

OPAx237 Single-Supply Operational Amplifiers MicroAmplifier Series

1 Features

Micro-size, miniature packages:

 Single: SOT23-5, SO-8 Dual: VSSOP-8, SO-8 Quad: SSOP-16 (obsolete)

Low offset voltage: 750µV max (V_S=5V)

Wide supply range:

 Single supply: 2.7V to 36V Dual supply: ±1.35V to ±18V Low quiescent current: 350µA max

Wide bandwidth: 1.5MHz

2 Applications

Battery-powered instruments

Portable devices

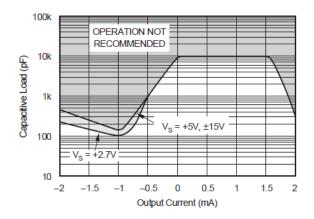
PCMCIA cards

Medical instruments

Test equipment

3 Description

The OPAx237 op amp family is one of Texas Instruments' MicroAmplifier series of miniature products. In addition to small size, these devices feature low offset voltage, low quiescent current, low bias current, and a wide supply range. Single, and dual versions have identical specifications for maximum design flexibility. These devices are designed for single-supply, battery-operated, and space-limited applications, such as PCMCIA cards and other portable instruments.


The OPAx237 series op amps operate from either single or dual supplies. When operated from a single supply, the input common-mode range extends below ground and the output can swing to within 10mV of ground. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.

Single, dual, and quad versions are offered in spacesaving surface-mount packages. The single version is available in the ultra-miniature 5-lead SOT23-5 and SOIC-8 surface-mount packages. The dual version comes in miniature VSSOP-8 and SO-8 surfacemount packages. The quad version is obsolete. The VSSOP-8 has the same lead count as a the SO-8, but at half the size. The SOT23-5 is even smaller, at one-fourth the size of an SOIC-8. All are specified for -40°C to +85°C operation. A macromodel is available for design analysis.

Device Information

PRODUCT	CHANNELS	PACKAGE ⁽¹⁾
OPA237		D (SOIC, 8)
UPA237	Single	DBV (SOT-23, 5)
OPA2237	Dual	D (SOIC, 8)
OFA2231	Duai	DGK (VSSOP, 8)

For more information, see Section 9.

Stability-Capacitive Load vs Output Current

Table of Contents

1 Features1	5.8 Typical Characteristics	8
2 Applications1	6 Application and Implementation	
3 Description1	6.1 Application Information	. 12
4 Pin Configuration and Functions3	6.2 Typical Application	
5 Specifications 4	7 Device and Documentation Support	14
5.1 Absolute Maximum Ratings4	7.1 Receiving Notification of Documentation Updates	14
5.2 Recommended Operating Conditions4	7.2 Support Resources	. 14
5.3 Thermal Information OPA2374	7.3 Trademarks	. 14
5.4 Thermal Information OPA22374	7.4 Electrostatic Discharge Caution	14
5.5 Electrical Characteristics for V _S = 2.7V5	7.5 Glossary	14
5.6 Electrical Characteristics for V _S = 5V6	8 Revision History	. 14
5.7 Electrical Characteristics for $V_S = 30V$	9 Mechanical, Packaging, and Orderable Information.	. 15

4 Pin Configuration and Functions

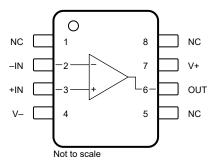


Figure 4-1. OPA237: D Package, 8-Pin SOIC (Top View)

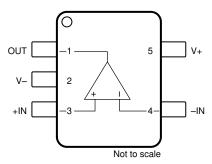


Figure 4-2. OPA237: DBV Package, 5-Pin SOT-23 (Top View)

Table 4-1. Pin Functions: OPA237

	PIN			
NAME	NO.		TYPE	DESCRIPTION
NAME	D (SOIC)	DBV (SOT-23)		
-IN	2	4	Input	Inverting input
+IN	3	3	Input	Noninverting input
OUT	6	1	Output	Output
V-	4	2	Power	Negative (lowest) power supply
V+	7	5	Power	Positive (highest) power supply

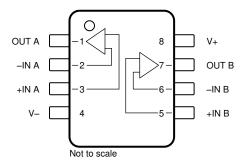


Figure 4-3. OPA2237: D Package, 8-Pin SOIC, and DGK Package, 8-Pin VSSOP (Top View)

Table 4-2. Pin Functions: OPA2237

PIN		TYPE	DESCRIPTION	
NAME	NO.	ITPE	DESCRIPTION	
–IN A	2	Input	Inverting input, channel A	
+IN A	3	Input	Noninverting input, channel A	
–IN B	6	Input	Inverting input, channel B	
+IN B	5	Input	Noninverting input, channel B	
OUT A	1	Output	Output, channel A	
OUT B	7	Output	Output, channel B	
V-	4	Power	Negative (lowest) power supply	
V+	8	Power	Positive (highest) power supply	

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

				MIN	MAX	UNIT
Vs	Supply voltage, V _S = (V+) – (V–)			36	V
		Voltage	Common-mode	(V-) - 0.7	(V+) + 0.7	V
	Signal input pins	Signal input pins Voltage	Differential	-0.7	+0.7	v
		Current			±10	mA
I _{SC}	Output short circuit(2)			Continuous		
T _A	Operating temperature)		– 55	125	°C
TJ	Junction temperature				150	°C
T _{stg}	Storage temperature			– 55	125	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Vs	Supply voltage, $V_S = (V+) - (V-)$	2.7	36	V
T _A	Operating temperature	-40	85	°C

5.3 Thermal Information OPA237

		OPA	OPA237			
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	D (SOIC)	UNIT		
		5 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.8	180.4	°C/W		
R _{θJC(top)}	Junction-to-case (top) thermal resistance	56.4	67.9	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	56.4	102.1	°C/W		
ΨЈТ	Junction-to-top characterization parameter	12.8	10.4	°C/W		
ΨЈВ	Junction-to-board characterization parameter	55.9	100.3	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W		

⁽¹⁾ For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.4 Thermal Information OPA2237

		OF	OPA2237			
	THERMAL METRIC(1)	D (SOIC)	DGK (VSSOP)	UNIT		
		8 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	126.9	175.6	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	67.1	63.1	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	70.3	97.2	°C/W		
ΨЈΤ	Junction-to-top characterization parameter	18.8	7.8	°C/W		
ΨЈВ	Junction-to-board characterization parameter	69.5	95.5	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W		

(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

⁽²⁾ Short-circuit to ground, one amplifier per package.

5.5 Electrical Characteristics for $V_S = 2.7V$

at T_A = 25°C, V_O = V_S / 2, and R_L = 10k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
OFFSET \							
V _{OS}	Input offset voltage	V _{CM} = 1V			±250	±950	μV
dV _{OS} /dT	Input offset voltage drift	T _A = -40°C to +85°C			±2	±7.5	μV/°C
PSRR	Power-supply rejection ratio	2.7V < V _S < 36V			10	30	μV/V
	Channel separation (dual)	-			0.5		μV/V
INPUT BIA	AS CURRENT						-
I _B	Input bias current (1)	V _{CM} = 1V			-10	-40	nA
I _{os}	Input offset current (1)	V _{CM} = 1V			±0.5	±10	nA
NOISE							
	Input voltage noise	f = 0.1Hz to 10Hz			1		μV_{PP}
e _n	Input voltage noise density	f = 1kHz			28		nV/√ Hz
i _n	Input current noise density	f = 1kHz			60		pA/√ Hz
INPUT VO	DLTAGE						
V _{CM}	Common-mode voltage			(V-) - 0.2		(V+) - 1.5	V
CMRR	Common-mode rejection ratio	V _{CM} = (V–) – 0.2V to (V+) – 1.5V		71	85		dB
INPUT IMI	PEDANCE						
_		Differential	 Differential		5 4		MΩ pF
Z _{IN}	Input impedance	Common-mode			5 2		TΩ pF
OPEN-LO	OP GAIN						
A _{OL}	Open-loop voltage gain	V _O = 0.55V to 1.7V		75	88		dB
FREQUEN	NCY RESPONSE						
GBW	Gain bandwidth product				1.2		MHz
SR	Slew rate	G = 1			0.45		V/µs
	0-441	0 = 4.0 = 400=5.4\/ =t==	0.1%		5		
t _S	Settling time	$G = -1$, $C_L = 100pF$, 1V step	0.01%		8		μs
OUTPUT			'				
		D = 100k0 to 1/	Positive rail	(V+) – 1	(V+) - 0.75		
		R_L = 100kΩ to V–	Negative rail		(V-) + 0.001	(V-) + 0.05	
\/ -	Voltago output	P 100kO	Positive rail	(V+) – 1	(V+) - 0.75		
Vo	Voltage output	$R_L = 100 k\Omega$	Negative rail		(V-) + 0.02	(V-) + 0.06	V
		P 10k0	Positive rail	(V+) – 1	(V+) - 0.75		
		$R_L = 10k\Omega$	Negative rail		(V-) + 0.2	(V-) + 0.3	
laa	Short-circuit current	Sourcing			7		mA
I _{SC}	Onort-oroun current	Sinking			-10		IIIA
C _L	Capacitive load drive			See Ty	pical Characte	ristics	
POWER S	SUPPLY						
IQ	Quiescent current per amplifier				150	350	μA

⁽¹⁾ Input bias current specified by design and processing.

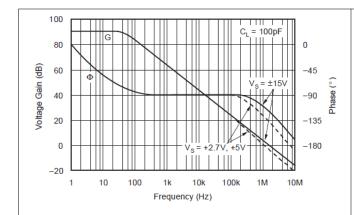
5.6 Electrical Characteristics for $V_S = 5V$

at T_A = 25°C, V_O = V_S / 2, and R_L = 10k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
OFFSET \	/OLTAGE						
V _{OS}	Input offset voltage	V _{CM} = 2.5V			±250	±750	μV
dV _{OS} /dT	Input offset voltage drift	$T_A = -40$ °C to +85°C			±2	±5	μV/°C
PSRR	Power-supply rejection ratio	2.7V < V _S < 36V			10	30	μV/V
	Channel separation (dual)				1		μV/V
INPUT BI	AS CURRENT			·			
I _B	Input bias current (1)	V _{CM} = 2.5V			-10	-40	nA
Ios	Input offset current (1)	V _{CM} = 2.5V			±0.5	±10	nA
NOISE	•	•		-			
	Input voltage noise	f = 0.1Hz to 10Hz			1		μV _{PP}
e _n	Input voltage noise density	f = 1kHz			28		nV/√ Hz
in	Input current noise density	f = 1kHz			60		fA/√ Hz
INPUT VO	DLTAGE			-			
V _{CM}	Common-mode voltage			(V-) - 0.2		(V+) - 1.5	V
CMRR	Common-mode rejection ratio	$V_{CM} = (V-) - 0.2V \text{ to } (V+) - 1.5V$		76	86		dB
INPUT IM	PEDANCE	ı					
_		Differential			5 4		MΩ pF
Z _{IN}	Input impedance	Common-mode			5 2		TΩ pF
OPEN-LO	OP GAIN	ı					
A _{OL}	Open-loop voltage gain	V _O = 0.5V to 4V		75	88		dB
FREQUE	NCY RESPONSE	1					
GBW	Gain bandwidth product				1.4		MHz
SR	Slew rate	G = 1			0.45		V/µs
	Cattling time	C = 1 C = 100mF 3V ct	0.1%		11		
t _S	Settling time	$G = -1$, $C_L = 100pF$, 3V step	0.01%		16		μs
ОИТРИТ	•	•					
		P. = 100kO to \/	Positive rail	(V+) - 1.5	(V+) - 0.75		
		$R_L = 100k\Omega$ to V–	Negative rail		(V-) + 0.001	(V-) + 0.1	
	Valtage cutput	D = 100k0	Positive rail	(V+) - 1.5	(V+) - 0.75		.,
Vo	Voltage output	$R_L = 100k\Omega$	Negative rail		(V-) + 0.04	(V-) + 0.12	
		D -40 k0	Positive rail	(V+) - 1.5	(V+) - 0.75		
		R _L =10 kΩ	Negative rail		(V-) + 0.35	(V-) + 0.6	
	Ob and aims vite.	Sourcing	1		8		4
I _{SC}	Short-circuit current	Sinking			-10		mA
CL	Capacitive load drive			See Ty	pical Characte	ristics	
POWER S	SUPPLY	ı		1			
IQ	Quiescent current per amplifier				170	350	μA

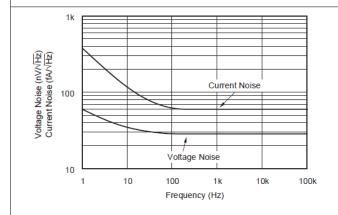
⁽¹⁾ Input bias current specified by design and processing.

5.7 Electrical Characteristics for $V_S = 30V$


at T_A = 25°C, V_O = V_S / 2, and R_L = 10k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER	TEST COND	TIONS	MIN	TYP	MAX	UNIT
OFFSET \	/OLTAGE						
V _{OS}	Input offset voltage	$V_{CM} = V_S/2$			±350	±950	μV
dV _{OS} /dT	Input offset voltage drift	$T_A = -40$ °C to +85°C			±2.5	±7	μV/°C
PSRR	Power-supply rejection ratio	2.7V < V _S < 36V			10	30	μV/V
	Channel separation (dual)				1		μV/V
INPUT BIA	AS CURRENT						
I _B	Input bias current (1)	$V_{CM} = V_S/2$			-8.5	-40	nA
I _{OS}	Input offset current (1)	$V_{CM} = V_S/2$			±0.5	±10	nA
NOISE				<u> </u>			
	Input voltage noise	f = 0.1Hz to 10Hz			1		μV_{PP}
e _n	Input voltage noise density	f = 1kHz			28		nV/√ Hz
i _n	Input current noise density	f = 1kHz			80		fA/√ Hz
INPUT VO	DLTAGE			<u> </u>			
V _{CM}	Common-mode voltage			(V-) - 0.2		(V+) - 1.5	V
CMRR	Common-mode rejection ratio	V _{CM} = (V–) to (V+) – 1.5V		80	90		dB
INPUT IM	PEDANCE			<u>'</u>			
-		Differential			5 4		MΩ pF
Z _{IN}	Input impedance	Common-mode			5 2		TΩ pF
OPEN-LO	OP GAIN			•			
A _{OL}	Open-loop voltage gain	V _O = (V–) + 1V to (V+) – 1.2V		80	88		dB
FREQUE	NCY RESPONSE						
GBW	Gain bandwidth product				1.5		MHz
SR	Slew rate	G = 1			0.44		V/µs
	0-111:	0 - 4 0 - 400-5 401/	0.1%		20		
ts	Settling time	G = -1, C _L = 100pF, 10V step	0.01%		24		μs
OUTPUT			'	•			
		D = 400k0	Positive rail	(V+) - 1.2	(V+) - 0.9		
V	\/-lk	$R_L = 100k\Omega$	Negative rail		(V-) + 0.3	(V-) + 0.5	1
Vo	Voltage output	D 401.0	Positive rail	(V+) - 1.2	(V+) - 0.9		V
		$R_L = 10k\Omega$	Negative rail		(V-) + 0.85	(V-) + 1	
	01 1 : :1	Sourcing			9.5		
I _{SC}	Short-circuit current	Sinking			-10		mA
C _L	Capacitive load drive			See Typical Characteristics			
POWER S	SUPPLY			<u>'</u>			
IQ	Quiescent current per amplifier				200	475	μА

⁽¹⁾ Input bias current specified by design and processing.


5.8 Typical Characteristics

+PSR (V_S = +5V, ±15V) 100 80 CMR (dB) 60 +PSR PSR, = +2.7 40 20 PSR $= \pm 15V$ 0 10 100 10k 100k 1M 10M Frequency (Hz)

Figure 5-1. Open-Loop Gain and Phase vs Frequency

Figure 5-2. Power Supply and Common-Mode Rejection vs Frequency

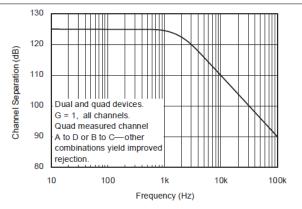
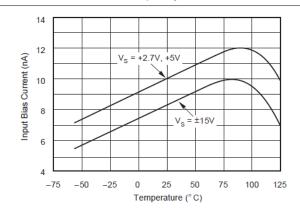



Figure 5-3. Input Noise and Current Noise Spectral Density vs Frequency

Figure 5-4. Channel Separation vs Frequency

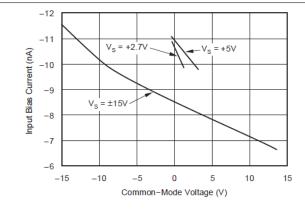


Figure 5-5. Input Bias Current vs Temperature

Figure 5-6. Input Bias Current vs Input Common-Mode Voltage

5.8 Typical Characteristics (continued)

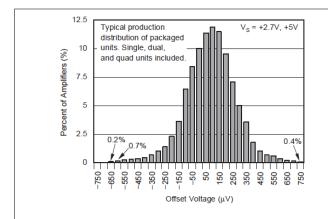
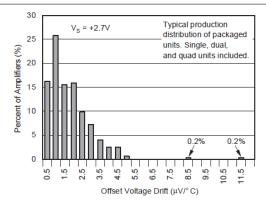



Figure 5-7. Offset Voltage Production Distribution

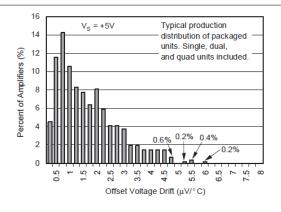
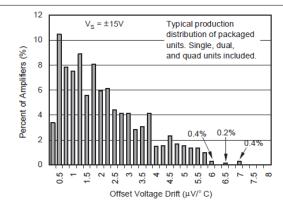



Figure 5-9. Offset Voltage Drift Production Distribution

Figure 5-10. Offset Voltage Drift Production Distribution

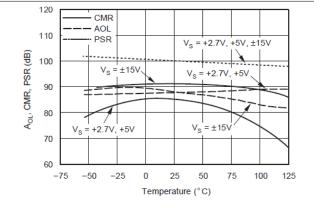
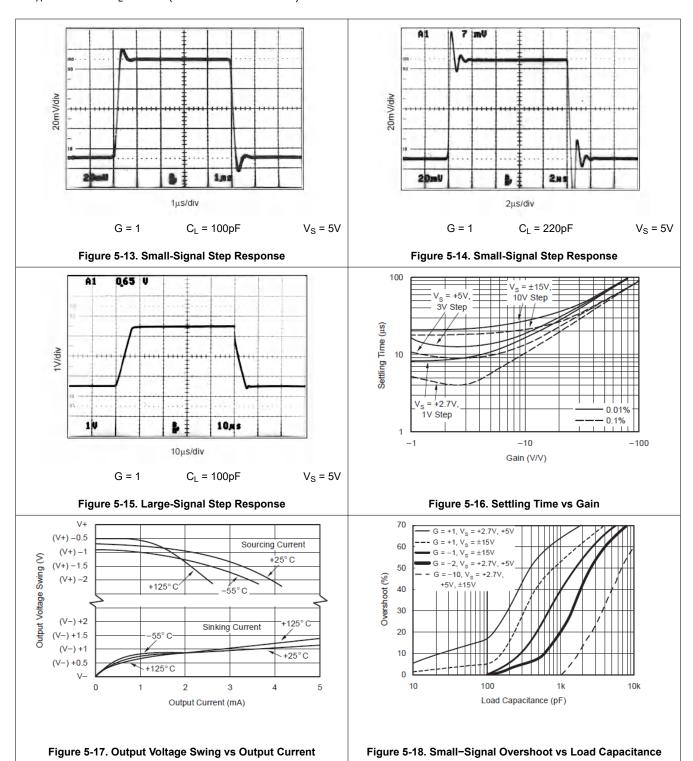
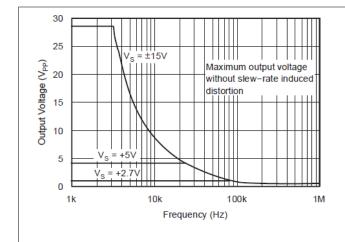



Figure 5-11. Offset Voltage Drift Production Distribution


Figure 5-12. A_{OL} , CMR, PSR vs Temperature

5.8 Typical Characteristics (continued)

5.8 Typical Characteristics (continued)

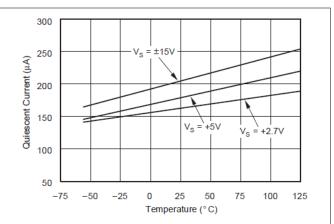


Figure 5-19. Maximum Output Voltage vs Frequency

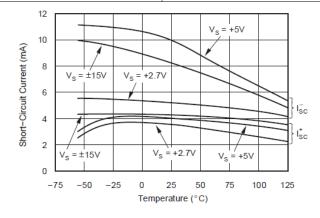


Figure 5-21. Short-Circuit Current vs Temperature

6 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

6.1 Application Information

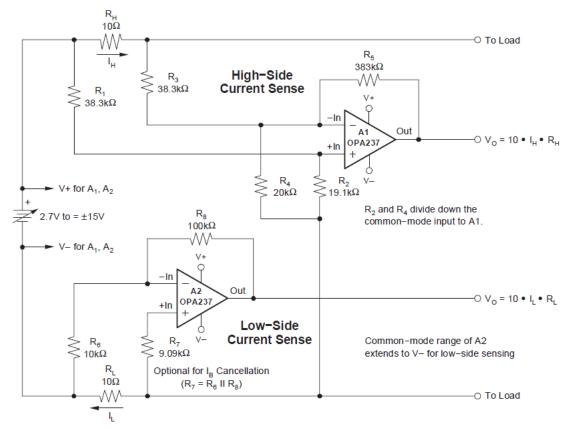
The OPA237 series op amps are unity-gain stable and an excellent choice for a wide range of general-purpose applications. Bypass the power-supply pins with 10nF ceramic capacitors.

6.1.1 Operating Voltage

OPA237 series op amps operate from single (2.7V to 36V) or dual (±1.35V to ±18V) supplies with excellent performance. Most behavior remains unchanged throughout the full operating voltage range. Parameters that vary significantly with operating voltage are shown in *Typical Characteristics*. Specifications are production tested with 2.7V, 5V, and ±15V supplies.

6.1.2 Output Current and Stability

OPA237 series op amps can drive large capacitive loads. However, under certain limited output conditions, any op amp can become unstable. Figure 6-2 shows the region where the OPA237 has a potential for instability. These load conditions are rarely encountered, especially for single-supply applications. For example, when a 5V supply with a $10k\Omega$ load to $V_S/2$ is used.


OPA237 series op amps remain stable with capacitive loads up to 4,000pF, if sinking current, and up to 10,000pF, if sourcing current. Furthermore, in single-supply applications where the load is connected to ground, the op amp is only sourcing current, and as Figure 6-2 shows, the op amp can drive 10,000pF with output currents up to 1.5mA.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

6.2 Typical Application

Note: Low-side and high-side sensing circuits can be used independently.

Figure 6-1. Low-Side and High-Side Battery Current Sensing

6.2.1 Application Curve

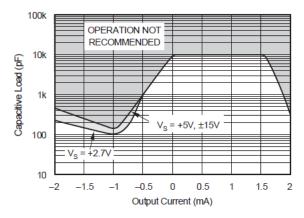


Figure 6-2. Stability-Capacitive Load vs Output Current

7 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

7.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

7.2 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

7.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

7.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

8 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision A (February 2007) to Revision B (April 2025)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Changed quiescent current unit from µV to µA in Features	1
•	Updated Pin Configurations and Functions to latest standards and added Pin Functions tables	3
•	Added input current to Absolute Maximum Ratings	4
•	Added Recommended Operating Conditions	4
•	Added Thermal Information	
•	Updated junction-to-ambient thermal resistance for OPA237 packages	4
•	Updated junction-to-ambient thermal resistance for OPA2237 packages	4
•	Updated all Electrical Characteristics tables to latest format	5
•	Added test condition V _O = V _S /2	<mark>5</mark>
•	Changed maximum input offset voltage from ±750µV to ±950µV	
•	Deleted table note "Specified by wafer-level test to 95% confidence"	
•	Changed maximum input offset voltage drift from 5μV/°C to 7.5μV/°C	
•	Updated table note 1	
•	Updated V _{CM} range format to refer to rails	
•	Changed minimum common-mode rejection ratio from 75dB to 71dB	5
•	Changed differential input impedance from 5·10 ⁶ Ω to 5MΩ	5
•	Changed common-mode input impedance from $5\cdot10^9\Omega$ to $5T\Omega$	
•	Changed minimum open-loop voltage gain from 80dB to 75dB	<mark>5</mark>

Submit Document Feedback

www.ti.com

•	Changed test condition for open-loop voltage gain from 0.5V to 0.55V	
_		
•	Added V- to negative rail rows and moved positive and negative labels to test condtions for voltage output	
•	Changed test condition of voltage output for R_L = 100k Ω from "Ground" to V	.5
•	Changed maximum voltage output for $R_L = 100 k\Omega$ from negative rail from 0.01V to (V–) + 0.05V	. 5
•	Updated short circuit current to show separated rows for source and sink	
•	Changed short-circuit sourcing current from 3.5mA to 7mA	5
•	Changed short-circuit sinking current from -5mA to -10mA	.5
•	Changed typical quiescent current from 160µA to 150µA	.5
•	Added test condition $V_O = V_S/2$. 6
•	Deleted table note "Specified by wafer-level test to 95% confidence"	. 6
•	Changed channel separation from 0.5μV/V to 1μV/V	
•	Updated table note 1	. 6
•	Updated V _{CM} range format to refer to rails	.6
•	Changed minimum common-mode rejection ratio for from 78dB to 76dB	6
•	Changed differential input impedance from $5\cdot10^6\Omega$ to $5M\Omega$	
•	Changed common-mode input impedance from $5\cdot10^9\Omega$ to $5T\Omega$	
•	Changed typical slew rate from 0.5V/µs to 0.45V/µs	
•	Added V- to negative rail rows and moved positive and negative labels to test conditions for voltage output.	
•	Changed test condition of voltage output for RL = $100k\Omega$ from "Ground" to V	
•	Changed minimum voltage output from positive rail from (V+) – 1V to (V+) – 1.5V	
•	Changed maximum voltage output from negative rail from $(V-) + 0.01V$ to $(V-) + 0.1V$	
•	Changed minimum voltage output from positive rail from $(V+) - 1V$ to $(V+) - 1.5V$	
•	Changed maximum voltage output from negative rail from (V–) + 0.5V to (V–) + 0.6V	
•	Updated short circuit current to show separated rows for source and sink	
•	Changed short-circuit sourcing current from 4mA to 8mA	
•	Added test condition $V_O = V_S/2$	
•	Changed test condition for input offset voltage from $V_{CM} = 0V$ to $V_{CM} = V_S/2$	
•	Deleted table note "Specified by wafer-level test to 95% confidence"	
•	Changed channel separation from 0.5µV/V to 1µV/VUpdated table note 1	
•	Changed test condition for input bias current from $V_{CM} = 0V$ to $V_{CM} = V_S/2$	
	Changed test condition for input bias current from $V_{CM} = 0V$ to $V_{CM} = V_S/2$	
	Changed input current noise density from $60fA/\sqrt{Hz}$ to $80fA/\sqrt{Hz}$	
•	Updated V _{CM} range format to refer to rails	
	Changed differential input impedance from $5\cdot10^6\Omega$ to $5M\Omega$	7
	Changed common-mode input impedance from $5 \cdot 10^9 \Omega$ to $5 T \Omega$.	
	Changed slew rate from 0.5V/µs to 0.44V/µs	
	Changed settling time in 0.1% from 18µs to 20µs	7
	Changed settling time in 0.01% from 21µs to 24µs	
	Added V– to negative rail rows and moved positive and negative labels to test condtions for voltage output	
	Updated short circuit current to show separated rows for source and sink	
•	Changed short-circuit sourcing current from 4.5mA to 9.5mA	
•	Changed short-circuit sinking current from –8mA to –10mA	
•	Deleted ± sign from quiescent current spec	

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

2-Dec-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
OPA2237EA/250	Last Time Buy	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-	B37A
OPA2237EA/2K5	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	Call TI Nipdauag Nipdau	Level-2-260C-1 YEAR	-40 to 85	B37A
OPA2237EA/2K5.A	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	-40 to 85	B37A
OPA2237EA/2K5.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	-40 to 85	B37A
OPA2237UA	Last Time Buy	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-	OPA 2237UA
OPA2237UA/2K5	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-	(OP2237, OPA) 2237UA
OPA2237UA/2K5.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	(OP2237, OPA) 2237UA
OPA2237UA/2K5.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	(OP2237, OPA) 2237UA
OPA2237UAE4	Active	Production	SOIC (D) 8	75 TUBE	-	Call TI	Call TI	See OPA2237UA	
OPA237NA/250	Last Time Buy	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 70	A37A
OPA237NA/3K	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-2-260C-1 YEAR	-40 to 70	A37A
OPA237NA/3K.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 70	A37A
OPA237NA/3K.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 70	A37A
OPA237NA/3K1G4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 70	A37A
OPA237NA/3K1G4.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 70	A37A
OPA237UA	Last Time Buy	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 70	OPA 237UA
OPA237UA/2K5	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 70	(OP237, OPA) 237UA
OPA237UA/2K5.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 70	(OP237, OPA) 237UA
OPA237UA/2K5.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 70	(OP237, OPA) 237UA

⁽¹⁾ Status: For more details on status, see our product life cycle.

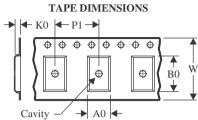
PACKAGE OPTION ADDENDUM

www.ti.com 2-Dec-2025

- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

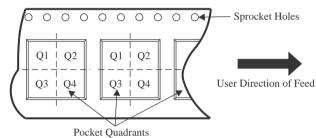
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

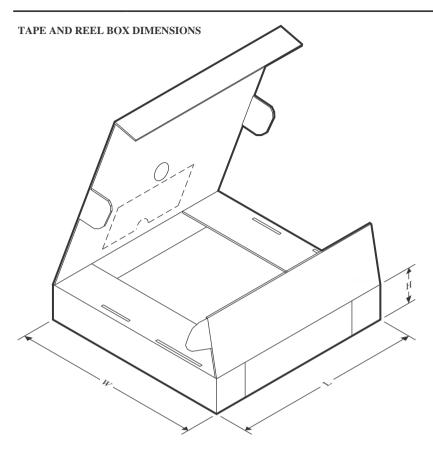
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

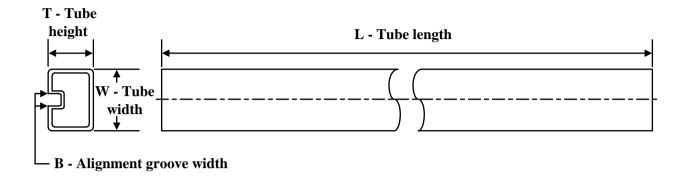
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2237EA/250	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2237EA/2K5	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2237UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA237NA/250	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA237NA/3K	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA237NA/3K1G4	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
OPA237UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 24-Jul-2025

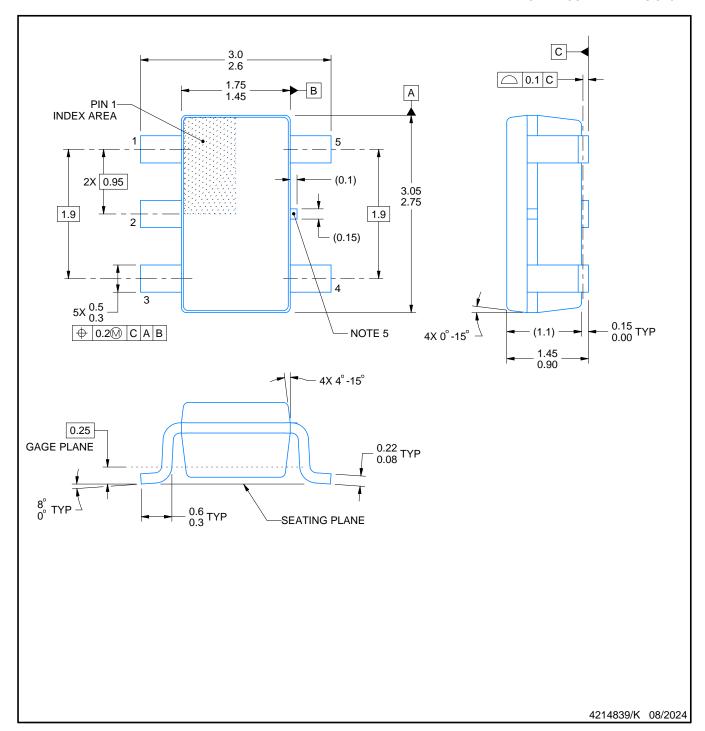

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2237EA/250	VSSOP	DGK	8	250	366.0	364.0	50.0
OPA2237EA/2K5	VSSOP	DGK	8	2500	366.0	364.0	50.0
OPA2237UA/2K5	SOIC	D	8	2500	353.0	353.0	32.0
OPA237NA/250	SOT-23	DBV	5	250	180.0	180.0	18.0
OPA237NA/3K	SOT-23	DBV	5	3000	180.0	180.0	18.0
OPA237NA/3K1G4	SOT-23	DBV	5	3000	180.0	180.0	18.0
OPA237UA/2K5	SOIC	D	8	2500	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

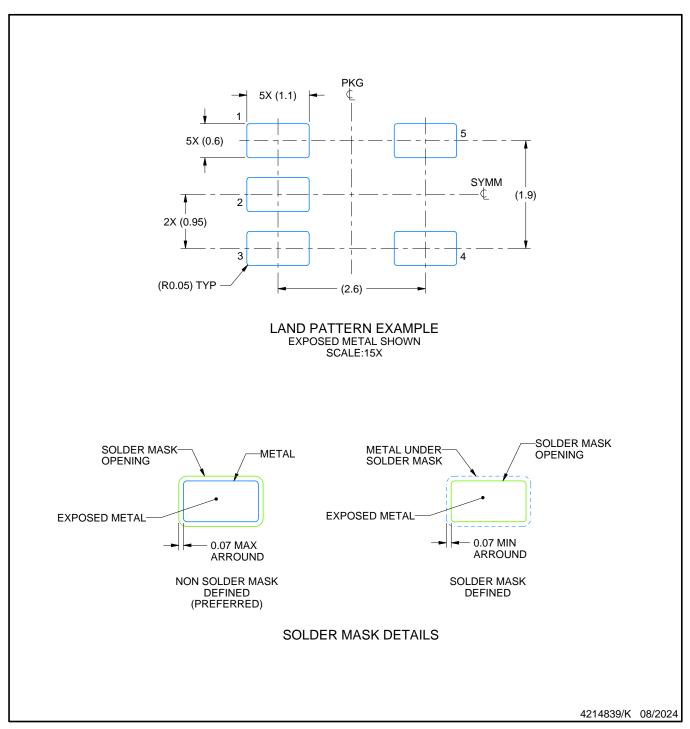
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
OPA2237UA	D	SOIC	8	75	506.6	8	3940	4.32
OPA237UA	D	SOIC	8	75	506.6	8	3940	4.32

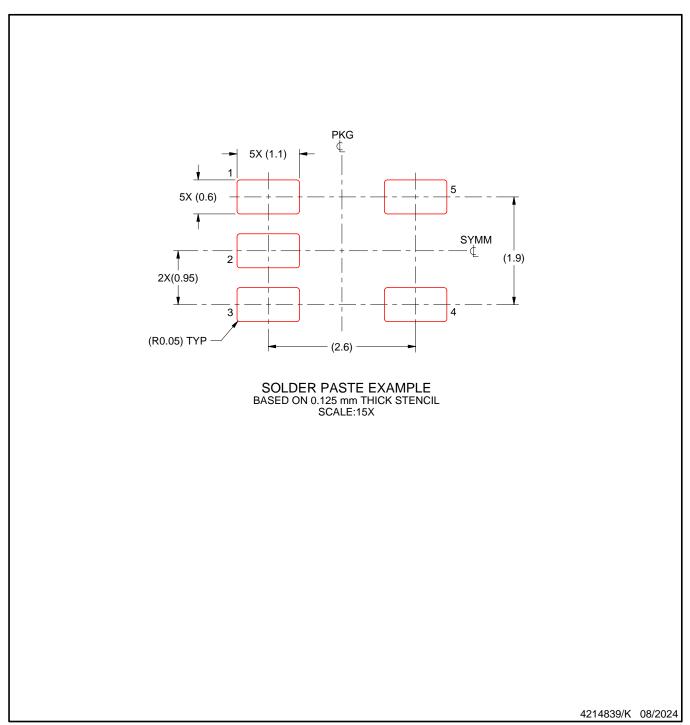
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

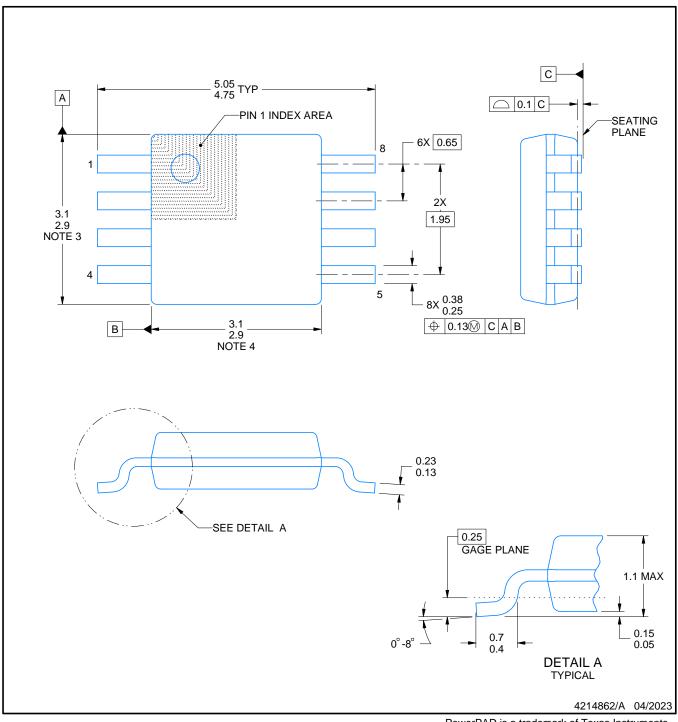
SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

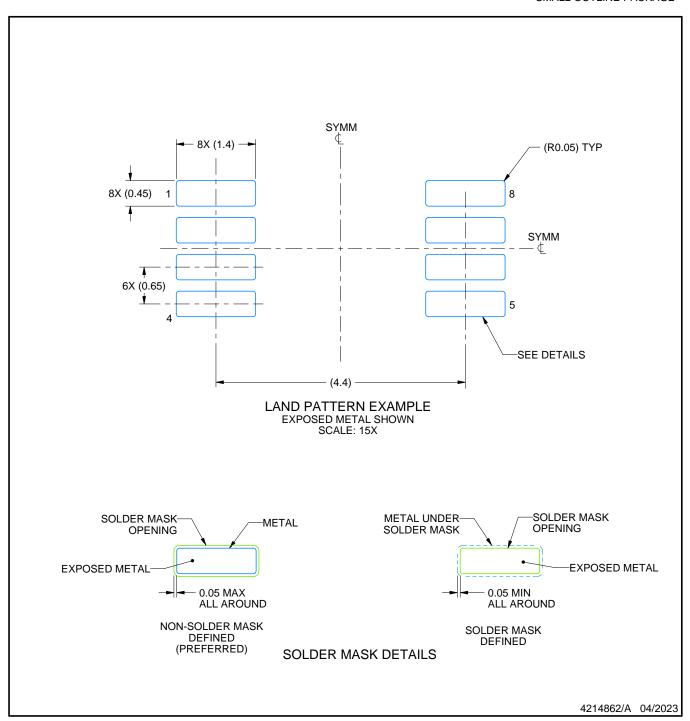

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

NOTES:

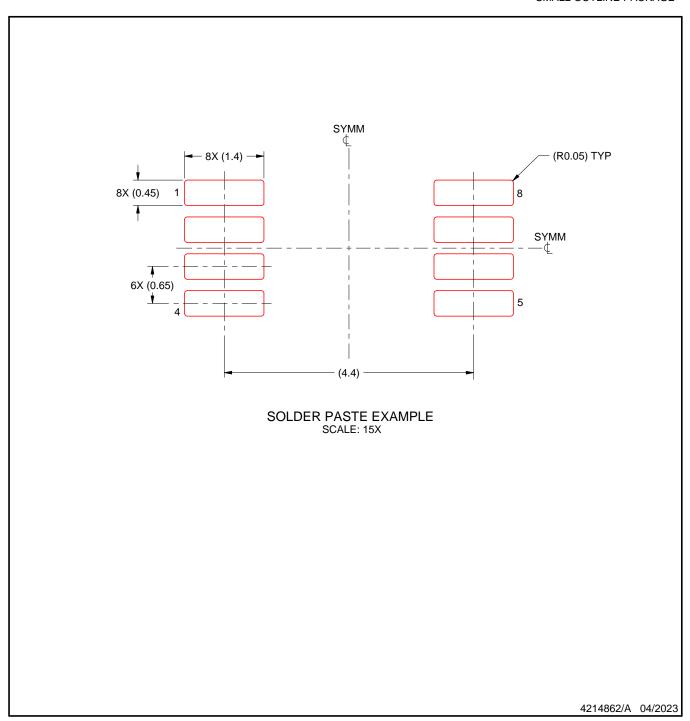
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

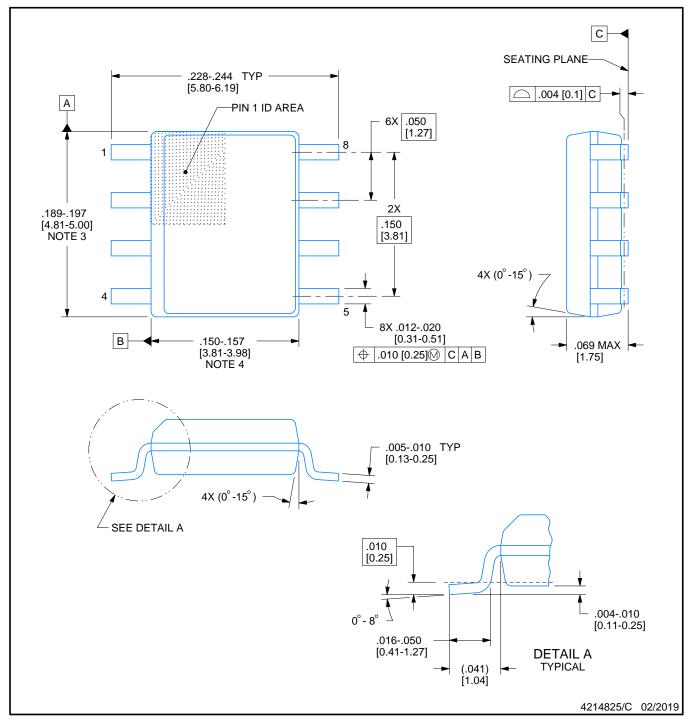
SMALL OUTLINE PACKAGE



NOTES: (continued)

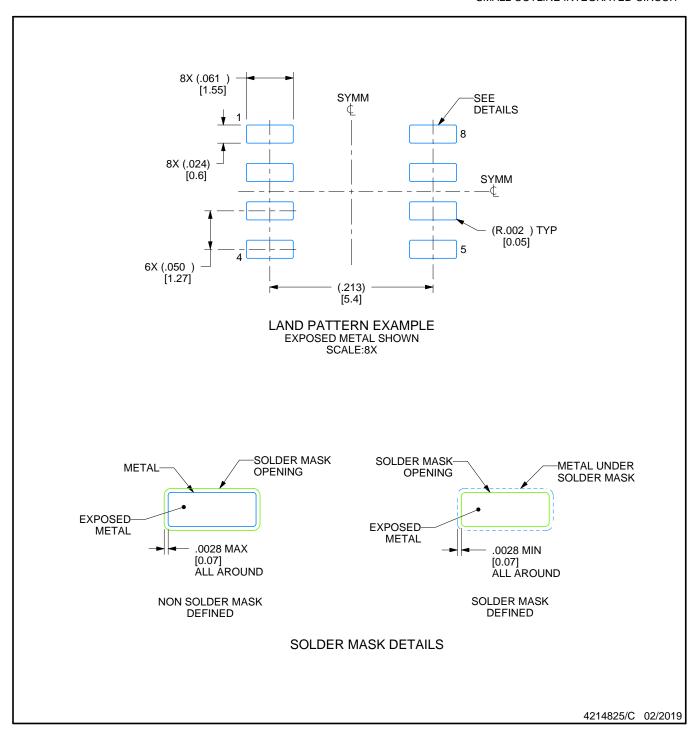
- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

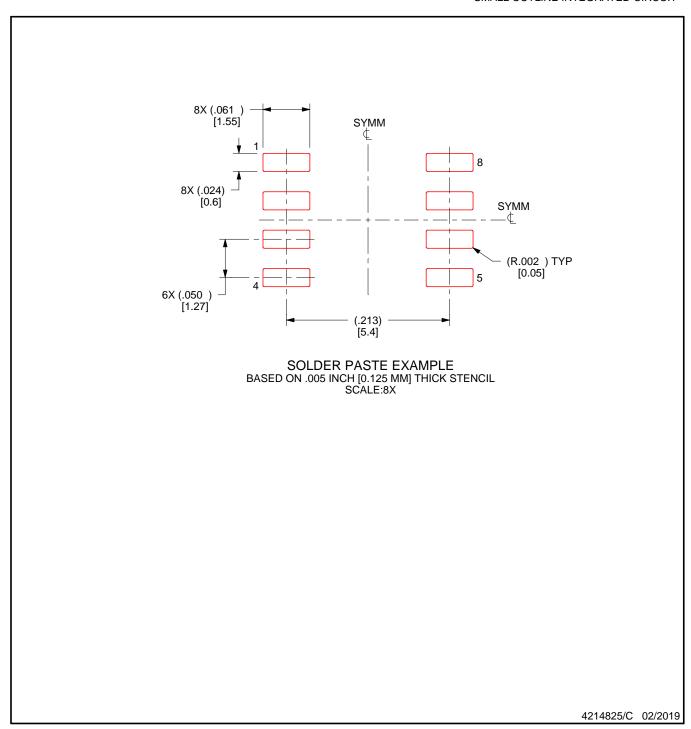
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025