SN54LS323, SN74LS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

CLK SRD

1988

SDLS160

	OCTOBER 1976 - REVISED MARCH
Multiplexed Inputs/Outputs Provide Improved Bit Density	SN54LS323 J OR W PACKAGE SN74LS323 DW OR N PACKAGE (TOP VIEW)
Four Modes of Operation: Hold (Store) Shift Left Shift Right Load Data Operates with Outputs Enabled or at High Z	$\begin{array}{c} SO \left[1 \\ \hline 1 \\ \hline 20 \\ \hline V_{CC} \\ \hline G_1 \\ \hline 2 \\ 19 \\ \hline S1 \\ \hline G_2 \\ \hline 3 \\ 18 \\ \hline SL \\ \hline G/QG \\ \hline 4 \\ 17 \\ \hline Q_{QH'} \\ \hline E/QE \\ \hline 5 \\ 16 \\ \hline H/Q_H \\ \hline C/QC \\ \hline 6 \\ 15 \\ \hline E/QF \end{array}$
3-State Outputs Drive Bus Lines Directly Can Be Cascaded for N-Bit Word Lengths Typical Power Dissipation 175 mW	A/QA QA'Q8 13 B8/QB QA'Q8 13 B8/QB CLRQ9 12 CLK GNDQ 10 11 DSR
Exceptionally Stable Shift (Clock) Frequency 25 MHz	SN54LS323 FK PACKAGE (TOP VIEW)
Applications: Stacked or Push-Down Registers, Buffer Storage, and Accumulator Registers	$ \begin{array}{c} 13 & 5 & 3 \\ 3 & 2 & 1 & 20 \\ \hline 3 & 2 & 1 &$
SN54LS299 and SN74LS299 Are Similar But Have Direct Overriding Clear	$ \begin{array}{c} C/Q_{C} = 6 & 16 \\ H/Q_{H} \\ A/Q_{A} = 7 & 15 \\ Q_{A} \neq 8 & 14 \\ 9 = 10 & 11 & 12 & 13 \end{array} $

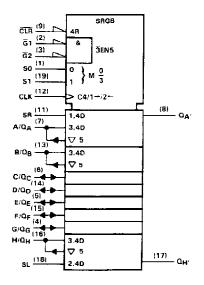
description

۰.

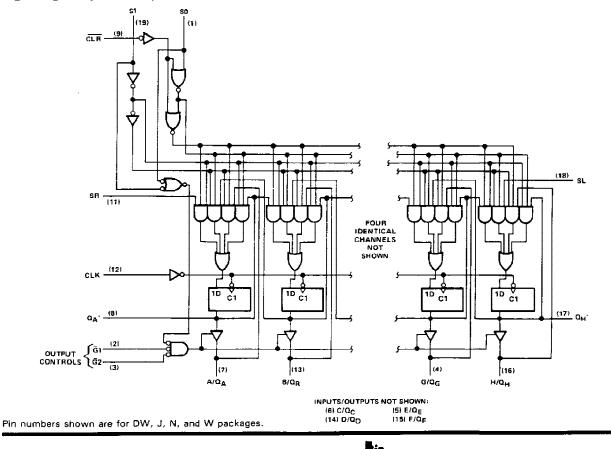
These Low-Power Schottky eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight-bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table. Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. The clear function is synchronous, and a low level at the clear input clears the register on the next low-to-high transition of the clock.

	INPUTS							INPUTS/OUTPUTS							OUTPUTS			
MODE	CLR	FUNCTION		CONTROL		CLK	SERIAL		A/Qa	B/Qa	C/Qc	0/Qn	E/Qr	F/Qs	G/Qc	H/QH	QA'	
		S1	S Û	G 1 [†]	G 2 [†]		SL	SR		-	Ť		-		-		1 ^	
Clear	L	X	L	L	L	t	×	x	L	Ļ	L	ι	L	L	L	Ļ		L
	Ļ	ι.	×	L	L	t	×	х	ι	L	L	L	L	L	L	L	L	L
	L	н	н	x	x	t	X	х	x	х	x	х	x	х	×	×	L	ĩ
Hold	н	L	L	L	L	×	X	x	QAO	QBO	QCO	0 ₀₀	QEO	QFO	QGO	Q _{H0}	Q _{A0}	Q _{H0}
	н	×	x	L.	L	L	X	x	,	080	QC0	QD0	QE0	QFO		Q _{H0}		-
Shift Right	н	L	Н	L	L.	t	X	Ĥ		0 _{An}			Q _{Dn}	Q _E ,	0 _{En}	QGo	H	QGn
anne right	н	(L	н	ίL	- L (t	×	L						0 _{En}	QEn	Q _{Gn}	L	QGn
Shift Left	н	н	L	L	L	t	н	X	Q ₈ n	ū _{Cn}	QDn	QEn	QEn	QGn	QHn	н	Q _{Bn}	H
anni Feir	н	н	L	L	- L	1	L	x		QCn	۵ _{Dn}	Q _{En}	Q _{Fn}	Q _{Gn}	QHn	L	QBn	L
Load	H	н	н	X	x	t	X	X	a	ь	С	d	18	f	9	ħ	a	h

FUNCTION TABLE


a... h = the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all paramaters.


SN54LS323, SN74LS323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

logic symbol[†]

 $^\dagger This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.$

logic diagram (positive logic)

schematics of inputs and outputs, absolute maximum ratings, recommended operating conditions, and electrical characteristics

Same as SN54LS299 and SN74LS299, except t_{SU} (Clear Inactive) does not apply.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER [†]	FROM (INPUT)		TEST CONDITIONS	MIN	түр	MAX	UNIT MHz
fmax			See Note 1	25	35		
^t PLH	CLK	On the Out			22	33	
tphl		Q _A ' or Q _H '	$C_{L} = 15 \text{ pF}, R_{L} = 2 \text{ k}$		26		ns
^t PLH	CLK	O e thru Ou			17	25	
^t PHL	ULK	Q _A thru Q _H			25	39	ns
tPZH	<u> </u>	Q _A thru Q _H	CL=45pF, RL=665Ω		14	21	
tPZL	01, 02				20	30	ns
tPHZ	<u>Ğ</u> 1, <u>Ğ</u> 2	Q _A thru Q _H			10	20	
tPLZ	G, G2		$C_{L} = 5 pF$, $R_{L} = 665 \Omega$		10	15	ns

[†]t_{max} = maximum clock frequency

tPLH = Propagation delay time, low-to-high-level output

tpHL = Propagation delay time, high-to-low-level output

tpzH = Output enable time to high level

tpzL = Output enable time to low level

tpHZ = Output disable time from high level

tpLZ = Output disable time from low level

NOTE 1: For testing f_{max}, all outputs are loaded simultaneously, each with CL and RL as specified for the propagation times. Load circuits and voltage waveforms are shown in Section 1.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN54LS323J	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS323J
SNJ54LS323FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS 323FK
SNJ54LS323FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS 323FK

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

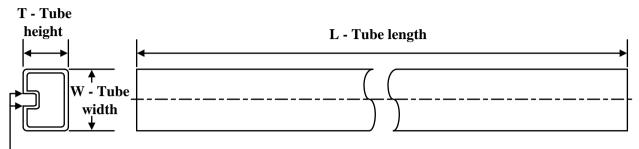
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS

www.ti.com

30-Nov-2023

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SNJ54LS323FK	FK	LCCC	20	55	506.98	12.06	2030	NA

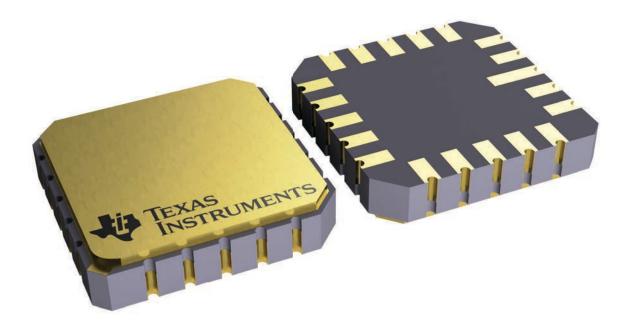
J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK 20


8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated