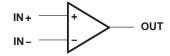

SLOS372 - JUNE 2001

- Wide Range of Supply Voltages; Single Supply . . . 3 V to 36 V, or Dual Supplies
- Class AB Output Stage
- High-Impedance N-Channel-JFET Input Stage . . . $10^{12} \Omega$ Typ
- Internal Frequency Compensation
- Short-Circuit Protection
- Input Common Mode Includes V_{CC}
- Low Input Offset Current . . . 50 pA
- Low Input Bias Current . . . 200 pA Typ

description

The TL092 JFET-input operational amplifier is similar in performance to the MC3403 family, but with much higher input impedance derived from a FET input stage. The N-channel-JFET input stage allows a common-mode input voltage range that includes the negative supply voltage and offers a typical input impedance of $10^{12}\,\Omega$, a typical input offset current of 50 pA, and a typical input bias current of 200 pA. This device is designed to operate from a single supply over a range of 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. Output voltage range is from V_{CC}– to V_{CC+} – 1.3 V, with a load resistor to V_{CC-}.

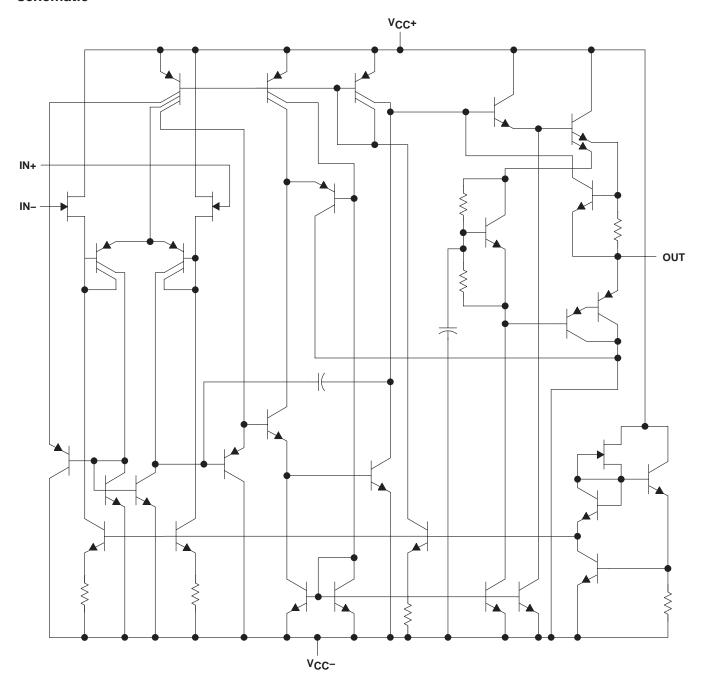

The TL092 is characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

	PACKAGED DEVICE
TA	PLASTIC SMALL OUTLINE (PS)
0°C to 70°C	TL092CPSR

The PS package is only available taped and reeled. Add the suffix R to device type for ordering (e.g., TL092CPSR).

symbol



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic

TL092 DUAL JFET-INPUT OPERATIONAL AMPLIFIER

SLOS372 - JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage: V _{CC+} (see Note 1)	18 V
V _{CC} (see Note 1)	
V _{CC+} with respect to V _{CC-}	36 V
Differential input voltage, V _{ID} (see Note 2)	±36 V
Input voltage, V _I (see Notes 1 and 3)	±18 V
Package thermal impedance, θ_{JA} (see Notes 4 and 5)	95°C/W
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input.
 - 3. Neither input must ever be more positive than $\,^{V}CC_{+}$ or more negative than $\,^{V}CC_{-}$ 0.3 V.
 - Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC±}	Supply voltage	3	36	V
TA	Operating free-air temperature range	0	70	°C

SLOS372 - JUNE 2001

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V (all characteristics are specified under open-loop conditions, unless otherwise noted)

PARAMETER		TES	TEST CONDITIONS			TYP	MAX	UNIT		
.,		50.0		25°C		5	15	.,		
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	$R_S = 50 \Omega$				20	mV		
αVIO	Temperature coefficient of input offset voltage			25°C		10		μV/°C		
. +	level offert comment			25°C		50	200	рА		
110‡	Input offset current			Full range			5	nA		
. +	Level Idea comment			25°C		200	400	рА		
I _{IB} ‡	Input bias current			Full range			10	nA		
VICR	Common-mode input voltage range			25°C	V _{CC} - to 12	V _{CC} - to 13		V		
	Peak output voltage swing	$R_L = 2 k\Omega$		25°C	±10	±13				
VO(PP)		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		V			
` '		$R_L = 2 k\Omega$		Full range	±10					
Δ	Large-signal differential	D. O.L.O.	V- 140 V	25°C	20	200		\//ma\/		
AVD	voltage amplification	$R_L = 2 k\Omega$,	V _O = ±10 V	Full range	15			V/mV		
ВОМ	Maximum output swing bandwidth	$R_L = 2 k\Omega$, $A_{VD} = 1$,	V _{O(PP)} = 20 V, THD < 5%	25°C		9		kHz		
В1	Unity gain bandwidth	$R_L = 10 \text{ k}\Omega$,	$V_O = 50 \text{ mV}$	25°C		1		MHz		
φm	Phase margin	$R_L = 2 k\Omega$,	C _L = 200 pF	25°C		60°				
rį	Input resistance	f = 20 Hz		25°C		10 ¹²		Ω		
r _O	Output resistance	f = 20 Hz		25°C		75		Ω		
CMRR	Common-mode rejection ratio	$R_S = 50 \Omega$,	V _{IC} = V _{ICR}	25°C	70	90		dB		
ksvr	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO})	$R_S = 50 \Omega$,	$V_{CC\pm} = \pm 3 \text{ V to } \pm 15 \text{ V}$	25°C	75	90		dB		
los	Short-circuit output current			25°C		40		mA		
Icc	Supply current (per amplifier)	V _O = 0,	No load	25°C		1.5	2.5	mA		

electrical characteristics at specified free-air temperature, V_{CC+} = 5 V, V_{CC-} = 0 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TI	EST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIO	Input offset voltage	$R_S = 50 \Omega$,	V _O = 2.5 V		5	15	mV
lio	Input offset current	V _O = 2.5 V			50	200	pА
I _{IB}	Input bias current	V _O = 2.5 V			200	400	pА
		$R_L = 10 \text{ k}\Omega$		3.3	3.5		V
V _{O(PP)}	Peak output voltage swing	$R_L = 10 \text{ k}\Omega$,	$V_{CC+} = 5 \text{ V to } 30 \text{ V}$	V _{CC+} −1.7			V
AVD	Large-signal differential voltage amplification	$R_L = 2 k\Omega$,	ΔV _O =1.6 V	20	200		V/mV
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO})	$R_S = 50 \Omega$,	$V_{CC\pm} = \pm 3 \text{ V to } \pm 15 \text{ V}$	75			dB
Icc	Supply current (per amplifier)	V _O = 2.5 V,	No load		1.5	2.5	mA
V_{O1}/V_{O2} Channel separation $f = 1 \text{ kHz to } 20 \text{ kHz}$			120		dB		

[†] All typical values are at $T_A = 25$ °C.

[†] All typical values are at T_A = 25°C. ‡ Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

SLOS372 - JUNE 2001

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER	TEST CO	MIN	TYP	MAX	UNIT		
SR	Slew rate at unity gain	$V_I = \pm 10 \text{ V (see Figure 1)},$	$C_L = 100 pF$,	$R_L = 2 k\Omega$		0.6		V/μs
t _r	Rise time	ΔV_{O} = 50 mV (see Figure 1), C_{L} = 100 pF, R_{L} = 2 k Ω		$R_L = 2 k\Omega$		0.2		μs
t _f	Fall time	$\Delta V_O = 50 \text{ mV}$ (see Figure 1),	$C_L = 100 \text{ pF}, \qquad R_L = 2 \text{ k}\Omega$			0.2		μs
	Overshoot factor	$\Delta V_O = 50 \text{ mV}$ (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		20%		
	Crossover distortion	$V_{IPP} = 30 \text{ mV}, V_{O(PP)} = 2 \text{ V},$	f = 10 kHz			1%		
Vn	Equivalent input noise voltage	R _S = 100 Ω,	f = 1 kHz			34		nV/√Hz

PARAMETER MEASUREMENT INFORMATION

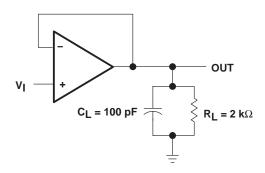


Figure 1. Unity-Gain Amplifier

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TL092CPSR	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	T092
TL092CPSR.A	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	T092

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

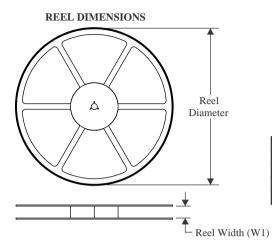
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

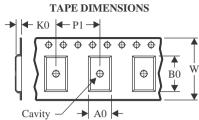
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

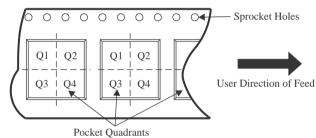
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

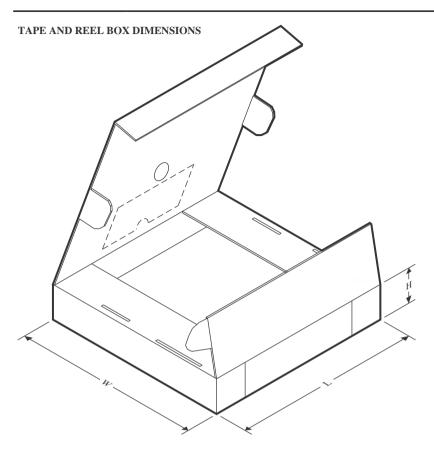
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

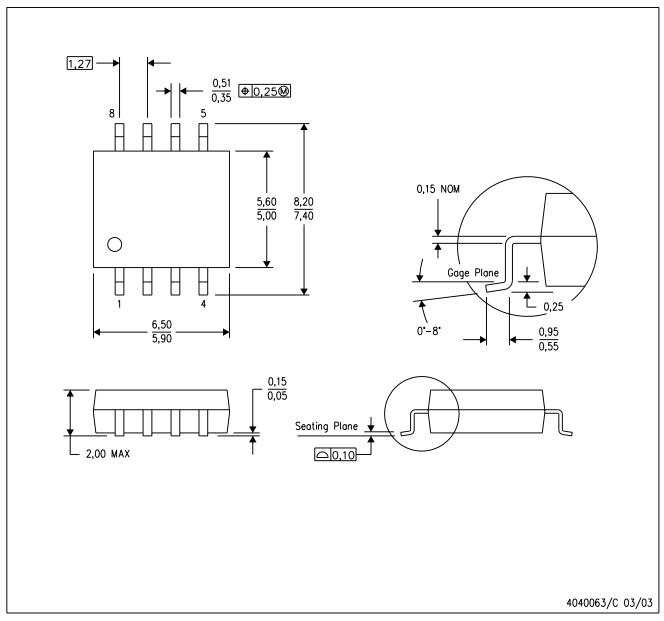
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL092CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1

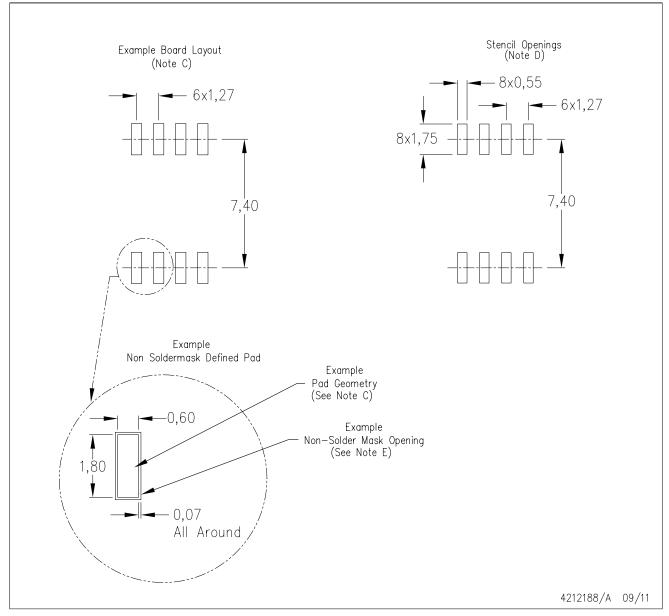

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TL092CPSR	SO	PS	8	2000	353.0	353.0	32.0	

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025