mode. However, the address lines 22 to 26 are tied off low, and so are not
available for use. Therefore, only 22 address lines are supported.

Workaround : None

Configuration Mode Required for Sleep or StandbyAdvisory FW#3

Description : The configuration mode must be set to enter sleep or standby modes.

Workaround : The documentation will be updated to reflect this requirement. (SPNU213, 12/2002)

Fails Initial Read of 0x0−0x7 in Pipeline ModeAdvisory FW#13

Description : Immediately after entering pipeline mode, a data read of location 0x04 immediately following a
data read of location 0x0 will cause 0x04 to read as all 0s.

Workaround : Do a dummy data read of any location other than zero or four immediately after entering
pipeline mode. The documentation will be updated to reflect this requirement. (SPNU213,
12/2002)

No Wakeup From Powerdown in Pipeline ModeAdvisory FW#15

Description : On this device, flash banks in pipeline mode put into standby/sleep mode can not wake up by
doing a normal read access or any other wake-up interrupt. Therefore, it is not possible to use
the automatic power-down feature of banks that are not accessed for a given number of
cycles.

Workaround : Do not use automatic power down of banks on this device during normal operation in pipeline
mode.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

12

No Read From Last Word in Pipeline Mode if Bank Is in Sleep or StandbyAdvisory FW#18

Description : If not all banks are in sleep/standby (but at least one is), and an access to the last word of the
last bank is performed in pipeline mode, a prefetch to a nonexisting bank that is in
sleep/standby (because nonexisting banks power down signals are tied to existing bank
power-down signals − normally bank0) will cause the CPU to hang.

Workaround : Last word of last bank should not be used.

Reading the Interrupt Offset RegistersAdvisory GIO#1

Description : When either of the two interrupt offset registers are read, and a higher priority interrupt occurs
in the same cycle, the interrupt pending flag for the higher-priority interrupt is wrongly cleared,
but the offset for the lower-priority interrupt is read. As a result, the lower-priority interrupt will
be serviced twice and the higher-priority interrupt will not be serviced at all.

Workaround : Do not read the interrupt offset register to identify the pending interrupt with the highest
priority. Instead, read from the interrupt pending flag register and use bit tests to decode the
pending interrupt with the highest priority by software. An additional write to the flag register is
necessary to clear the pending interrupt flag.

Auto Read Clear MalfunctionAdvisory HET#15

Description : The HET Auto Read Clear feature does not always work properly. Specifically, the data field of
instruction X is not cleared if the following conditions a) and b) are true at the same time:

a) The 64-bit CPU read access happens exactly in the two HET time slots preceding the time
slot Y in which instruction X is executed.

b) Instruction X just changes its data field (in time slot Y). (Example: Instruction X is an ECNT
instruction, which just detected an edge.) The malfunction does not occur if the data field of
instruction X does not change, since then b) is not true.

Workaround : See above.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

13

MCMP Causes a Constant Signal, Not PWMAdvisory HET#16

Description : MCMP causes a constant signal instead of a PWM, if both of the following conditions are met:

1. Consecutive compare match in every LRP for order=reg_ge_data (only when [data=0]).

2. The high resolution delay (in number of SYSCLK cycles) is equal to the time slot the MCM
is executed.

Workaround : Replace each MCMP with a two instruction sequence: ECMP and MOV32.

Reading the Interrupt Offset RegistersAdvisory HET#19

Description : When either of the two interrupt offset registers are read, and a higher priority interrupt occurs
in the same cycle, the interrupt pending flag for the higher-priority interrupt is wrongly cleared,
but the offset for the lower-priority interrupt is read. As a result, the lower-priority interrupt will
be serviced twice and the higher-priority interrupt will not be serviced at all.

Workaround : Do not read the interrupt offset register to identify the pending interrupt with the highest
priority. Instead, read from the interrupt pending flag register and use bit tests to decode the
pending interrupt with the highest priority by software. An additional write to the flag register is
necessary to clear the pending interrupt flag.

Slave Cannot Detect Stop ConditionAdvisory I2C#1

Description : There is no way currently for the slave to detect, when the master has generated a stop
condition. This is a potential bug and for a generic application, the I2C cannot be used as a
slave in interrupt mode due to this limitation.

Workaround : TBD

Extra Transmit Interrupt by SlaveAdvisory I2C#2

Description : An extra transmit interrupt is generated by the slave transmitter in interrupt mode.

Workaround : Pad the message with a dummy byte whether in receive or transmit mode.
The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

14

Stop Condition Clears TXRDYAdvisory I2C#3

Description : STOP condition clears TXRDY in slave non-DLB mode.

Workaround : TBD

Resetting the IRS Bit Does Not Clear the Bus Busy Bit in Master ModeAdvisory I2C#4

Description : Resetting the IRS bit does not clear the bus busy (BB) bit in master mode. This occurs
because of the assumption of it working even if the I2C is in software reset, however, it does
not work when the I2C is in software reset. The BB bit is set by not only a start condition but
also by a low state on SCL, so that the BB bit can show the correct state of the I2C bus as
soon as the I2C goes out of reset.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Unexpected Behavior with 10-bit Addressing W-R FormatAdvisory I2C#5

Description : The I2C module cannot behave with 10-bit addressing W-R format as described in the Philips
I2C Spec Rev 1.2 Section 14.2. The I2C sends a full address after a repeated start condition
for reading. The I2C sends the slave address second byte every time it sends the slave
address first byte.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

ISCPSC Affects Real Dividing ValueAdvisory I2C#6

Description : I2CPSC affects real dividing value on rising edge of IRS. The value of the I2CPSC is
transferred to the internal register which controls the I2C clock frequency on rising edge of
IRS. As far as IRS is 0, the frequency of the I2C clock is not changed even if I2CPSC is
updated.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

15

Resetting During TransferAdvisory I2C#7

Description : Resetting the IRS bit during transfer can the hang the I2C bus.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Bus Busy Bit Not Cleared by Resetting the IRS BitAdvisory I2C#8

Description : The bus busy (BB) bit is not cleared by resetting the IRS bit.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Bus Fails to Go Busy in Master Transmitter ModeAdvisory I2C#9

Description : If the I2C is configured in master transmitter mode and another master transmitter transfer is
initiated immediately after the previous one, the start condition is not issued and the bus fails
to go busy for the next transfer. The end of the first transfer is checked by polling for the bus
busy bit. However the MST bit (for the master transmitter mode) does not get reset at the
same instant when the bus busy bit goes free. As a result, if another master transmitter
transfer is started before the MST bit for the previous transfer is reset, the MST bit for the
second transfer gets reset (because of the first transfer resetting the MST bit). As a result, the
I2C module fails to recognize itself as the master. In that case, when the start condition is
issued the I2C module fails to get the bus busy.

Workaround : Wait for the MST bit (in addition to the bus busy bit) to get reset before starting another master
transmitter transfer. The documentation will be updated to reflect this requirement.

Bit Count Bit DescriptionAdvisory I2C#10

Description : Clarification of the description of the bit count bits in the I2CMDR.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

16

Module Appears to Hang When SCL LowAdvisory I2C#11

Description : If an external I2C master is pulling SCL low, the I2C is programmed for master mode, and the
Start has been issued while the input clock is still low; then no I2C activity will be observed
and the module appears to be hung, requiring a reset to release the bus.

Workaround : TBD

ARDY Bit Set and Cleared Without Being Written ToAdvisory I2C#12

Description : The bit ARDY of I2C register I2CSTR is being set and then cleared with out being written to.

Workaround : TBD

I2C Write of I2CMDR Followed by Read MiscompareAdvisory I2C#13

Description : An I2C write of I2CMDR is immediately followed by a read miscompare. A read of I2CMDR
immediately following a write returns the data before the write. Further reading of I2CMDR
produces the value written. This occurs when the STP stop bit is set during a master mode,
receive, repeat mode transfer. The transfer is stopped at the end the next byte.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

RSFULL Bit Set on First Data Byte After StartAdvisory I2C#14

Description : In the I2CSTR register, the bit RSFULL is set on the first data byte after start while in
master-receive repeat mode with extended address.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

17

I2C SDA Data Transition While SCL is HighAdvisory I2C#15

Description : I2C SDA data transition occurs while SCL is high. The SDA line is driven low while the SCL
line was high during a data transmission. This is a I2C protocol fault which occurs in master,
transmit, extended address, and repeat mode when the ICCLKL and ICCLKH registers were
both programmed to 2 with the ICPSC = 2. The problem appears to be related to the clock
divider registers = 2. These register settings are outside of the range for normal I2C rates and,
therefore, there may need to be some limits specified for programming these registers.

Workaround : Do not use the I2C module under these conditions. The documentation will be updated to
reflect this requirement. (SPNU223, 2/2005)

RXRDY and TXRDY Not Cleared by Reading I2CIVRAdvisory I2C#16

Description : The interrupt flag bits RXRDY and TXRDY are not cleared by reading I2CIVR.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

TXRDY Not Reset by Writing 1Advisory I2C#17

Description : The I2C register I2CSTR bit TXRDY is not reset by writing a 1 to it.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

I2CCLKH and I2CCLKL Not Functioning as Simple Clock DividersAdvisory I2C#18

Description : The I2C clock divider registers I2CCLKH and I2CCLKL are not functioning as simple clock
dividers.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Clearing I2CIVR Not Specified in Register DescriptionAdvisory I2C#19

Description : Clearing the I2CIVR is not clearly specified in the register description.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

18

Unused Bits Not Cleared in Bits ModeAdvisory I2C#20

Description : In bits mode, unused bits are not cleared to 0 and bits from the old data in the shift register
appear instead.

Workaround : TBD

I2COAR/I2CSAR Register Description UpdateAdvisory I2C#21

Description : Clarification must be added to the I2COAR/I2CSAR register description.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Unexpected ICXEVT Event and ICXRDY InterruptAdvisory I2C#22

Description : Unexpected ICXEVT event and ICXRDY interrupt in master/XA/transmit/repeat mode.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Contents of I2CDRR Not Lost at an OverrunAdvisory I2C#23

Description : The contents of I2CDRR are not lost at an overrun.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

False ARDY StatusAdvisory I2C#25

Description : False ARDY=1 status occurs after starting in master, transmit, repeat, and FDF mode.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

19

No NACK StatusAdvisory I2C#26

Description : No NACK status occurs when NACK received in slave, and transmit mode.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Peripheral Clock Frequency RangeAdvisory I2C#27

Description : The peripheral clock frequency range is documented incorrectly.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

No NACK Status When Received in Master STB ModeAdvisory I2C#28

Description : No NACK status occurs when NACK is received in master STB (start byte) mode.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

Stop Not Cleared on NACK in STB ModeAdvisory I2C#29

Description : STP (stop) is not cleared on NACK in STB (start byte) mode.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

20

Slave Transmit With Extended Address Fails After Repeat StartAdvisory I2C#31

Description : A slave transmit mode operation with extended address fails to ACK after the repeat start and
first seven bits of address are resent. The conditions are slave-transmitter, 10-bit mode,
ICMDR[2:0](BC) = 001b. The I2C does not work correctly with this configuration. The I2C
regards repeated start condition following the second byte of the slave address as an illegal
start condition and follows it as a normal start condition and starts receiving data as a new
slave address. But the next first byte of the slave address is ”11110XX0”, which is illegal as a
first byte address. It is valid only when it is the third address phase in 10-bit addressing mode.
As a result, the I2C thinks that it is not addressed by the master module and goes back to idle
state.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

BB Bit Does Not Reflect I2C Bus Status CorrectlyAdvisory I2C#32

Description : In all modes of operation, the BB bit does not reflect the I2C bus status correctly. This is a
serious issue when the device is configured in multi-master mode.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

AAS Bit Not Cleared by START ConditionAdvisory I2C#33

Description : In 10-bit addressing mode, the AAS bit is not cleared by repeated Start condition.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

False Start Condition on ResetAdvisory I2C#34

Description : The I2C will experience a false start condition if the module is reset while the bus is busy. As a
result, the I2C block will begin clocking in data in the middle of a transmission and invalid data
will be received.

Workaround : The documentation will be updated to reflect this requirement. (SPNU223, 2/2005)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

21

Tap Interrupt When Clearing CounterAdvisory RTI#3

Description : Write accesses to the RTICNTR register will clear the CNTR (21 bit counter), which will cause
a Tap interrupt if the corresponding bit switches from a 1 to a 0.

Workaround : Disable the RTI prior to changing the RTICNTR value.

Tap Interrupt When Clearing Counter in Suspend ModeAdvisory RTI#4

Description : Write accesses to the RTICNTR register will clear the CNTR (21 bit counter) which will cause
a Tap interrupt if the corresponding bit switches from a 1 to a 0 when the suspend signal is
asserted.

Workaround : This is the same problem as RTI#3, however, on the initial fix of RTI#3, the case where the
suspend signal is asserted because of an emulator breakpoint was not considered. This
problem occurs when the emulator has set a breakpoint on one of the instructions closely
following the instruction which writes to the counter.

Asynchronous Clear of RTI Tap Flag Not RecommendedAdvisory RTI#6

Description : When using the oscillator to clock the RTI counter, any asynchronous clear of the RTI tap flag
could cause an arbitration condition between the clear and the RTI module trying to set the
flag. This will cause the tap flag to not get set and, hence, the Tap interrupt to not occur.

Workaround : Before attempting to clear the RTI tap flag, the RTI counter needs to be checked to make sure
that the RTI module is not about to set the flag again.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

22

CAN Does Not Perform Resynchronization As ExpectedAdvisory SCC#4

Description : Due to the proposed update of the ISO-WD-16485 CAN Test specification (2001-05-31), the
HCC/SCC on this device has a nonconformance to the Bosch CAN Specification and the
ISO-11898 Standard as described below:

If the following conditions are met, the CAN does not perform a resynchronization as it is
expected.

Conditions:

1. The node must be transmitter.
2. The node must transmit a dominant bit.
3. The dominant bit must be sampled back as recessive.
4. A recessive to dominant edge must be detected after the sample point.

But since the recessive sampling of the bit transmitted as dominant is an error anyway, an
error frame will be transmitted at the beginning of the following bit.

Therefore, the effect of the nonconformance is a delay of this error frame. The maximum for
this delay is five (max(SJW) + 1 Tq) time quanta.

Workaround : This nonconformance is classified as nonserious and does not have any impact on proper
communication and interoperability with other nodes. See above description.

CANHRX Must be High During Self-TestAdvisory SCC#6

Description : The CANSRX pin must be high during self-test.

Workaround : The CANSRX pin is usually driven high by the bus transceiver. As long as there is no bus
activity during the self-test, this is not a problem. If there is nothing driving the CANHRX pin, it
can be configured as a digital output and set high during the self-test.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

23

Abort Acknowledge Bit Not Set After Transmission Request ResetAdvisory SCC#7

Description : After aborting a message using the Transmission Request Reset (TRR) register bit, there are
some rare instances where the TRR bit will clear without setting the Abort Acknowledge (AA)
bit.

In order for this rare condition to occur all the following three conditions must happen:

1. The current message has a message error or lost arbitration. This message does not need
to have the same mailbox number as the following TRR bit mailbox.

2. The TRS bit of the same mailbox as the TRR mailbox must be set from either this current
message, prior to the current message and still pending, or just set.

3. The TRR bit must be set in the exact ICLK cycle where the wrapper state machine is in IDLE
for one cycle. (One ICLK before or after, and the condition will not occur). This IDLE state can
occur just after the current message. It can also occur just a few ICLKs after setting the TRS
bit of any mailbox after the current message (point 1 above).

If these conditions occur, then the TRR and TRS bits for the mailbox will clear tclr ICLKs after
the TRR bit is set where:

 tclr = ((16−mailbox_number)*2)+3 ICLK cycles

The TA and AA bits will not be set if this condition occurs. Normally, either the TA or AA bit
sets after TRR bit goes to zero.

Workaround : When this problem occurs, the TRR and TRS bits will clear within tclr ICLK cycles. To check for
this condition, first disable the interrupts. Check the TRR bits’ tclr ICLK cycles after setting the
TRR bits to make sure that they are still set. A set TRR bit indicates the problem did not occur.
If TRR is cleared, then maybe it was the normal end of a message and the TA or AA bits are
set. Check both the TA and AA bits. If they are both zero, then the conditions did occur.
Handle the condition like the interrupt service routine would, except that the AA bit does not
need clearing now. If the TA or AA bit is set, then the normal interrupt routine will happen when
the interrupt is reenabled.

Slave Baud Rate SettingAdvisory SPI#1

Description : When the SPI is operated in slave mode, the SPI clock must be configured to a baud rate as
close to the master’s baud rate as possible. If the baud rate is too slow, the enable signal will
not be generated in time to keep the master from sending additional data. If the baud rate is
too fast, the slave will capture the data before the last bit is shifted in.

Workaround : The documentation will be updated to reflect this requirement. (SPNU195C, 7/2003)

SPNZ148BTMS470R1A384 Silicon Revision E Errata

24

Clearing, Setting SPI EN Bit Does Not Clear Internal FlagAdvisory SPI#2

Description : Clearing and then setting the SPIEN bit does not clear an internal flag that indicates there is
valid data in the SPI data register. This could lead to an inadvertent overrun error. The
software should do a dummy read of SPIBUF after setting the SPIEN bit to clear the internal
flag.

Workaround : The documentation will be update to reflect this requirement. (SPNU195C, 7/2003)

Clock Corruption When Changing MultiplierAdvisory ZPLL#1

Description : All interrupt requests coming to the CIM module must be disabled when changing between
multiply-by-4 and multiply-by-8.

Workaround : Disable the interrupt request at the peripheral source if possible.

SPNZ148BTMS470R1A384 Silicon Revision E Errata

25

2 Known Exceptions to Timing Specifications

SPIn Master Mode Timing Parameters Correction at 125�CAdvisory

Description : At 125°C, the SPIn master mode timing parameter #4 (clock phase = 1) needs to be as
follows:

Current MIN Spec in ns New MIN Spec at 125 �C in ns

4 tv(SIMO − SPCH)M Valid time, SPInCLK high after
SPInSIMO data valid

(clock polarity = 0)

0.5tc(SPC)M − 10 0.5tc(SPC)M − 12

The current specification, 0.5tc(SPC)M − 10, is valid at 85C.

EBM Timing ModificationsAdvisory

Description : Based on characterization data, the expansion bus timing parameters are as follows:

NO. PARAMETER MIN MAX UNIT

2 td(COH−EBADV) 26 ns

3 th(COH−EBADIV) (−8) ns

4 td(COH−EBOE) 15 ns

5 th(COH−EBOEH) 2 ns

6 td(COL−EBWR) 17 ns

7 th(COL−EBWRH) 3 ns

8 tsu(EBRDATV−COH) 25 ns

9 th(COH−EBRDATIV) (−6) ns

10 td(COL−EBWDATV) 19 ns

11 th(COL−EBWDATIV) (−12) ns

12 td(COH−EBCSn) 6 20 ns

13 th(COH−EBCSnH) 21 ns

14 tsu(COH−EBHOLDL) 25 ns

15 tsu(COH−EBHOLDH) 25 ns

