Sample \& Buy Technical Documents

ADS4229 Dual-Channel, 12-Bit, 250-MSPS Ultralow-Power ADC

1 Features

- Maximum Sample Rate: 250 MSPS
- Ultralow Power with Single 1.8-V Supply:
- 545-mW Total Power at 250 MSPS
- High Dynamic Performance:
- $80.8-\mathrm{dBc}$ SFDR at 170 MHz
- 69.4-dBFS SNR at 170 MHz
- Crosstalk: > 90 dB at 185 MHz
- Programmable Gain Up to 6 dB for SNR and SFDR Trade-off
- DC Offset Correction
- Output Interface Options:
- 1.8-V Parallel CMOS Interface
- DDR LVDS With Programmable Swing:
- Standard Swing: 350 mV
- Low Swing: 200 mV
- Supports Low Input Clock Amplitude Down to 200 mV PP
- Package: $9-\mathrm{mm} \times 9-\mathrm{mm}, 64-$ Pin Quad Flat No-Lead (QFN) Package

2 Applications

- Wireless Communications Infrastructure
- Software Defined Radio
- Power Amplifier Linearization

3 Description

The ADS4229 is a member of the ADS42xx ultralowpower family of dual-channel, 12 -bit and 14-bit analog-to-digital converters (ADCs). Innovative design techniques are used to achieve high dynamic performance, while consuming extremely low power with a $1.8-\mathrm{V}$ supply. This topology makes the ADS4229 well-suited for multi-carrier, wide-bandwidth communications applications.
The ADS4229 has gain options that can be used to improve spurious-free dynamic range (SFDR) performance at lower full-scale input ranges. This device also includes a dc offset correction loop that can be used to cancel the ADC offset. Both double data rate (DDR) low-voltage differential signaling (LVDS) and parallel complementary metal oxide semiconductor (CMOS) digital output interfaces are available in a compact QFN-64 PowerPADTM package.
The device includes internal references while the traditional reference pins and associated decoupling capacitors have been eliminated. The ADS4229 is specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.
Device Information

$\mathbf{1)}$		
PART NUMBER	PACKAGE	BODY SIZE (NOM)
ADS4229	VQFN (64)	$9.00 \mathrm{~mm} \times 9.00 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the datasheet.

ADS4229 Block Diagram

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Device Comparison Table 4
6 Pin Configuration and Functions 5
7 Specifications 9
7.1 Absolute Maximum Ratings 9
7.2 ESD Ratings 9
7.3 Recommended Operating Conditions 9
7.4 Thermal Information 10
7.5 Electrical Characteristics: ADS4229 (250 MSPS)... 10
7.6 Electrical Characteristics: General 12
Digital Characteristics 13
7.8 LVDS and CMOS Modes Timing Requirements. 14
7.9 LVDS Timings at Lower Sampling Frequencies 15
7.10 CMOS Timings at Lower Sampling Frequencies. 15
7.11 Serial Interface Timing Characteristics 17
7.12 Reset Timing (Only when Serial Interface is Used). 18
7.13 Typical Characteristics 19
8 Detailed Description 26
8.1 Overview 26
8.2 Functional Block Diagram 26
8.3 Feature Description 27
8.4 Device Functional Modes 29
8.5 Programming. 33
8.6 Register Maps 37
9 Application and Implementation 47
9.1 Application Information 47
9.2 Typical Application 53
10 Power Supply Recommendations 55
10.1 Sharing DRVDD and AVDD Supplies 55
10.2 Using DC/DC Power Supplies 55
10.3 Power Supply Bypassing 55
11 Layout. 55
11.1 Layout Guidelines 55
11.2 Layout Example 56
12 Device and Documentation Support 57
12.1 Device Support. 57
12.2 Documentation Support 58
12.3 Community Resources. 59
12.4 Trademarks 59
12.5 Electrostatic Discharge Caution 59
12.6 Glossary 59
13 Mechanical, Packaging, and Orderable Information 59

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision B (August 2012) to Revision C Page

- Added Pin Configuration and Functions section, ESD Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
Changes from Revision A (October 2011) to Revision B Page
- Changed first sub-bullet of High Dynamic Performance Features bullet 1
- Changed footnote 1 in CMOS Timings at Lower Sampling Frequencies. 15
- Changed row D5 and consolidated the two DB rows in Table 10. 37
- Changed Register Address D5h 46
- Changed title of Register Address DBh, consolidated two DBh registers into one. 46
Changes from Original (June 2011) to Revision A Page
- Changed ADS4229 Input Common-Mode Voltage parameter in Table 1 4
- Changed AC power-supply rejection ratio parameter test condition in ADS4229 Electrical Characteristics table 11
- Updated Figure 3 16
- Updated Figure 25 22
- Updated Figure 31 23
- Updated Figure 32. 23
- Changed Time Constant, $T C_{C L K} \times 1 / f_{S}(\mathrm{~ms})$ column and footnote 1 in Table 3 28
- Changed Revised Channel Standby section... 28
- Changed High-performance mode parameter description in High-Performance Modes table ... 33
- Changed description of bits[7:2] in Register Address 40h ... 41
- Updated Register Address D7h and Register Address D8h tables.. 46
- Updated first paragraph of Analog Input section... 48
- Updated first paragraph of Driving Circuit subsection.. 49

5 Device Comparison Table

	65 MSPS	125 MSPS	160 MSPS	250 MSPS
ADS422x 12 -bit family${ }^{(1)}$	ADS4222	ADS4225	ADS4226	ADS4229
ADS424x 14 -bit family${ }^{(1)}$	ADS4242	ADS4245	ADS4246	ADS4249

(1) See Table 1 for details on migrating from the ADS62P49 family.

The ADS4229 is pin-compatible with the previous generation ADS62P49 data converter; this similar architecture enables easy migration. However, there are some important differences between the two device generations, summarized in Table 1.

Table 1. Migrating from the ADS62P49

ADS62P49 FAMILY	
PINS	
Pin 22 is NC (not connected)	Pin 22 is AVDD
Pins 38 and 58 are DRVDD	Pins 38 and 58 are NC (do not connect, must be floated)
Pins 39 and 59 are DRGND	Pins 39 and 59 are NC (do not connect, must be floated)
SUPPLY	AVDD is 1.9 V
AVDD is 3.3 V	No change
DRVDD is 1.8 V	
INPUT COMMON-MODE VOLTAGE	VCM is 0.95 V
VCM is 1.5 V	
SERIAL INTERFACE	No change in protocol New serial register map
Protocol: 8-bit register address and 8-bit register data	
EXTERNAL REFERENCE	
Supported	Not supported

6 Pin Configuration and Functions

Pin Functions (LVDS Mode)

PIN		I/O	DESCRIPTION
NAME	NO.		
AGND	17	I	Analog ground
	18		
	21		
	24		
	27		
	28		
	31		
	32		
AVDD	16	1	Analog power supply
	22		
	23		
	34		
CLKM	26	1	Differential clock negative input
CLKP	25	1	Differential clock positive input
CTRL1	35	I	Digital control input pins. Together, they control the various power-down modes.
CTRL2	36	I	Digital control input pins. Together, they control the various power-down modes.
CTRL3	37	I	Digital control input pins. Together, they control the various power-down modes.
CLKOUTP	57	0	Differential output clock, true

Pin Functions (LVDS Mode) (continued)

PIN		I/O	DESCRIPTION
NAME	NO.		
CLKOUTM	56	0	Differential output clock, complement
DAOM	42	O	Channel A differential output data pair, D0 and D1 multiplexed
DAOP	43		
DA2M	44	0	Channel A differential output data D2 and D3 multiplexed
DA2P	45		
DA4M	46	O	Channel A differential output data D4 and D5 multiplexed
DA4P	47		
DA6M	50	O	Channel A differential output data D6 and D7 multiplexed
DA6P	51		
DA8M	52	0	Channel A differential output data D8 and D9 multiplexed
DA8P	53		
DA10M	54	0	Channel A differential output data D10 and D11 multiplexed
DA10P	55		
DB0M	62	O	Channel B differential output data pair, D0 and D1 multiplexed
DB0P	63		
DB2M	2	0	Channel B differential output data D2 and D3 multiplexed
DB2P	3		
DB4M	4	0	Channel B differential output data D4 and D5 multiplexed
DB4P	5		
DB6M	6	0	Channel B differential output data D6 and D7 multiplexed
DB6P	7		
DB8M	8	0	Channel B differential output data D8 and D9 multiplexed
DB8P	9		
DB10M	10	0	Channel B differential output data D10 and D11 multiplexed
DB10P	11		
DRGND	49	1	Output buffer ground
	PAD		
DRVDD	1	1	Output buffer supply
	48		
INP_A	29	1	Differential analog positive input, channel A
INM_A	30	1	Differential analog negative input, channel A
INP_B	19	1	Differential analog positive input, channel B
INM_B	20	1	Differential analog negative input, channel B
NC	38	-	Do not connect, must be floated
	39		
	40		
	41		
	58		
	59		
	60		
	61		
RESET	12	1	Serial interface RESET input. When using the serial interface mode, the internal registers must be initialized through a hardware RESET by applying a high pulse on this pin or by using the software reset option; refer to the Serial Interface Configuration section. In parallel interface mode, the RESET pin must be permanently tied high. SCLK and SEN are used as parallel control pins in this mode. This pin has an internal $150-\mathrm{k} \Omega$ pull-down resistor.

Pin Functions (LVDS Mode) (continued)

PIN		I/O	
NAME	NO.		
SCLK	13	I	This pin functions as a serial interface clock input when RESET is low. It controls the low-speed mode selection when RESET is tied high; see Table 7 for detailed information. This pin has an internal $150-\mathrm{k} \Omega$ pull-down resistor.
SDATA	14	I	Serial interface data input; this pin has an internal 150 -k Ω pull-down resistor.
SDOUT	64	O	This pin functions as a serial interface register readout when the READOUT bit is enabled. When READOUT $=0$, this pin is put into a high-impedance state.
VCM	23	O	This pin outputs the common-mode voltage (0.95 V) that can be used externally to bias the analog input pins

Pin Functions (CMOS Mode)

PIN		1/0	DESCRIPTION
NAME	NO.		
AGND	17	I	Analog ground
	18		
	21		
	24		
	27		
	28		
	31		
	32		
AVDD	16	1	Analog power supply
	22		
	33		
	34		
CLKM	26	1	Differential clock negative input
CLKOUT	57	O	CMOS output clock
CLKP	25	I	Differential clock positive input
CTRL1	35	1	Digital control input pins. Together, they control various power-down modes.
CTRL2	36	I	Digital control input pins. Together, they control various power-down modes.
CTRL3	37	I	Digital control input pins. Together, they control various power-down modes.
DA0	42	0	Channel A ADC output data bits, CMOS levels
DA1	43		
DA2	44		
DA3	45		
DA4	46		
DA5	47		
DA6	50		
DA7	51		
DA8	52		
DA9	53		
DA10	54		
DA11	55		

Pin Functions (CMOS Mode) (continued)

PIN		I/O	DESCRIPTION
NAME	NO.		
DB0	62	O	Channel B ADC output data bits, CMOS levels
DB1	63		
DB2	2		
DB3	3		
DB4	4		
DB5	5		
DB6	6		
DB7	7		
DB8	8		
DB9	9		
DB10	10		
DB11	11		
DRGND	49	1	Output buffer ground
	PAD		
DRVDD	1	1	Output buffer supply
	48		
NC	-	-	Do not connect, must be floated
RESET	12	I	Serial interface RESET input. When using the serial interface mode, the internal registers must be initialized through a hardware RESET by applying a high pulse on this pin or by using the software reset option; refer to the Serial Interface Configuration section. In parallel interface mode, the RESET pin must be permanently tied high. SDATA and SEN are used as parallel control pins in this mode. This pin has an internal 150-k Ω pull-down resistor.
INM_A	30	I	Differential analog negative input, channel A
INP_A	29	1	Differential analog positive input, channel A
INM_B	20	I	Differential analog negative input, channel B
INP_B	19	I	Differential analog positive input, channel B
SCLK	13	I	This pin functions as a serial interface clock input when RESET is low. It controls the low-speed mode when RESET is tied high; see Table 7 for detailed information. This pin has an internal 150-k Ω pull-down resistor.
SDATA	14	I	Serial interface data input; this pin has an internal 150-k
SDOUT	64	O	This pin functions as a serial interface register readout when the READOUT bit is enabled. When READOUT $=0$, this pin is put into a high-impedance state.
SEN	15	I	This pin functions as a serial interface enable input when RESET is low. It controls the output interface and data format selection when RESET is tied high; see Table 8 for detailed information. This pin has an internal $150-\mathrm{k} \Omega$ pull-up resistor to AVDD.
VCM	23	O	This pin outputs the common-mode voltage (0.95 V) that can be used externally to bias the analog input pins
UNUSED	56	-	This pin is not used in the CMOS interface

ADS4229
www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings ${ }^{(1)}$

		MIN	MAX	UNIT
Supply voltage, AVDD		-0.3	2.1	V
Supply voltage, DRVDD		-0.3	2.1	V
Voltage between AGND and DRGND		-0.3	0.3	V
Voltage between AVDD to DRVDD (when AVDD leads DRVDD)		-2.4	2.4	V
Voltage between DRVDD to AVDD (when DRVDD leads AVDD)		-2.4	2.4	V
Voltage applied to input pins	INP_A, INM_A, INP_B, INM_B	-0.3	Minimum (1.9, AVDD + 0.3)	V
	CLKP, CLKM ${ }^{(2)}$	-0.3	AVDD + 0.3	V
	RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3	-0.3	3.9	V
Operating free-air temperature, T_{A}		-40	85	${ }^{\circ} \mathrm{C}$
Operating junction temperature, T_{J}			125	${ }^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {stg }}$		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than $|0.3 \mathrm{~V}|$). This configuration prevents the ESD protection diodes at the clock input pins from turning on.

7.2 ESD Ratings

		VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }}$ Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	2000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise noted.

	MIN	NOM	MAX	UNIT
SUPPLIES				
Analog supply voltage, AVDD	1.7	1.8	1.9	V
Digital supply voltage, DRVDD	1.7	1.8	1.9	V
ANALOG INPUTS				
Differential input voltage range		2		$V_{\text {PP }}$
Input common-mode voltage		± 0.05		V
Maximum analog input frequency with 2-V $\mathrm{V}_{\text {PP }}$ input amplitude ${ }^{(1)}$		400		MHz
Maximum analog input frequency with $1-V_{P P}$ input amplitude ${ }^{(1)}$		600		MHz
CLOCK INPUT				
Input clock sample rate				
Low-speed mode enabled ${ }^{(2)}$	1		80	MSPS
Low-speed mode disabled ${ }^{(2)}$ (by default after reset)	80		250	MSPS
Input clock amplitude differential$\left(\mathrm{V}_{\text {CLKP }}-\mathrm{V}_{\text {CLKM }}\right)$	0.2	1.5		$V_{\text {PP }}$
		1.6		$V_{\text {PP }}$
		0.7		$V_{P P}$
		1.5		V
Input clock duty cycle				
Low-speed mode disabled	35\%	50\%	65\%	
Low-speed mode enabled	40\%	50\%	60\%	

(1) See Theory of Operation
(2) See Serial Interface Configuration for details on programming the low-speed mode.

Recommended Operating Conditions (continued)

Over operating free-air temperature range, unless otherwise noted.

	MIN	NOM	MAX	UNIT
DIGITAL OUTPUTS				
Maximum external load capacitance from each output pin to DRGND, C LOAD		5		pF
Differential load resistance between the LVDS output pairs (LVDS mode), R $\mathrm{L}_{\text {LOAD }}$		100		Ω
Operating free-air temperature, T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		ADS4229 RGC (VQFN) 64 PINS	UNIT
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	23.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	10.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	4.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ψ_{JB}	Junction-to-board characterization parameter	4.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: ADS4229 (250 MSPS)

Typical values are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, DRVDD $=1.8 \mathrm{~V}, 50 \%$ clock duty cycle, -1 dBFS differential analog input, LVDS interface, and $0-\mathrm{dB}$ gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:
$\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, and $\mathrm{DRVDD}=1.8 \mathrm{~V}$.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution					12	Bits
Signal-to-noise ratio	SNR	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		70.5		dBFS
		$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		70.3		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		70.1		dBFS
		$\mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		69.8		dBFS
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	65.5	67.8		dBFS
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}$		68.2		dBFS
Signal-to-noise and distortion ratio	SINAD	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		70		dBFS
		$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		69.7		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		69.8		dBFS
		$\mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		68.1		dBFS
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	65	67.5		dBFS
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}$		67.6		dBFS
Spurious-free dynamic range	SFDR	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		80		dBc
		$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		79		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		82		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		80		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	71	81		dBc
		$\mathrm{f}_{\text {IN }}=300 \mathrm{MHz}$		77		dBc
Total harmonic distortion	THD	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		78		dBc
		$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		77		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		79		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		76		dBc
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	69.5	78		dBc
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}$		75		dBc

Electrical Characteristics: ADS4229 (250 MSPS) (continued)

Typical values are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}, 50 \%$ clock duty cycle, -1 dBFS differential analog input, LVDS interface, and $0-\mathrm{dB}$ gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:
$\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, and DRVDD $=1.8 \mathrm{~V}$.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Second-harmonic distortion HD2	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		80		dBc
	$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		79		dBc
	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		81		dBc
	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		80		dBc
	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	71	81		dBc
	$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}$		76		dBc
Third-harmonic distortion HD3	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		85		dBc
	$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		87		dBc
	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		96		dBc
	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		80		dBc
	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	71	87		dBc
	$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}$		84		dBc
Worst spur (other than second and third harmonics)	$\mathrm{f}_{\mathrm{IN}}=20 \mathrm{MHz}$		92		dBc
	$\mathrm{f}_{\mathrm{IN}}=70 \mathrm{MHz}$		95		dBc
	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$		94		dBc
	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, 0-\mathrm{dB}$ gain		93		dBc
	$\mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz}, 3-\mathrm{dB}$ gain	77	92		dBc
	$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}$		89		dBc
Two-tone intermodulation	$\begin{aligned} & \mathrm{f}_{1}=46 \mathrm{MHz}, \mathrm{f}_{2}=50 \mathrm{MHz}, \\ & \text { each tone at }-7 \mathrm{dBFS} \end{aligned}$		98		dBFS
	$\mathrm{f}_{1}=185 \mathrm{MHz}, \mathrm{f}_{2}=190 \mathrm{MHz},$ each tone at -7 dBFS		84		dBFS
Crosstalk	$20-\mathrm{MHz}$ full-scale signal on channel under observation; $170-\mathrm{MHz}$ full-scale signal on other channel		95		dB
Input overload recovery	Recovery to within 1% (of full-scale) for 6 dB overload with sine-wave input		1		Clock cycle
AC power-supply rejection ratio	For $50-\mathrm{mV} \mathrm{P}_{\text {PP }}$ signal on AVDD supply, up to 10 MHz		30		dB
Effective number of bits ENOB	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		11.15		LSBs
Differential nonlinearity DNL	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$	-0.8	± 0.5	1.5	LSBs
Integrated nonlinearity INL	$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$		± 1.8	± 4	LSBs

ADS4229

SBAS550C -JUNE 2011-REVISED MAY 2015
www.ti.com

7.6 Electrical Characteristics: General

Typical values are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, $\mathrm{DRVDD}=1.8 \mathrm{~V}, 50 \%$ clock duty cycle, and -1 dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range: $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}=+85^{\circ} \mathrm{C}$, $\mathrm{AVDD}=1.8 \mathrm{~V}$, and DRVDD $=1.8 \mathrm{~V}$.

PARAMETER	MIN	TYP	MAX	UNIT
ANALOG INPUTS				
Differential input voltage range		2		V_{PP}
Differential input resistance (at 200 MHz)		0.75		$\mathrm{k} \Omega$
Differential input capacitance (at 200 MHz)		3.7		pF
Analog input bandwidth (with $50-\Omega$ source impedance, and $50-\Omega$ termination)		550		MHz
Analog input common-mode current (per input pin of each channel)		1.5		$\mu \mathrm{A} / \mathrm{MSPS}$
Common-mode output voltage VCM		$0.95{ }^{(1)}$		V
VCM output current capability		4		mA
DC ACCURACY				
Offset error	-15	2.5	15	mV
Temperature coefficient of offset error		0.003		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Gain error as a result of internal reference inaccuracy alone	-2		2	\%FS
Gain error of channel alone $\mathrm{E}_{\text {GCHAN }}$		± 0.1	1	\%FS
Temperature coefficient of EGCHAN		0.002		$\Delta \% /{ }^{\circ} \mathrm{C}$
POWER SUPPLY				
IAVDD Analog supply current		167	190	mA
IDRVDD Output buffer supply current LVDS interface, $350-\mathrm{mV}$ swing with $100-\Omega$ external termination, $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{MHz}$		136	160	mA
IDRVDD Output buffer supply current CMOS interface, no load capacitance, $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{MHz}^{(2)}$		94		mA
Analog power		301		mW
Digital power LVDS interface, $350-\mathrm{mV}$ swing with $100-\Omega$ external termination, $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{MHz}$		245		mW
Digital power CMOS interface, 8-pF external load capacitance ${ }^{(2)}$ $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{MHz}$		169		mW
Global power-down			25	mW

(1) VCM changes to 0.87 V when the HIGH PERF MODE[7:2] serial register bits are set.
(2) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the supply voltage (see CMOS Interface Power Dissipation).

7.7 Digital Characteristics

At $\mathrm{AVDD}=1.8 \mathrm{~V}$ and $\mathrm{DRVDD}=1.8 \mathrm{~V}$, unless otherwise noted. DC specifications refer to the condition where the digital outputs do not switch, but are permanently at a valid logic level '0' or '1'.

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3) ${ }^{(1)}$							
High-level input voltage			All digital inputs support $1.8-\mathrm{V}$ and 3.3-V CMOS logic levels	1.3			V
Low-level input voltage						0.4	V
High-level input current	SDATA, SCLK ${ }^{(2)}$		$\mathrm{V}_{\text {HIGH }}=1.8 \mathrm{~V}$		10		$\mu \mathrm{A}$
	SEN ${ }^{(3)}$		$\mathrm{V}_{\text {HIGH }}=1.8 \mathrm{~V}$		0		$\mu \mathrm{A}$
Low-level input current	SDATA, SCLK		$\mathrm{V}_{\text {Low }}=0 \mathrm{~V}$		0		$\mu \mathrm{A}$
	SEN		$\mathrm{V}_{\text {Low }}=0 \mathrm{~V}$		10		$\mu \mathrm{A}$
DIGITAL OUTPUTS, CMOS INTERFACE (DA[13:0], DB[13:0], CLKOUT, SDOUT)							
High-level output voltage				DRVDD - 0.1	DRVDD		V
Low-level output voltage					0	0.1	V
Output capacitance (internal to device)							pF
DIGITAL OUTPUTS, LVDS INTERFACE							
High-level output differential voltage		$\mathrm{V}_{\text {ODH }}$	With an external $100-\Omega$ termination	270	350	430	mV
Low-level output differential voltage		$\mathrm{V}_{\text {ODL }}$	With an external $100-\Omega$ termination	-430	-350	-270	mV
Output common-mode voltage		$\mathrm{V}_{\text {OCM }}$		0.9	1.05	1.25	V

(1) SCLK, SDATA, and SEN function as digital input pins in serial configuration mode.
(2) SDATA, SCLK have internal $150-\mathrm{k} \Omega$ pull-down resistor.
(3) SEN has an internal $150-\mathrm{k} \Omega$ pull-up resistor to AVDD. Because the pull-up is weak, SEN can also be driven by 1.8 V or 3.3 V CMOS buffers.

(1) With external $100-\Omega$ termination.

Figure 1. LVDS Output Voltage Levels

7.8 LVDS and CMOS Modes Timing Requirements ${ }^{(1)}$

Typical values are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, sampling frequency $=250 \mathrm{MSPS}$, sine wave input clock, $\mathrm{C}_{\text {LOAD }}$ $=5 \mathrm{pF}$, and $\mathrm{R}_{\text {LOAD }}=100 \Omega$, unless otherwise noted. Minimum and maximum values are across the full temperature range:
$\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, and $\mathrm{DRVDD}=1.7 \mathrm{~V}$ to 1.9 V .

	PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
t_{A}	Aperture delay		0.5	0.8	1.1	ns
	Aperture delay matching	Between the two channels of the same device		± 70		ps
	Variation of aperture delay	Between two devices at the same temperature and DRVDD supply		± 150		ps
t_{J}	Aperture jitter			140		$\mathrm{f}_{\mathrm{S}} \mathrm{rms}$
Wakeup time		Time to valid data after coming out of STANDBY mode		50	100	$\mu \mathrm{s}$
		Time to valid data after coming out of GLOBAL power-down mode		100	500	$\mu \mathrm{s}$
ADC latency ${ }^{(2)}$		Default latency after reset		16		Clock cycles
		Digital functions enabled (EN DIGITAL = 1)	24			Clock cycles
DDR LVDS MODE ${ }^{(3)}$						
$\mathrm{t}_{\text {SU }}$	Data setup time	Data valid ${ }^{(4)}$ to zero-crossing of CLKOUTP	0.6	0.88		ns
t_{H}	Data hold time	Zero-crossing of CLKOUTP to data becoming invalid ${ }^{(4)}$	0.33	0.55		ns
$t_{\text {PDI }}$	Clock propagation delay	Input clock rising edge cross-over to output clock rising edge cross-over	5	6	7.5	ns
	LVDS bit clock duty cycle	Duty cycle of differential clock, (CLKOUTPCLKOUTM)		48\%		
$t_{\text {RISE }}$, $\mathrm{t}_{\mathrm{FALL}}$	Data rise time, Data fall time	Rise time measured from -100 mV to +100 mV Fall time measured from +100 mV to -100 mV 1 MSPS \leq Sampling frequency ≤ 250 MSPS		0.13		ns
$t_{\text {CLKRISE }}$, $t_{\text {CLKFALL }}$	Output clock rise time, Output clock fall time	Rise time measured from -100 mV to +100 mV Fall time measured from +100 mV to -100 mV 1 MSPS \leq Sampling frequency ≤ 250 MSPS		0.13		ns
PARALLEL CMOS MODE						
$\mathrm{t}_{\text {PDI }}$	Clock propagation delay	Input clock rising edge cross-over to output clock rising edge cross-over	4.5	6.2	8.5	ns
	Output clock duty cycle	Duty cycle of output clock, CLKOUT 1 MSPS \leq Sampling frequency ≤ 200 MSPS		50\%		
$t_{\text {RISE }}$, $\mathrm{t}_{\mathrm{FALL}}$	Data rise time, Data fall time	Rise time measured from 20% to 80% of DRVDD Fall time measured from 80% to 20% of DRVDD 1 MSPS \leq Sampling frequency ≤ 200 MSPS		0.7		ns
$t_{\text {CLKRISE }}$, $\mathrm{t}_{\text {CLKFALL }}$	Output clock rise time Output clock fall time	Rise time measured from 20% to 80% of DRVDD Fall time measured from 80% to 20% of DRVDD 1 MSPS \leq Sampling frequency ≤ 200 MSPS		0.7		ns

(1) Timing parameters are ensured by design and characterization and not tested in production.
(2) At higher frequencies, $t_{\text {PDI }}$ is greater than one clock period and overall latency = ADC latency +1 .
(3) Measurements are done with a transmission line of $100-\Omega$ characteristic impedance between the device and the load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(4) Data valid refers to a logic high of +100 mV and a logic low of -100 mV .

7.9 LVDS Timings at Lower Sampling Frequencies

Typical values are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, sampling frequency $=250 \mathrm{MSPS}$, sine wave input clock, $\mathrm{C}_{\text {LOAD }}$ $=5 \mathrm{pF}$, and $\mathrm{R}_{\text {LOAD }}=100 \Omega$, unless otherwise noted. Minimum and maximum values are across the full temperature range:
$\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, and $\mathrm{DRVDD}=1.7 \mathrm{~V}$ to 1.9 V .

SAMPLING FREQUENCY (MSPS)	SETUP TIME (ns)			HOLD TIME (ns)			tpdI, CLOCK PROPAGATION DELAY (ns)		
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX
65	5.9	6.6		0.35	0.6		5	6	7.5
80	4.5	5.2		0.35	0.6		5	6	7.5
125	2.3	2.9		0.35	0.6		5	6	7.5
160	1.5	2		0.33	0.55		5	6	7.5
185	1.3	1.6		0.33	0.55		5	6	7.5
200	1.1	1.4		0.33	0.55		5	6	7.5
230	0.76	1.06		0.33	0.55		5	6	7.5

7.10 CMOS Timings at Lower Sampling Frequencies

Typical values are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, DRVDD $=1.8 \mathrm{~V}$, sampling frequency $=250 \mathrm{MSPS}$, sine wave input clock, C Coad $=5 \mathrm{pF}$, and $\mathrm{R}_{\mathrm{LOAD}}=100 \Omega$, unless otherwise noted. Minimum and maximum values are across the full temperature range: $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, and DRVDD $=1.7 \mathrm{~V}$ to 1.9 V .

SAMPLINGFREQUENCY(MSPS)	TIMINGS SPECIFIED WITH RESPECT TO CLKOUT								
	SETUP TIME ${ }^{(1)}$ (ns)			HOLD TIME ${ }^{(1)}$ (ns)			$\begin{aligned} & \text { tpDI, CLOCK PROPAGATION } \\ & \text { DELAY (ns) } \end{aligned}$		
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX
65	6.1	6.7		6.7	7.5		4.5	6.2	8.5
80	4.7	5.2		5.3	6		4.5	6.2	8.5
125	2.7	3.1		3.1	3.6		4.5	6.2	8.5
160	1.6	2.1		2.3	2.8		4.5	6.2	8.5
185	1.1	1.6		1.9	2.4		4.5	6.2	8.5
200	1	1.4		1.7	2.2		4.5	6.2	8.5

(1) In CMOS mode, setup time is measured from the beginning of data valid to 50% of the CLKOUT rising edge, whereas hold time is measured from 50% of the CLKOUT rising edge to data becoming invalid. Data valid refers to a logic high of 1.26 V and a logic low of 0.54 V .

(1) $\mathrm{Dn}=$ bits D0, D1, D2, and so forth, of channels A and B .

Figure 2. CMOS Interface Timing Diagram

(1) ADC latency after reset. At higher sampling frequencies, $t_{P D I}$ is greater than one clock cycle, which then makes the overall latency $=$ ADC latency +1 .
(2) $E=$ even bits (D0, D2, D4, and so forth); O = odd bits (D1, D3, D5, and so forth).

Figure 3. Latency Timing Diagram

Figure 4. LVDS Interface Timing Diagram

7.11 Serial Interface Timing Characteristics

See ${ }^{(1)}$.

PARAMETER		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {SCLK }}$	SCLK frequency (equal to 1/tsCLK)	> DC		20	MHz
$\mathrm{t}_{\text {SLOADS }}$	SEN to SCLK setup time	25			ns
$\mathrm{t}_{\text {SLOADH }}$	SCLK to SEN hold time	25			ns
$\mathrm{t}_{\text {DSU }}$	SDATA setup time	25			ns
$\mathrm{t}_{\text {DH }}$	SDATA hold time	25			ns

(1) Typical values at $+25^{\circ} \mathrm{C}$; minimum and maximum values across the full temperature range: $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}$, $A V D D=1.8 \mathrm{~V}$, and $\mathrm{DRVDD}=1.8 \mathrm{~V}$, unless otherwise noted.

Figure 5. Serial Interface Timing Diagram

7.12 Reset Timing (Only when Serial Interface is Used)

See ${ }^{(1)}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
t_{1}	Power-on delay	Delay from AVDD and DRVDD power-up to active RESET pulse	1		ms
t_{2}	Reset pulse width	Active RESET signal pulse width	10		ns
				1	$\mu \mathrm{s}$
t_{3}	Register write delay	Delay from RESET disable to SEN active	100		ns

(1) Typical values at $+25^{\circ} \mathrm{C}$; minimum and maximum values across the full temperature range: $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=+85^{\circ} \mathrm{C}$, unless otherwise noted.

NOTE: A high pulse on the RESET pin is required in the serial interface mode when initialized through a hardware reset. For parallel interface operation, RESET must be permanently tied high.

Figure 6. Reset Timing Diagram

7.13 Typical Characteristics

7.13.1 Typical Characteristics: ADS4229

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock, 1.5 V PP differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, High-Performance Mode enabled, $0-\mathrm{dB}$ gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 7. Input Signal (10 MHz)

Figure 9. Input Signal ($\mathbf{3 0 0} \mathbf{~ M H z)}$

Figure 11. Two-Tone Input Signal

Figure 8. Input Signal ($\mathbf{1 5 0} \mathbf{~ M H z)}$

Figure 10. Two-Tone Input Signal

Figure 12. SFDR vs Input Frequency

Typical Characteristics: ADS4229 (continued)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock, 1.5 V PP differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, High-Performance Mode enabled, 0-dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 13. SNR vs Input Frequency

Figure 15. SINAD vs Gain and Input Frequency

Figure 17. Performance vs Input Amplitude

Figure 14. SFDR vs Gain and Input Frequency

Figure 16. Performance vs Input Amplitude

Figure 18. Performance vs Input Common-Mode Voltage

ADS4229
www.ti.com

Typical Characteristics: ADS4229 (continued)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock, 1.5 V PP differential clock amplitude, 50% clock duty cycle, $-1-\mathrm{dBFS}$ differential analog input, High-Performance Mode enabled, $0-\mathrm{dB}$ gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 19. Performance vs Input Common-Mode Voltage

Figure 21. SNR vs Temperature and AVDD Supply

Figure 23. Performance vs Input Clock Amplitude

Figure 20. SFDR vs Temperature and AVDD Supply

Figure 22. Performance vs DRVDD Supply Voltage

Figure 24. Performance vs Input Clock Amplitude

Typical Characteristics: ADS4229 (continued)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock, 1.5 V PP differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, High-Performance Mode enabled, 0-dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 25. Performance vs Input Clock Duty Cycle

Figure 27. CMRR Plot

Figure 29. PSRR Plot

Figure 26. CMRR vs Test Signal Frequency

Figure 28. PSRR vs Test Signal Frequency

Figure 30. Analog Power vs Sampling Frequency

Typical Characteristics: ADS4229 (continued)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock, 1.5 V PP differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, High-Performance Mode enabled, 0-dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 31. Digital Power LVDS CMOS

Figure 32. Digital Power in Various Modes

7.13.2 Typical Characteristics: Contour

All graphs are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, $\mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock. $1.5 \mathrm{~V}_{\mathrm{PP}}$ differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, High-Performance Mode enabled, $0-\mathrm{dB}$ gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 33. Spurious-Free Dynamic Range (0-dB Gain)

Figure 34. Spurious-Free Dynamic Range (6-dB Gain)

Typical Characteristics: Contour (continued)

All graphs are at $+25^{\circ} \mathrm{C}, \mathrm{AVDD}=1.8 \mathrm{~V}$, $\mathrm{DRVDD}=1.8 \mathrm{~V}$, maximum rated sampling frequency, sine wave input clock. $1.5 \mathrm{~V}_{\mathrm{PP}}$ differential clock amplitude, 50% clock duty cycle, -1 -dBFS differential analog input, High-Performance Mode enabled, 0-dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Figure 35. Signal-to-Noise Ratio (0-dB Gain)

Figure 36. Signal-to-Noise Ratio (6-dB Gain)

8 Detailed Description

8.1 Overview

The ADS4229 belongs to TI's ultra low-power family of dual-channel, 12-bit analog-to-digital converters (ADCs). High performance is maintained while reducing power for power sensitive applications. In addition to its low power and high performance, the ADS4229 has a number of digital features and operating modes to enable design flexibility.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Digital Functions

The device has several useful digital functions (such as test patterns, gain, and offset correction). These functions require extra clock cycles for operation and increase the overall latency and power of the device. These digital functions are disabled by default after reset and the raw ADC output is routed to the output data pins with a latency of 16 clock cycles. Figure 37 shows more details of the processing after the ADC. In order to use any of the digital functions, the EN DIGITAL bit must be set to '1'. After this, the respective register bits must be programmed as described in the following sections and in the Serial Register Map section.

Figure 37. Digital Processing Block

8.3.2 Gain for SFDR/SNR Trade-off

The ADS4229 includes gain settings that can be used to get improved SFDR performance (compared to no gain). The gain is programmable from 0 dB to 6 dB (in $0.5-\mathrm{dB}$ steps). For each gain setting, the analog input fullscale range scales proportionally, as shown in Table 2.

The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades approximately between 0.5 dB and 1 dB . The SNR degradation is reduced at high input frequencies. As a result, the gain is very useful at high input frequencies because the SFDR improvement is significant with marginal degradation in SNR. Therefore, the gain can be used as a trade-off between SFDR and SNR. Note that the default gain after reset is 0 dB .

Table 2. Full-Scale Range Across Gains

GAIN (dB)	TYPE	FULL-SCALE (VPP)
0	Default after reset	2
1	Fine, programmable	1.78
2	Fine, programmable	1.59
3	Fine, programmable	1.42
4	Fine, programmable	1.26
5	Fine, programmable	1.12
6	Fine, programmable	1

8.3.3 Offset Correction

The ADS4229 has an internal offset corretion algorithm that estimates and corrects dc offset up to $\pm 10 \mathrm{mV}$. The correction can be enabled using the ENABLE OFFSET CORR serial register bit. Once enabled, the algorithm estimates the channel offset and applies the correction every clock cycle. The time constant of the correction loop is a function of the sampling clock frequency. The time constant can be controlled using the OFFSET CORR TIME CONSTANT register bits, as described in Table 3.
After the offset is estimated, the correction can be frozen by setting FREEZE OFFSET CORR $=0$. Once frozen, the last estimated value is used for the offset correction of every clock cycle. Note that offset correction is disabled by default after reset.

Table 3. Time Constant of Offset Correction Algorithm

OFFSET CORR TIME CONSTANT	TIME CONSTANT, TC ${ }_{c L K}$ (Number of Clock Cycles)	TIME CONSTANT, $\mathrm{TC}_{\mathrm{CLK}} \times 1 / \mathrm{f}_{\mathrm{S}}(\mathrm{ms})^{(1)}$
0000	1 M	4
0001	2 M	8
0010	4 M	16
0011	8 M	32
0100	16 M	64
0101	32 M	128
0110	64 M	256
0111	128 M	512
1000	256 M	1024
1001	512 M	2048
1010	1 G	4096
1011	2 G	8192
1100	Reserved	-
1101	Reserved	-
1110	Reserved	-
1111	Reserved	-

(1) Sampling frequency, $\mathrm{f}_{\mathrm{S}}=250 \mathrm{MSPS}$.

8.3.4 Power-Down

The ADS4229 has two power-down modes: global power-down and channel standby. These modes can be set using either the serial register bits or using the control pins CTRL1 to CTRL3 (as shown in Table 4).

Table 4. Power-Down Settings

CTRL1	CTRL2	CTRL3	
Low	Low	Low	Default
Low	Low	High	Not available
Low	High	Low	Not available
Low	High	High	Not available
High	Low	Low	Global power-down
High	Low	High	Channel A powered down, channel B is active
High	High	Not available	
High	High	MUX mode of operation, channel A and B data is multiplexed and output on DB[10:0] pins	

8.3.4.1 Global Power-Down

In this mode, the entire chip (including ADCs, internal reference, and output buffers) are powered down, resulting in reduced total power dissipation of approximately 20 mW when the CTRL pins are used and 3 mW when the PDN GLOBAL serial register bit is used. The output buffers are in high-impedance state. The wake-up time from global power-down to data becoming valid in normal mode is typically $100 \mu \mathrm{~s}$.

8.3.4.2 Channel Standby

In this mode, each ADC channel can be powered down. The internal references are active, resulting in a quick wake-up time of $50 \mu \mathrm{~s}$. The total power dissipation in standby is approximately 250 mW at 250 MSPS.

8.3.4.3 Input Clock Stop

In addition to the previous modes, the converter enters a low-power mode when the input clock frequency falls below 1 MSPS. The power dissipation is approximately 160 mW .

ADS4229
www.ti.com

8.3.5 Output Data Format

Two output data formats are supported: twos complement and offset binary. The format can be selected using the DATA FORMAT serial interface register bit or by controlling the DFS pin in parallel configuration mode.

In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive overdrive, the output code is FFFh for the ADS4229 in offset binary output format; the output code is 7FFh for the ADS4229 in twos complement output format. For a negative input overdrive, the output code is 0000h in offset binary output format and 800h for the ADS4229 in twos complement output format.

8.4 Device Functional Modes

8.4.1 Output Interface Modes

The ADS4229 provides 12-bit digital data for each channel and an output clock synchronized with the data.

8.4.1.1 Output Interface

Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. They can be selected using the serial interface register bit or by setting the proper voltage on the SEN pin in parallel configuration mode.

8.4.1.2 DDR LVDS Outputs

In this mode, the data bits and clock are output using low-voltage differential signal (LVDS) levels. Two data bits are multiplexed and output on each LVDS differential pair, as shown in Figure 38.

Figure 38. LVDS Interface
Even data bits (D0, D2, D4, and so forth) are output at the CLKOUTP rising edge and the odd data bits (D1, D3, D5, and so forth) are output at the CLKOUTP falling edge. Both the CLKOUTP rising and falling edges must be used to capture all the data bits, as shown in Figure 39.

Device Functional Modes (continued)

Figure 39. DDR LVDS Interface Timing

8.4.1.3 LVDS Buffer

The equivalent circuit of each LVDS output buffer is shown in Figure 40. After reset, the buffer presents an output impedance of 100Ω to match with the external $100-\Omega$ termination.

NOTE: Default swing across $100-\Omega$ load is $\pm 350 \mathrm{mV}$. Use the LVDS SWING bits to change the swing.
Figure 40. LVDS Buffer Equivalent Circuit
The $V_{\text {DIFF }}$ voltage is nominally 350 mV , resulting in an output swing of $\pm 350 \mathrm{mV}$ with $100-\Omega$ external termination. The V VIFF voltage is programmable using the LVDS SWING register bits from $\pm 125 \mathrm{mV}$ to $\pm 570 \mathrm{mV}$.
Additionally, a mode exists to double the strength of the LVDS buffer to support 50- Ω differential termination, as shown in Figure 41. This mode can be used when the output LVDS signal is routed to two separate receiver chips, each using a $100-\Omega$ termination. The mode can be enabled using the LVDS DATA STRENGTH and LVDS CLKOUT STRENGTH register bits for data and output clock buffers, respectively.
The buffer output impedance behaves in the same way as a source-side series termination. By absorbing reflections from the receiver end, it helps to improve signal integrity.

Device Functional Modes (continued)

Figure 41. LVDS Buffer Differential Termination

Device Functional Modes (continued)

8.4.1.4 Parallel CMOS Interface

In the CMOS mode, each data bit is output on separate pins as CMOS voltage level, every clock cycle, as Figure 42 shows. The rising edge of the output clock CLKOUT can be used to latch data in the receiver. It is recommended to minimize the load capacitance of the data and clock output pins by using short traces to the receiver. Furthermore, match the output data and clock traces to minimize the skew between them.

Figure 42. CMOS Outputs

8.4.1.5 CMOS Interface Power Dissipation

With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every output pin. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every clock cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined by the average number of output bits switching, which is a function of the sampling frequency and the nature of the analog input signal. This relationship is shown by the formula:

Device Functional Modes (continued)

Digital current as a result of CMOS output switching $=C_{L} \times$ DRVDD $\times\left(N \times F_{\text {AVG }}\right)$
where

- $\mathrm{C}_{\mathrm{L}}=$ load capacitance,
- $\mathrm{N} \times \mathrm{F}_{\mathrm{AVG}}=$ average number of output bits switching.

8.4.1.6 Multiplexed Mode of Operation

In this mode, the digital outputs of both channels are multiplexed and output on a single bus (DB[11:0] pins), as shown in Figure 43. The channel A output pins (DA[11:0]) are in 3-state. Because the output data rate on the DB bus is effectively doubled, this mode is recommended only for low sampling frequencies (less than 80 MSPS). This mode can be enabled using the POWER-DOWN MODE register bits or using the CTRL[3:1] parallel pins.

(1) In multiplexed mode, both channels outputs come on the channel B output pins.
(2) $\mathrm{Dn}=$ bits $\mathrm{D} 0, \mathrm{D} 1, \mathrm{D} 2$, and so forth.

Figure 43. Multiplexed Mode Timing Diagram

8.5 Programming

Table 5 shows all the high-performance modes for the ADS4229 device.
Table 5. High-Performance Modes ${ }^{(1)(2)}$

PARAMETER	DESCRIPTION
High-performance mode	Set the HIGH PERF MODE[2:1] register bit to obtain best performance across sample clock and input signal frequencies. Register address $=03 \mathrm{~h}$, data $=03 \mathrm{~h}$
High-frequency mode	Set the HIGH FREQ MODE CH A and HIGH FREQ MODE CH B register bits for high input signal frequencies greater than 200 MHz. Register address $=4 \mathrm{Ah}$, data $=01 \mathrm{~h}$ Register address $=58 \mathrm{~h}$, data $=01 \mathrm{~h}$
High-speed mode	Set the HIGH PERF MODE[2:7] bits to obtain best performance across input signal frequencies for sampling rates greater than 160 MSPS. Note that this mode changes VCM to 0.87 V from its default value of 0.95 V. Register address $=2 \mathrm{~h}$, data $=40 \mathrm{~h}$ Register address $=$ D5h, data $=18 \mathrm{~h}$ Register address = D7h, data $=0 \mathrm{Ch}$ Register address = DBh, data $=20 \mathrm{~h}$

(1) It is recommended to use these modes to obtain best performance.
(2) See the Serial Interface Configuration section for details on register programming.

8.5.1 Device Configuration

The ADS4229 can be configured independently using either parallel interface control or serial interface programming.

8.5.2 Parallel Configuration Only

To put the device into parallel configuration mode, keep RESET tied high (AVDD). Then, use the SEN, SCLK, CTRL1, CTRL2, and CTRL3 pins to directly control certain modes of the ADC. The device can be easily configured by connecting the parallel pins to the correct voltage levels (as described in Table 6 to Table 9). There is no need to apply a reset and SDATA can be connected to ground.
In this mode, SEN and SCLK function as parallel interface control pins. Some frequently-used functions can be controlled using these pins. Table 6 describes the modes controlled by the parallel pins.

Table 6. Parallel Pin Definition

PIN	CONTROL MODE
SCLK	Low-speed mode selection
SEN	Output data format and output interface selection
CTRL1	
CTRL2	
CTRL3	

8.5.3 Serial Interface Configuration Only

To enable this mode, the serial registers must first be reset to the default values and the RESET pin must be kept low. SEN, SDATA, and SCLK function as serial interface pins in this mode and can be used to access the internal registers of the ADC. The registers can be reset either by applying a pulse on the RESET pin or by setting the RESET bit high. The Serial Register Map section describes the register programming and the register reset process in more detail.

8.5.4 Using Both Serial Interface and Parallel Controls

For increased flexibility, a combination of serial interface registers and parallel pin controls (CTRL1 to CTRL3) can also be used to configure the device. To enable this option, keep RESET low. The parallel interface control pins CTRL1 to CTRL3 are available. After power-up, the device is automatically configured according to the voltage settings on these pins (see Table 9). SEN, SDATA, and SCLK function as serial interface digital pins and are used to access the internal registers of the ADC. The registers must first be reset to the default values either by applying a pulse on the RESET pin or by setting the RESET bit to '1'. After reset, the RESET pin must be kept low. The Serial Register Map section describes register programming and the register reset process in more detail.

8.5.5 Parallel Configuration Details

The functions controlled by each parallel pin are described in Table 7, Table 8, and Table 9. A simple way of configuring the parallel pins is shown in Figure 44.

Table 7. SCLK Control Pin

VOLTAGE APPLIED ON SCLK	DESCRIPTION
Low	Low-speed mode is disabled
High	Low-speed mode is enabled

Table 8. SEN Control Pin

VOLTAGE APPLIED ON SEN	DESCRIPTION
0 $(+50 \mathrm{mV} / 0 \mathrm{mV})$	Twos complement and parallel CMOS output
$(3 / 8) \mathrm{AVDD}$ $(\pm 50 \mathrm{mV})$	Offset binary and parallel CMOS output

Table 8. SEN Control Pin (continued)

VOLTAGE APPLIED ON SEN	DESCRIPTION
$(5 / 8) 2 A V D D$ $(\pm 50 \mathrm{mV})$	Offset binary and DDR LVDS output
AVDD $(0 \mathrm{mV} /-50 \mathrm{mV})$	Twos complement and DDR LVDS output

Table 9. CTRL1, CTRL2, and CTRL3 Pins

CTRL1	CTRL2	CTRL3	DESCRIPTION
Low	Low	Low	Normal operation
Low	Low	High	Not available
Low	High	Low	Not available
Low	High	High	Not available
High	Low	Low	Global power-down
High	Low	High	Channel A standby, channel B is active
High	High	High	Not available
High		MUX mode of operation, channel A and B data are multiplexed and output on the DB[11:0] pins.	

Figure 44. Simple Scheme to Configure the Parallel Pins

8.5.6 Serial Interface Details

The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA are latched at every SCLK falling edge when SEN is active (low). The serial data are loaded into the register at every 16 th SCLK falling edge when SEN is low. When the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in multiples of 16bit words within a single active SEN pulse. The first eight bits form the register address and the remaining eight bits are the register data. The interface can work with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with non-50\% SCLK duty cycle.

8.5.6.1 Register Initialization

After power-up, the internal registers must be initialized to the default values. Initialization can be accomplished in one of two ways:

1. Through a hardware reset by applying a high pulse on the RESET pin (of width greater than 10 ns), as shown in Figure 5 and Serial Interface Timing Characteristics; or
2. By applying a software reset. When using the serial interface, set the RESET bit high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low. See Reset Timing (Only when Serial Interface is Used) and Figure 6 for reset timing.

8.5.6.2 Serial Register Readout

The device includes a mode where the contents of the internal registers can be read back. This readback mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the ADC. To use readback mode, follow this procedure:

1. Set the READOUT register bit to ' 1 '. This setting disables any further writes to the registers.
2. Initiate a serial interface cycle specifying the address of the register (A7 to A0) whose content has to be read.
3. The device outputs the contents (D 7 to DO) of the selected register on the SDOUT pin (pin 64).
4. The external controller can latch the contents at the SCLK falling edge.
5. To enable register writes, reset the READOUT register bit to '0'.

The serial register readout works with both CMOS and LVDS interfaces on pin 64 . See Figure 45 for serial readout timing diagram.
When READOUT is disabled, the SDOUT pin is in high-impedance state.

b) Read contents of Register 45h. This register has been initialized with 04 h (device is put into global power-down mode.)

Figure 45. Serial Readout Timing Diagram

8.6 Register Maps

8.6.1 Serial Register Map

Table 10 summarizes the functions supported by the serial interface.
Table 10. Serial Interface Register Map ${ }^{(1)}$

REGISTER ADDRESS	REGISTER DATA							
A[7:0] (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
00	0	0	0	0	0	0	RESET	READOUT
01	LVDS SWING						0	0
03	0	0	0	0	0	0	HIGH PERF MODE 2	HIGH PERF MODE 1
25	CH A GAIN				0	CH A TEST PATTERNS		
29	0	0	0	DATA FORMAT		0	0	0
2B	CH B GAIN				0	CH B TEST PATTERNS		
3D	0	0	ENABLE OFFSET CORR	0	0	0	0	0
3F	0	0	CUSTOM PATTERN D[11:6]					
40	CUSTOM PATTERN D[5:0]						0	0
41	LVDS CMOS		CMOS CLKOUT STRENGTH		0	0	DIS OBUF	
42	CLKOUT FALL POSN		CLKOUT RISE POSN		EN DIGITAL	0	0	0
45	STBY	$\begin{gathered} \text { LVDS } \\ \text { CLKOUT } \\ \text { STRENGTH } \end{gathered}$	LVDS DATA STRENGTH	0	0	PDN GLOBAL	0	0
4A	0	0	0	0	0	0	0	HIGH FREQ MODE CH B
58	0	0	0	0	0	0	0	HIGH FREQ MODE CH A
BF	CH A OFFSET PEDESTAL				0	0	0	0
C1	CH B OFFSET PEDESTAL				0	0	0	0
CF	FREEZE OFFSET CORR	0	OFFSET CORR TIME CONSTANT				0	0
EF	0	0	0	EN LOW SPEED MODE	0	0	0	0
F1	0	0	0	0	0	0	EN LVDS SWING	
F2	0	0	0	0	LOW SPEED MODE CH A	0	0	0
2	0	HIGH PERF MODE3	0	0	0	0	0	0
D5	0	0	0	HIGH PERF MODE4	$\begin{gathered} \text { HIGH PERF } \\ \text { MODE5 } \\ \hline \end{gathered}$	0	0	0
D7	0	0	0	0	HIGH PERF MODE6	HIGH PERF MODE7	0	0
DB	0	0	HIGH PERF MODE8	0	0	0	0	LOW SPEED MODE CH B

(1) Multiple functions in a register can be programmed in a single write operation. All registers default to ' 0 ' after reset.

8.6.2 Description of Serial Registers

8.6.2.1 Register Address 00h (Default = 00h)

Figure 46. Register Address 00h (Default $=\mathbf{0 0 h}$)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | RESET | READOUT |

Bits[7:2] Always write '0'

Bit 1 RESET: Software reset applied
This bit resets all internal registers to the default values and self-clears to 0 (default = 1).
Bit $0 \quad$ READOUT: Serial readout
This bit sets the serial readout of the registers.
$0=$ Serial readout of registers disabled; the SDOUT pin is placed in a high-impedance state.
$1=$ Serial readout enabled; the SDOUT pin functions as a serial data readout with CMOS logic levels running from the DRVDD supply. See the Serial Register Readout section.

8.6.2.2 Register Address 01h (Default $=00 \mathrm{~h}$)

Figure 47. Register Address 01h (Default $=00 \mathrm{~h}$)

| 7 | 6 | 5 | 4 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | LVDS SWING | 0 | 0 | | | |

Bits[7:2] LVDS SWING: LVDS swing programmability
These bits program the LVDS swing. Set the EN LVDS SWING bit to '1' before programming swing.
$000000=$ Default LVDS swing; $\pm 350 \mathrm{mV}$ with external $100-\Omega$ termination
011011 = LVDS swing increases to $\pm 410 \mathrm{mV}$
$110010=$ LVDS swing increases to $\pm 465 \mathrm{mV}$
$010100=$ LVDS swing increases to $\pm 570 \mathrm{mV}$
111110 = LVDS swing increases to $\pm 200 \mathrm{mV}$
001111 = LVDS swing increases to $\pm 125 \mathrm{mV}$
Bits[1:0] Always write '0'

8.6.2.3 Register Address 03h (Default $=00 \mathrm{~h}$)

Figure 48. Register Address 03h (Default $=00 \mathrm{~h}$)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | HIGH PERF
 MODE 2 | HIGH PERF
 MODE 1 |

Bits[7:2] Always write '0'
 Bits[1:0] HIGH PERF MODE[2:1]: High-performance mode

00 = Default performance
01 = Do not use
10 = Do not use
11 = Obtain best performance across sample clock and input signal frequencies

8.6.2.4 Register Address 25h (Default = 00h)

Figure 49. Register Address 25h (Default $=\mathbf{0 0 h}$)
$7 \quad 6$
6
CH A GAIN
$5 \quad 4$
4 3 2
0

Bits[7:4] CH A GAIN: Channel A gain programmability
These bits set the gain programmability in $0.5-\mathrm{dB}$ steps for channel A .
$0000=0-\mathrm{dB}$ gain (default after reset)
$0001=0.5-\mathrm{dB}$ gain
$0010=1-\mathrm{dB}$ gain
$0011=1.5-\mathrm{dB}$ gain
$0100=2-\mathrm{dB}$ gain
$0101=2.5-\mathrm{dB}$ gain
$0110=3-\mathrm{dB}$ gain
$0111=3.5-\mathrm{dB}$ gain
$1000=4-\mathrm{dB}$ gain
$1001=4.5-\mathrm{dB}$ gain
$1010=5-\mathrm{dB}$ gain
$1011=5.5-\mathrm{dB}$ gain
$1100=6-\mathrm{dB}$ gain
Bit 3 Always write ' 0 '
Bits[2:0] CH A TEST PATTERNS: Channel A data capture
These bits verify data capture for channel A.
$000=$ Normal operation
001 = Outputs all 0s
$010=$ Outputs all 1 s
011 = Outputs toggle pattern.
For the ADS4229, the output data $D[11: 0]$ are an alternating sequence of 101010101010 and 010101010101.
$100=$ Outputs digital ramp.
$101=$ Outputs custom pattern; use registers 3Fh and 40h to set the custom pattern
$110=$ Unused
111 = Unused
8.6.2.5 Register Address 29h (Default $=00 \mathrm{~h}$)

Figure 50. Register Address 29h (Default $=00 \mathrm{~h}$)

| 7 | 6 | 5 | 4 | 3 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | DATA FORMAT | 0 | 0 | |

Bits[7:5] Always write '0'
Bits[4:3] DATA FORMAT: Data format selection
00 = Twos complement
01 = Twos complement
$10=$ Twos complement
11 = Offset binary
Bits[2:0] Always write '0'

8.6.2.6 Register Address 2Bh (Default = 00h)

Figure 51. Register Address 2Bh (Default $=00 \mathrm{~h}$)
7
6
CH B GAIN
5
$\begin{array}{ll}4 & 3 \\ 0\end{array}$
7
6

Bits[7:4] CH B GAIN: Channel B gain programmability
These bits set the gain programmability in $0.5-\mathrm{dB}$ steps for channel B .
$0000=0-\mathrm{dB}$ gain (default after reset)
$0001=0.5-\mathrm{dB}$ gain
$0010=1-\mathrm{dB}$ gain
$0011=1.5-\mathrm{dB}$ gain
$0100=2-\mathrm{dB}$ gain
$0101=2.5-\mathrm{dB}$ gain
$0110=3-\mathrm{dB}$ gain
$0111=3.5-\mathrm{dB}$ gain
$1000=4-\mathrm{dB}$ gain
$1001=4.5-\mathrm{dB}$ gain
$1010=5-\mathrm{dB}$ gain
$1011=5.5-\mathrm{dB}$ gain
$1100=6-\mathrm{dB}$ gain
Bit 3 Always write ' 0 '
Bits[2:0] CH B TEST PATTERNS: Channel B data capture
These bits verify data capture for channel B .
$000=$ Normal operation
001 = Outputs all Os
$010=$ Outputs all 1 s
011 = Outputs toggle pattern.
For the ADS4229, the output data D[11:0] are an alternating sequence of 101010101010 and 010101010101.
$100=$ Outputs digital ramp.
$101=$ Outputs custom pattern; use registers 3Fh and 40 h to set the custom pattern
$110=$ Unused
111 = Unused
8.6.2.7 Register Address 3Dh (Default $=00 \mathrm{~h}$)

Figure 52. Register Address 3Dh (Default = 00h)

7	6	5	4	3	2	1	0
0	0	ENABLE OFFSET CORR	0	0	0	0	0

Bits[7:6] Always write '0'

Bit 5 ENABLE OFFSET CORR: Offset correction setting

This bit enables the offset correction.
$0=$ Offset correction disabled
1 = Offset correction enabled
Bits[4:0] Always write '0'

ADS4229

8.6.2.8 Register Address 3Fh (Default = 00h)

Figure 53. Register Address 3Fh (Default $=\mathbf{0 0 h}$)

7	6	5	4	0	2	1	0
0	0	CUSTOM	CUSTOM	CUSTOM	CUSTOM	CUSTOM	CUSTOM
PATTERN D11	PATTERN D10	PATTERN D9	PATTERN D8	PATTERN D7	PATTERN D6		

Bits[7:6] Always write '0'

Bits[5:0] CUSTOM PATTERN D[11:6]
These are the six upper bits of the custom pattern available at the output instead of ADC data.
The ADS4229 custom pattern is 12-bit.

8.6.2.9 Register Address 40h (Default $=00 \mathrm{~h}$)

Figure 54. Register Address 40h (Default $=00 \mathrm{~h}$)

7	6	5	4	3		2	1	
CUSTOM	CUSTOM	CUSTOM	CUSTOM	CUSTOM	CUSTOM		0	0
PATTERN D5	PATTERN D4	PATTERN D3	PATTERN D2	PATTERN D1	PATTERN D0	0	0	

Bits[7:2] CUSTOM PATTERN D[5:0]

These are the six lower bits of the custom pattern available at the output instead of ADC data. The ADS4229 custom pattern is 12-bit; use the CUSTOM PATTERN D[11:0] register bits.

Bits[1:0] Always write '0'

8.6.2.10 Register Address 41h (Default = 00h)

Figure 55. Register Address 41h (Default $=00 \mathrm{~h}$)

7	5	4	3	2	1
LVDS CMOS	CMOS CLKOUT STRENGTH	0	0	DIS OBUF	

Bits[7:6] LVDS CMOS: Interface selection

These bits select the interface.
00 = DDR LVDS interface
01 = DDR LVDS interface
10 = DDR LVDS interface
11 = Parallel CMOS interface
Bits[5:4] CMOS CLKOUT STRENGTH
These bits control the strength of the CMOS output clock.
$00=$ Maximum strength (recommended)
$01=$ Medium strength
10 = Low strength
11 = Very low strength
Bits[3:2] Always write '0'
Bits[1:0] DIS OBUF
These bits power down data and clock output buffers for both the CMOS and LVDS output interface. When powered down, the output buffers are in 3-state.
$00=$ Default
01 = Power-down data output buffers for channel B
$10=$ Power-down data output buffers for channel A
11 = Power-down data output buffers for both channels as well as the clock output buffer

8.6.2.11 Register Address 42h (Default = 00h)

Figure 56. Register Address 42h (Default $=00 \mathrm{~h}$)

7 6	5 4	3	2	1	0
CLKOUT FALL POSN	CLKOUT RISE POSN	EN DIGITAL	0	0	0

Bits[7:6] CLKOUT FALL POSN

In LVDS mode:
$00=$ Default
$01=$ The falling edge of the output clock advances by 450 ps
$10=$ The falling edge of the output clock advances by 150 ps
$11=$ The falling edge of the output clock is delayed by 550 ps
In CMOS mode:
$00=$ Default
$01=$ The falling edge of the output clock is delayed by 150 ps
$10=$ Do not use
11 = The falling edge of the output clock advances by 100 ps
Bits[5:6] CLKOUT RISE POSN
In LVDS mode:
$00=$ Default
$01=$ The rising edge of the output clock advances by 450 ps
$10=$ The rising edge of the output clock advances by 150 ps
$11=$ The rising edge of the output clock is delayed by 250 ps
In CMOS mode:
$00=$ Default
$01=$ The rising edge of the output clock is delayed by 150 ps
$10=$ Do not use
$11=$ The rising edge of the output clock advances by 100 ps

Bit 3 EN DIGITAL: Digital function enable

$0=$ All digital functions disabled
1 = All digital functions (such as test patterns, gain, and offset correction) enabled
Bits[2:0] Always write '0'

8.6.2.12 Register Address 45h (Default = 00h)

Figure 57. Register Address 45h (Default $=00 h$)

7	6	5	4	3	2	1	0
STBY	LVDS CLKOUT STRENGTH	LVDS DATA STRENGTH	0	0	PDN GLOBAL	0	0

Bit 7 STBY: Standby setting

0 = Normal operation
1 = Both channels are put in standby; wakeup time from this mode is fast (typically $50 \mu \mathrm{~s}$).
Bit 6 LVDS CLKOUT STRENGTH: LVDS output clock buffer strength setting
$0=$ LVDS output clock buffer at default strength to be used with $100-\Omega$ external termination
$1=$ LVDS output clock buffer has double strength to be used with $50-\Omega$ external termination

Bit 5 LVDS DATA STRENGTH

$0=$ All LVDS data buffers at default strength to be used with $100-\Omega$ external termination
1 = All LVDS data buffers have double strength to be used with $50-\Omega$ external termination
Bits[4:3] Always write '0'
Bit 2 PDN GLOBAL

ADS4229
$0=$ Normal operation
1 = Total power down; all ADC channels, internal references, and output buffers are powered down. Wakeup time from this mode is slow (typically $100 \mu \mathrm{~s}$).
Bits[1:0] Always write '0'
8.6.2.13 Register Address 4Ah (Default = 00h)

Figure 58. Register Address 4Ah (Default $=00 \mathrm{~h}$)

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	HIGH FREQ MODE CH B

Bits[7:1] Always write '0'

Bit $0 \quad$ HIGH FREQ MODE CH B: High-frequency mode for channel B
0 = Default
1 = Use this mode for high input frequencies greater than 200 MHz

8.6.2.14 Register Address 58h (Default = 00h)

Figure 59. Register Address 58h (Default = 00h)

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	HIGH FREQ MODE CH A

Bits[7:1] Always write '0'

Bit $0 \quad$ HIGH FREQ MODE CH A: High-frequency mode for channel A
0 = Default
1 = Use this mode for high input frequencies greater than 200 MHz

8.6.2.15 Register Address BFh (Default = 00h)

Figure 60. Register Address BFh (Default = 00h)

| 7 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CH A OFFSET PEDESTAL | 0 | 0 | 0 | 0 | | |

Bits[7:4] CH A OFFSET PEDESTAL: Channel A offset pedestal selection

When the offset correction is enabled, the final converged value after the offset is corrected is the ADC midcode value. A pedestal can be added to the final converged value by programming these bits. See the Offset Correction section. Channels can be independently programmed for different offset pedestals by choosing the relevant register address.
For the ADS4229, the pedestal ranges from -8 to +7 , so the output code can vary from midcode- 8 to midcode+7 by adding pedestal D7-D4.

Program bits D[7:4]

$$
\begin{aligned}
0111 & =\text { Midcode+7 } \\
0110 & =\text { Midcode }+6 \\
0101 & =\text { Midcode }+5 \\
& \ldots \\
0000 & =\text { Midcode } \\
1111 & =\text { Midcode }-1 \\
1110 & =\text { Midcode } 2 \\
1101 & =\text { Midcode }-3 \\
& \ldots \\
1000 & =\text { Midcode }-8
\end{aligned}
$$

Bits[3:0] Always write '0'

8.6.2.16 Register Address C1h (Default = 00h)

Figure 61. Register Address C1h (Default $=\mathbf{0 0 h}$)
$7 \quad 6$
CH B OFFSET PEDESTAL
H B OFFSET PEDESTAL: Channel B offset pedestal selection
When offset correction is enabled, the final converged value after the offset is corrected is the ADC midcode value. A pedestal can be added to the final converged value by programming these bits; see the Offset Correction section. Channels can be independently programmed for different offset pedestals by choosing the relevant register address.
For the ADS4229, the pedestal ranges from -8 to +7 , so the output code can vary from midcode-8 to midcode +7 by adding pedestal $\mathrm{D}[7: 4]$.

Program Bits D[7:4]

$$
\begin{aligned}
& 0111=\text { Midcode+7 } \\
& 0110=\text { Midcode+6 } \\
& 0101=\text { Midcode+5 } \\
& \ldots \\
& 0000=\text { Midcode } \\
& 1111=\text { Midcode }-1 \\
& 1110=\text { Midcode } 2 \\
& 1101=\text { Midcode-3 } \\
& \ldots \ldots \\
& 1000=\text { Midcode } 8
\end{aligned}
$$

Bits[3:0] Always write '0'

8.6.2.17 Register Address CFh (Default $=00 \mathrm{~h}$)

Figure 62. Register Address CFh (Default $=00 \mathrm{~h}$)

	6	5	4	3	2	1
FREEZE OFFSET CORR	0		OFFSET CORR TIME CONSTANT	0	0	

Bit 7 FREEZE OFFSET CORR: Freeze offset correction setting
This bit sets the freeze offset correction estimation.
$0=$ Estimation of offset correction is not frozen (the EN OFFSET CORR bit must be set)
1 = Estimation of offset correction is frozen (the EN OFFSET CORR bit must be set); when frozen, the last estimated value is used for offset correction of every clock cycle. See the Offset Correction section.
Bit $6 \quad$ Always write '0'
Bits[5:2] OFFSET CORR TIME CONSTANT
The offset correction loop time constant in number of clock cycles. Refer to the Offset Correction section.
Bits[1:0] Always write '0'

ADS4229
www.ti.com

8.6.2.18 Register Address EFh (Default = OOh)

Figure 63. Register Address EFh (Default $=\mathbf{0 0 h}$)

| 7 | 6 | 5 | 4 | 3 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | EN LOW SPEED MODE | 0 | 0 | 0 |

Bits[7:5] Always write '0'

Bit 4 EN LOW SPEED MODE: Enable control of low-speed mode through serial register bits
This bit enables the control of the low-speed mode using the LOW SPEED MODE CH B and LOW SPEED MODE CH A register bits.
$0=$ Low-speed mode is disabled
1 = Low-speed mode is controlled by serial register bits

Bits[3:0] Always write '0'

8.6.2.19 Register Address F1h (Default = 00h)

Figure 64. Register Address F1h (Default $=00 \mathrm{~h}$)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | EN LVDS SWING |

Bits[7:2] Always write '0'
 Bits[1:0] EN LVDS SWING: LVDS swing enable

These bits enable LVDS swing control using the LVDS SWING register bits.
$00=$ LVDS swing control using the LVDS SWING register bits is disabled
$01=$ Do not use
$10=$ Do not use
11 = LVDS swing control using the LVDS SWING register bits is enabled

8.6.2.20 Register Address F2h (Default = 00h)

Figure 65. Register Address F2h (Default $=\mathbf{0 0 h}$)

| 7 | 6 | 5 | 4 | 3 | 1 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | LOW SPEED MODE CH A | 0 | 0 | 0 |

Bits[7:4] Always write '0'

Bit 3 LOW SPEED MODE CH A: Channel A low-speed mode enable

This bit enables the low-speed mode for channel A. Set the EN LOW SPEED MODE bit to '1' before using this bit.
$0=$ Low-speed mode is disabled for channel A
1 = Low-speed mode is enabled for channel A
Bits[2:0] Always write '0'

8.6.2.21 Register Address 2h (Default $=00 h$)

Figure 66. Register Address 2 h (Default $=\mathbf{0 0 h}$)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | HIGH PERF
 MODE3 | 0 | 0 | 0 | 0 | 0 |

Bit 7 Always write '0'
 Bit 6 HIGH PERF MODE3

HIGH PERF MODE3 to HIGH PERF MODE8 must be set to '1' to ensure best performance at high sampling speed (greater than 160 MSPS)

Bits[5:0] Always write '0'

8.6.2.22 Register Address D5h (Default = 00h)

Figure 67. Register Address D5h (Default $=\mathbf{0 0 h}$)

7	6	5	4	3	2	1	0
0	0	0	HIGH PERF MODE4	HIGH PERF MODE5	0	0	0

Bits[7:5] Always write '0'
 Bit 4 HIGH PERF MODE4

HIGH PERF MODE3 to HIGH PERF MODE8 must be set to '1' to ensure best performance at high sampling speed (greater than 160 MSPS)
Bit 3 HIGH PERF MODE5
HIGH PERF MODE3 to HIGH PERF MODE8 must be set to '1' to ensure best performance at high sampling speed (greater than 160 MSPS)
Bits[2:0] Always write '0'

8.6.2.23 Register Address D7h (Default = 00h)

Figure 68. Register Address D7h (Default = 00h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | HIGH PERF
 MODE6 | HIGH PERF
 MODE7 | 0 | 0 |

Bits[7:4] Always write '0'

Bit 3 HIGH PERF MODE6
HIGH PERF MODE3 to HIGH PERF MODE8 must be set to '1' to ensure best performance at high sampling speed (greater than 160 MSPS)

Bit 2 HIGH PERF MODE7
HIGH PERF MODE3 to HIGH PERF MODE8 must be set to '1' to ensure best performance at high sampling speed (greater than 160 MSPS)
Bits[1:0] Always write '0'

8.6.2.24 Register Address DBh (Default = 00h)

Figure 69. Register Address DBh (Default $=00 \mathrm{~h}$)

7	6	5	4	3	2	1	0
0	0	HIGH PERF MODE80	0	0	0	0	LOW SPEED MODE CH B

Bits[7:6] Always write '0'
 Bit 5 HIGH PERF MODE8

HIGH PERF MODE3 to HIGH PERF MODE8 must be set to '1' to ensure best performance at high sampling speed (greater than 160 MSPS)

Bits[4:1] Always write '0'

Bit $0 \quad$ LOW SPEED MODE CH B: Channel B low-speed mode enable
This bit enables the low-speed mode for channel B. Set the EN LOW SPEED MODE bit to ' 1 ' before using this bit.
$0=$ Low-speed mode is disabled for channel B
1 = Low-speed mode is enabled for channel B

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The ADS4229 dual-channel 12-bit ADC is designed for use in communications receivers designed to receive modern communication signals such as LTE, WIMAX, W-CDMA, and high-order QAM signals. A typical diversity receiver example is shown in Figure 70, where the antennas are placed at some distance to optimize performance in the presence of multipath fading. The path includes a low noise amplifier (LNA), RF mixer, and a digital variable gain amplifier (DVGA). Filtering is used throughout the path to remove blocking signals and mixing products and to prevent aliasing during sampling.

Figure 70. Diversity Communications Receiver

9.1.1 Theory of Operation

At every rising edge of the input clock, the analog input signal of each channel is simultaneously sampled. The sampled signal in each channel is converted by a pipeline of low-resolution stages. In each stage, the sampled/held signal is converted by a high-speed, low-resolution, flash sub-ADC. The difference between the stage input and the quantized equivalent is gained and propagates to the next stage. At every clock, each succeeding stage resolves the sampled input with greater accuracy. The digital outputs from all stages are combined in a digital correction logic block and digitally processed to create the final code after a data latency of 16 clock cycles. The digital output is available as either DDR LVDS or parallel CMOS and coded in either straight offset binary or binary twos complement format. The dynamic offset of the first stage sub-ADC limits the maximum analog input frequency to approximately 400 MHz (with $2-\mathrm{V}_{\mathrm{PP}}$ amplitude) or approximately 600 MHz (with 1-V V_{PP} amplitude).

Application Information (continued)

9.1.2 Analog Input

The analog input consists of a switched-capacitor-based, differential sample-and-hold (S/H) architecture. This differential topology results in very good ac performance even for high input frequencies at high sampling rates. The INP and INM pins must be externally biased around a common-mode voltage of 0.95 V , available on the VCM pin. For a full-scale differential input, each input pin (INP and INM) must swing symmetrically between $\mathrm{VCM}+0.5 \mathrm{~V}$ and $\mathrm{VCM}-0.5 \mathrm{~V}$, resulting in a $2-\mathrm{V}_{\mathrm{PP}}$ differential input swing. The input sampling circuit has a high $3-\mathrm{dB}$ bandwidth that extends up to 550 MHz (measured from the input pins to the sampled voltage). Figure 71 shows an equivalent circuit for the analog input.

Figure 71. Analog Input Equivalent Circuit

9.1.2.1 Drive Circuit Requirements

For optimum performance, the analog inputs must be driven differentially. This operation improves the commonmode noise immunity and even-order harmonic rejection. A $5-\Omega$ to $15-\Omega$ resistor in series with each input pin is recommended to damp out ringing caused by package parasitics.

SFDR performance can be limited as a result of several reasons, including the effects of sampling glitches; nonlinearity of the sampling circuit; and nonlinearity of the quantizer that follows the sampling circuit. Depending on the input frequency, sample rate, and input amplitude, one of these factors generally plays a dominant part in limiting performance. At very high input frequencies (greater than approximately 300 MHz), SFDR is determined largely by the device sampling circuit nonlinearity. At low input amplitudes, the quantizer nonlinearity usually limits performance.
Glitches are caused by the opening and closing of the sampling switches. The driving circuit should present a low source impedance to absorb these glitches. Otherwise, glitches could limit performance, primarily at low input frequencies (up to approximately 200 MHz). It is also necessary to present low impedance (less than 50Ω) for the common-mode switching currents. This configuration can be achieved by using two resistors from each input terminated to the common-mode voltage (VCM pin).
The device includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the sampling glitches inside the device itself. The cutoff frequency of the R-C filter involves a trade-off. A lower cutoff frequency (larger C) absorbs glitches better, but it reduces the input bandwidth. On the other hand, with a higher cutoff frequency (smaller C), bandwidth support is maximized. However, the sampling glitches must then be supplied by the external drive circuit. This tradeoff has limitations as a result of the presence of the package bond-wire inductance.

ADS4229
www.ti.com

Application Information (continued)

In the ADS4229, the R-C component values have been optimized while supporting high input bandwidth (up to 550 MHz). However, in applications with input frequencies up to 200 MHz to 300 MHz , the filtering of the glitches can be improved further using an external R-C-R filter; see Figure 74 and Figure 75.
In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency range and matched impedance to the source. Furthermore, the ADC input impedance must be considered. Figure 72 and Figure 73 show the impedance $\left(Z_{\mathbb{I N}}=R_{\mathbb{I N}} \| C_{\mathbb{I N}}\right)$ looking into the ADC input pins.

Figure 72. ADC Analog Input Resistance (R_{IN}) Across Frequency

Figure 73. ADC Analog Input Capacitance ($\mathrm{C}_{\text {IN }}$) Across Frequency

9.1.2.2 Driving Circuit

Figure 74, Figure 75, and Figure 76 show examples of driving circuit configurations optimized for low bandwidth (to support low input frequencies), high bandwidth (to support higher input frequencies), and very high bandwidth, respectively. Note that each of the drive circuits has been terminated by 50Ω near the ADC side. The transformers (such as ADTL1-1WT or WBC1-1) can be used up to 270 MHz IF. For very high IF (> 270 MHz), transformer ADTL2-18 can be used. The termination is accomplished by a $25-\Omega$ resistor from each input to the $0.95-\mathrm{V}$ common-mode (VCM) from the device. This architecture allows the analog inputs to be biased around the required common-mode voltage.
The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch; good performance is obtained for high-frequency input signals. An optional termination resistor pair may be required between the two transformers, as shown in Figure 74, Figure 75, and Figure 76. The center point of this termination is connected to ground to improve the balance between the P and M sides. The values of the terminations between the transformers and on the secondary side must be chosen to obtain an effective 50Ω (in the case of $50-\Omega$ source impedance).

Figure 74. Drive Circuit With Low Bandwidth (for Low Input Frequencies Less Than 150 MHz)

Application Information (continued)

Figure 75. Drive Circuit With High Bandwidth (for High Input Frequencies Greater Than 150 MHz and Less Than 270 MHz)

Figure 76. Drive Circuit With Very High Bandwidth (Greater Than 270 MHz)
All of these examples show 1:1 transformers being used with a $50-\Omega$ source. As explained in the Drive Circuit Requirements section, this configuration helps to present a low source impedance to absorb the sampling glitches. With a 1:4 transformer, the source impedance is 200Ω. The higher source impedance is unable to absorb the sampling glitches effectively and can lead to degradation in performance (compared to using 1:1 transformers).
In almost all cases, either a band-pass or low-pass filter is required to obtain the desired dynamic performance, as shown in Figure 77. Such filters present low source impedance at the high frequencies corresponding to the sampling glitch and help avoid performance losses associated with the high source impedance.

Figure 77. Drive Circuit With a 1:4 Transformer

Application Information (continued)

9.1.3 Clock Input

The ADS4229 clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to VCM using internal $5-\mathrm{k} \Omega$ resistors. This setting allows the use of transformer-coupled drive circuits for sine-wave clock or ac-coupling for LVPECL and LVDS clock sources are shown in Figure 78, Figure 79, and Figure 80. The internal clock buffer is shown in Figure 81.

(1) $R_{T}=$ termination resister, if necessary.

Figure 78. Differential Sine-Wave Clock Driving Circuit

Figure 79. LVDS Clock Driving Circuit

Figure 80. LVPECL Clock Driving Circuit

Application Information (continued)

NOTE: C_{EQ} is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.
Figure 81. Internal Clock Buffer
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a $0.1-\mu \mathrm{F}$ capacitor, as shown in Figure 82. For best performance, the clock inputs must be driven differentially, thereby reducing susceptibility to common-mode noise. For high input frequency sampling, it is recommended to use a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There is no change in performance with a non-50\% duty cycle clock input.

Figure 82. Single-Ended Clock Driving Circuit

9.2 Typical Application

An example schematic for a typical application of the ADS4229 is shown in Figure 83.

Figure 83. Example Schematic for ADS4229

9.2.1 Design Requirements

Example design requirements are listed in Table 11 for the ADC portion of the signal chain. These do not necessary reflect the requirements of an actual system, but rather demonstrate why the ADS4229 may be chosen for a system based on a set of requirements.

Table 11. Example Design Requirements for ADS4229

DESIGN PARAMETER	EXAMPLE DESIGN REQUIREMENT	ADS4229 CAPABILITY
Sampling rate	$\geq 245.76 \mathrm{Msps}$ to allow 80 MHz of unaliased bandwidth	Max sampling rate: 250 Msps
Input frequency	$>250 \mathrm{MHz}$ to accommodate full 2nd nyquist zone operation	Large signal -3 dB bandwidth: 400 MHz
SNR	$>65 \mathrm{dBFS}$ at $-1 \mathrm{dFBS}, 170 \mathrm{MHz}$	69.8 dBFS at $-1 \mathrm{dBFS}, 170 \mathrm{MHz}$
SFDR	$>75 \mathrm{dBc}$ at $-1 \mathrm{dFBS}, 170 \mathrm{MHz}$	80 dBc at $-1 \mathrm{dBFS}, 170 \mathrm{MHz}$
Input full scale voltage	2 Vpp	2 Vpp
Channel-to-channel isolation	$<80 \mathrm{~dB}$	95 dB
Overload recovery time	<3 clock cycles	1 clock cycle
Digital interface	Parallel LVDS	Parallel LVDS
Power consumption	$<300 \mathrm{~mW}$ per channel	273 mW per channel

9.2.2 Detailed Design Procedure

9.2.2.1 Analog Input

The analog inputs of the ADS4229 are typically driven by a fully differential amplifier. The amplifier must have sufficient bandwidth for the frequencies of interest. The noise and distortion performance of the amplifier will affect the combined performance of the ADC and amplifier. The amplifier is often AC coupled to the ADC to allow both the amplifier and ADC to operate at the optimal common mode voltages. It is possible to DC couple the amplifier to the ADC if required. An alternate approach is to drive the ADC using transformers. DC coupling cannot be used with the transformer approach.

9.2.2.2 Common Mode Voltage Output (VCM)

The common mode voltage output is shared between both ADC channels. To maintain optimal isolation, an LC filter may need to be placed on the VCM node between the channels (not shown in schematic). At a minimum, a bypass capacitor should be placed on the node that has sufficiently low impedance at the desired operating frequencies. Note the VCM pin maximum output current in the electrical tables when using VCM in alternate ways.

9.2.2.3 Clock Driver

The ADS4229 supports both LVDS and CMOS interfaces. The LVDS interface should be used for best performance when operating at maximum sampling rate. The LVDS outputs can be connected directly to the FPGA without any additional components. When using CMOS outputs resistors should be placed in series with the outputs to reduce the output current spikes to limit the performance degradation. The resistors should be large enough to limit current spikes but not so large as to significantly distort the digital output waveform. An external CMOS buffer should be used when driving distances greater than a few inches to reduce ground bounce within the ADC.

9.2.2.4 Digital Interface

The ADS4229 supports both LVDS and CMOS interfaces. The LVDS interface should be used for best performance when operating at maximum sampling rate. The LVDS outputs can be connected directly to the FPGA without any additional components. When using CMOS outputs resistors should be placed in series with the outputs to reduce the output current spikes to limit the performance degradation. The resistors should be large enough to limit current spikes but not so large as to significantly distort the digital output waveform. An external CMOS buffer should be used when driving distances greater than a few inches to reduce ground bounce within the ADC.

9.2.3 Application Curve

Figure 83 shows the results of a $10-\mathrm{MHz}$ LTE signal centered at 184.32 MHz captured by the ADS4229.

Ref. Power $=-11.98 \mathrm{dFBS}$	Lower Adj. $=69.92 \mathrm{dBc}$	Lower Alt. $=70.28 \mathrm{dBc}$
	Upper Adj. $=69.92 \mathrm{dBc}$	Upper Alt. $=70.17 \mathrm{dBc}$

Figure 84. 10-MHz LTE Signal Captured by ADS4229

10 Power Supply Recommendations

The ADS4229 has two power supplies, one analog (AVDD) and one digital (DRVDD) supply. Both supplies have a nominal voltage of 1.8 V . The AVDD supply is noise sensitive and the digital supply is not.

10.1 Sharing DRVDD and AVDD Supplies

For best performance the AVDD supply should be driven by a low noise linear regulator (LDO) and separated from the DRVDD supply. It is possible to have AVDD and DRVDD share a single supply but they should be isolated by a ferrite bead and bypass capacitors, in a PI-filter configuration, at a minimum. The digital noise will be concentrated at the sampling frequency and harmonics of the sampling frequency and could contain noise related to the sampled signal. While developing schematics, it is a good idea to leave extra placeholders for additional supply filtering.

10.2 Using DC/DC Power Supplies

For best performance the AVDD supply should be driven by a low noise linear regulator (LDO) and separated from the DRVDD supply. It is possible to have AVDD and DRVDD share a single supply but they should be isolated by a ferrite bead and bypass capacitors, in a PI-filter configuration, at a minimum. The digital noise will be concentrated at the sampling frequency and harmonics of the sampling frequency and could contain noise related to the sampled signal. While developing schematics, it is a good idea to leave extra placeholders for additional supply filtering.

10.3 Power Supply Bypassing

Because the ADS4229 already includes internal decoupling, minimal external decoupling can be used without loss in performance. Note that decoupling capacitors can help filter external power-supply noise; thus, the optimum number of capacitors depends on the actual application. A $0.1-\mathrm{uF}$ capacitor is recommended near each supply pin. The decoupling capacitors should be placed very close to the converter supply pins.

11 Layout

11.1 Layout Guidelines

11.1.1 Grounding

A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of the board are cleanly partitioned. See the ADS4226 Evaluation Module (SLAU333) for details on layout and grounding.

11.1.2 Exposed Pad

In addition to providing a path for heat dissipation, the PowerPAD is also electrically connected internally to the digital ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and QFN/SON PCB Attachment (SLUA271).

11.1.3 Routing Analog Inputs

It is advisable to route differential analog input pairs (INP_x and INM_x) close to each other. To minimize the possibility of coupling from a channel analog input to the sampling clock, the analog input pairs of both channels should be routed perpendicular to the sampling clock; see the ADS4226 Evaluation Module (SLAU333) for reference routing. Figure 85 shows a snapshot of the PCB layout from the ADS42xxEVM.

11.1.4 Routing Digital Outputs

The digital outputs should be routed away from the analog inputs and any noise sensitive circuits. Avoid routing the digital outputs in parallel to any analog trace. The digital outputs should be routed over a solid ground plane all the way to the FPGA. Keep the digital traces as short as possible to reduce EMI emissions. The traces should be matched length to maintain timing, however mismatches in the trace lengths can be taken into account by including the delay differences in the FPGA timing constraints.

11.2 Layout Example

Figure 85. ADS42xxEVM PCB Layout

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 Definition of Specifications

Analog Bandwidth - The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low-frequency value.
Aperture Delay - The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs. This delay is different across channels. The maximum variation is specified as aperture delay variation (channel-to-channel).
Aperture Uncertainty (Jitter) - The sample-to-sample variation in aperture delay.
Clock Pulse Width/Duty Cycle - The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.
Maximum Conversion Rate - The maximum sampling rate at which specified operation is given. All parametric testing is performed at this sampling rate unless otherwise noted.
Minimum Conversion Rate - The minimum sampling rate at which the ADC functions.
Differential Nonlinearity (DNL) - An ideal ADC exhibits code transitions at analog input values spaced exactly 1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.
Integral Nonlinearity (INL) - The INL is the deviation of the ADC transfer function from a best fit line determined by a least squares curve fit of that transfer function, measured in units of LSBs.
Gain Error - Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a result of reference inaccuracy ($\mathrm{E}_{\text {GREF }}$) and error as a result of the channel ($\mathrm{E}_{\mathrm{GCHAN}}$). Both errors are specified independently as $\mathrm{E}_{\text {GREF }}$ and $\mathrm{E}_{\mathrm{GCHAN}}$.
To a first-order approximation, the total gain error is $\mathrm{E}_{\text {TOTAL }} \sim \mathrm{E}_{\text {GREF }}+\mathrm{E}_{\text {GCHAN }}$.
For example, if $\mathrm{E}_{\text {TOTAL }}= \pm 0.5 \%$, the full-scale input varies from $(1-0.5 / 100) \times \mathrm{FS}_{\text {ideal }}$ to $(1+0.5 / 100) \times \mathrm{FS}_{\text {ideal }}$.
Offset Error - The offset error is the difference, given in number of LSBs, between the ADC actual average idle channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.
Temperature Drift - The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree Celsius of the parameter from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. It is calculated by dividing the maximum deviation of the parameter across the $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ range by the difference $\mathrm{T}_{\text {MAX }}-\mathrm{T}_{\text {MIN }}$.
Signal-to-Noise Ratio - SNR is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{S}}\right)$ to the noise floor power $\left(\mathrm{P}_{\mathrm{N}}\right)$, excluding the power at dc and the first nine harmonics.

$$
\begin{equation*}
\mathrm{SNR}=10 \mathrm{Log}^{10} \frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{N}}} \tag{2}
\end{equation*}
$$

SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter fullscale range.
Signal-to-Noise and Distortion (SINAD) - SINAD is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{S}}\right)$ to the power of all the other spectral components including noise $\left(\mathrm{P}_{\mathrm{N}}\right)$ and distortion $\left(\mathrm{P}_{\mathrm{D}}\right)$, but excluding dc.

$$
\begin{equation*}
\text { SINAD }=10 \log ^{10} \frac{P_{S}}{P_{N}+P_{D}} \tag{3}
\end{equation*}
$$

Device Support (continued)

SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter fullscale range.
Effective Number of Bits (ENOB) - ENOB is a measure of the converter performance as compared to the theoretical limit based on quantization noise.

$$
\begin{equation*}
\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76}{6.02} \tag{4}
\end{equation*}
$$

Total Harmonic Distortion (THD) - THD is the ratio of the power of the fundamental $\left(\mathrm{P}_{\mathrm{S}}\right)$ to the power of the first nine harmonics (P_{D}).

$$
\begin{equation*}
\mathrm{THD}=10 \log ^{10} \frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{N}}} \tag{5}
\end{equation*}
$$

THD is typically given in units of dBc (dB to carrier).
Spurious-Free Dynamic Range (SFDR) - The ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).
Two-Tone Intermodulation Distortion - IMD3 is the ratio of the power of the fundamental (at frequencies f_{1} and f_{2}) to the power of the worst spectral component at either frequency $2 f_{1}-f_{2}$ or $2 f_{2}-f_{1}$. IMD3 is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.
DC Power-Supply Rejection Ratio (DC PSRR) - DC PSSR is the ratio of the change in offset error to a change in analog supply voltage. The dc PSRR is typically given in units of mV / V.
AC Power-Supply Rejection Ratio (AC PSRR) - AC PSRR is the measure of rejection of variations in the supply voltage by the $A D C$. If $\Delta \mathrm{V}_{\text {SUP }}$ is the change in supply voltage and $\Delta \mathrm{V}_{\text {OUT }}$ is the resultant change of the ADC output code (referred to the input), then:

$$
\begin{equation*}
\mathrm{PSRR}=20 \log ^{10} \frac{\Delta \mathrm{~V}_{\text {OUT }}}{\Delta \mathrm{V}_{\text {SUP }}} \quad \text { (Expressed in dBc) } \tag{6}
\end{equation*}
$$

Voltage Overload Recovery - The number of clock cycles taken to recover to less than 1% error after an overload on the analog inputs. This is tested by separately applying a sine wave signal with 6 dB positive and negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.
Common-Mode Rejection Ratio (CMRR) - CMRR is the measure of rejection of variation in the analog input common-mode by the ADC. If $\Delta V_{C M}$ IN is the change in the common-mode voltage of the input pins and $\Delta V_{\text {OUT }}$ is the resulting change of the ADC output code (referred to the input), then:

$$
\begin{equation*}
\mathrm{CMRR}=20 \log ^{10} \frac{\Delta \mathrm{~V}_{\mathrm{OUT}}}{\Delta \mathrm{~V}_{\mathrm{CM}}} \quad(\text { Expressed in dBc) } \tag{7}
\end{equation*}
$$

Crosstalk (only for multi-channel ADCs) - This is a measure of the internal coupling of a signal from an adjacent channel into the channel of interest. It is specified separately for coupling from the immediate neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel input. It is typically expressed in dBc.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- QFN Layout Guidelines (SLOA122)
- QFN/SON PCB Attachment (SLUA271)
- ADS4226 Evaluation Module (SLAU333)

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E ${ }^{\text {TM }}$ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS4229IRGCR	ACTIVE	VQFN	RGC	64	2000	RoHS \& Green	NIPDAUAG	Level-3-260C-168 HR	-40 to 85	AZ4229	Samples
ADS4229IRGCT	ACTIVE	VQFN	RGC	64	250	RoHS \& Green	NIPDAUAG	Level-3-260C-168 HR	-40 to 85	AZ4229	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
ADS4229IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS4229IRGCR	VQFN	RGC	64	2000	350.0	350.0	43.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

