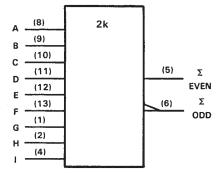
9 B

8

- Generates Either Odd or Even Parity for Nine Data Lines
- · Cascadable for n-Bits
- Can Be Used to Upgrade Existing Systems using MSI Parity Circuits
- Typical Data-to-Output Delay of Only 14 ns for 'S280 and 33 ns for 'LS280
- Typical Power Dissipation:


'LS280 . . . 80 mW 'S280 . . . 335 mW

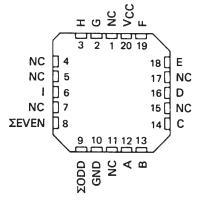
FUNCTION TABLE

NUMBER OF INPUTS A	OUTPUTS				
THRU I THAT ARE HIGH	ΣΕVΕΝ	Σ ODD			
0, 2, 4, 6, 8	Н	L			
1, 3, 5, 7, 9	L	Н			

H = high level, L = low level

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, J, N, and W packages.

SN54LS280, SN54S280 . . . FK PACKAGE (TOP VIEW)

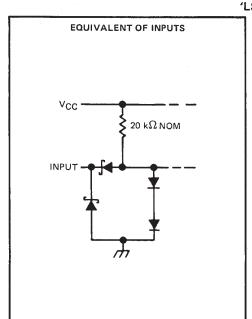
ΣODD ☐6

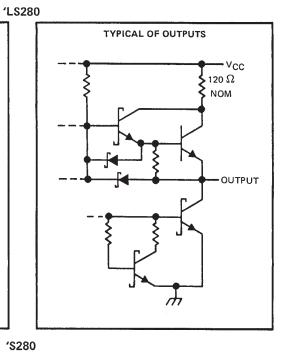
GND

NC - No internal connection

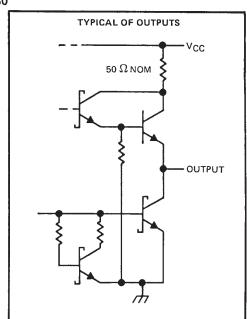
description

These universal, monolithic, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry and feature odd/even outputs to faciliate operation of either odd or even parity application. The word-length capability is easily expanded by cascading as shown under typical application data.


Series 54LS/74LS and Series 54S/74S parity generators/checkers offer the designer a trade-off between reduced power consumption and high performance. These devices can be used to upgrade the performance of most systems utilizing the '180 parity generator/checker. Although the 'LS280 and 'S280 are implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3. This permits the 'LS280 and 'S280 to be substituted for the '180 in existing designs to produce an identical function even if 'LS280's and 'S280's are mixed with existing '180's.


These devices are fully compatible with most other TTL circuits. All 'LS280 and 'S280 inputs are buffered to lower the drive requirements to one Series 54LS/74LS or Series 54S/74S standard load, respectively.

SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS


SDLS152 - DECEMBER 1972 - REVISED MARCH 1988

schematics of inputs and outputs

EQUIVALENT OF INPUTS Vcc $2.8 \, \mathrm{k} \Omega \, \mathrm{NOM}$ INPUT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1)	7 V
Input voltage: 'LS280	
'S280	
Operating free-air temperature range: SN54'	– 55°C to 125°C
SN74'	0°C to 70°C
Storage temperature range	
NOTE 1: Voltage values are with respect to network ground terminal.	

SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

SDLS152 - DECEMBER 1972 - REVISED MARCH 1988

recommended operating conditions

		S	SN54LS280			SN74LS280			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
٧ _L	Low-level input voltage			0.7			8.0	V	
ЮН	High-level output current			- 0.4			- 0.4	mA	
loL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	– 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			S	N54LS2	80	SI	N74LS2	80	
· Anameren		TEST CONDI	110143	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	$I_1 = -18 \text{ mA}$				1.5			- 1.5	V
Vон	V _{CC} = MIN, V _{IL} = MAX,	V _{IH} = 2 V, I _{OH} = -0.4 m	ıA	2.5	3.4		2.7	3.4		V
V _{OL}	V _{CC} = MIN, V _{IL} = MAX	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
l _l	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ΊΗ	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
I _Ι Γ	V _{CC} = MAX,	V _I = 0.4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX			- 20		100	- 20		100	mA
Icc	V _{CC} = MAX,	See Note 2			16	27		16	27	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER¶	FROM (INPUT)	TO TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Data	Σ Even $C_1 = 15$ pF, $R_1 = 2$ kΩ			33	50	
^t PHL		2 Even	"E ''		29	45	ns
^t PLH	Data	Σ Odd	Inputs not under test at 0 V, See Note 3		23	35	
tPHL	5610	2 000	See Note 3		31	50	ns

 $[\]P_{ ext{tp}_{LH}}$ \equiv propagation delay time, low-to-high-level output; $ext{tp}_{HL}$ \equiv propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

NOTE 2: $I_{\mbox{\footnotesize{CC}}}$ is measured with all inputs grounded and all outputs open.

SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

SDLS152 - DECEMBER 1972 - REVISED MARCH 1988

recommended operating conditions

	S	N54S28	30	S	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

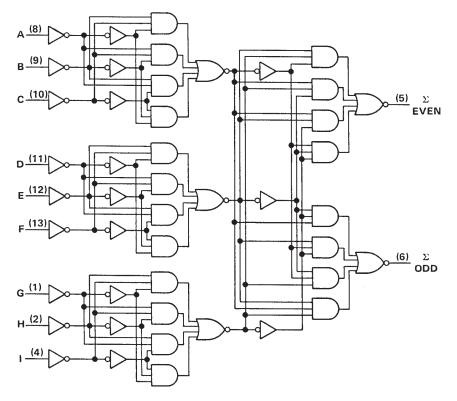
	PARAMETER	TEST CONDITIONS†		MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage				·········	0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA				-1.2	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	SN54S'	2.5	3.4		.,
* OH	- Ingili level output voltage	V _{IL} = 0.8 V, I _{OH} = -1 mA	SN74S'	2.7	3.4		\ \
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,				0.5	v
		V _{IL} = 0.8 V, I _{OL} = 20 mA				0.5	\ \
Ц	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1	mA
[‡] IH	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V			***************************************	50	μА
IL	Low-level input current	V _{CC} = MAX, V _I = 0.5 V				-2	mA
los	Short-circuit output current§	V _{CC} = MAX		-40	*	-100	mA
		VMAY SN S	N54S280		67	99	
Icc	Supply current		N74S280		67	105	mA
.00	output current	V _{CC} = MAX, T _A = 125°C, See Note 2	N54S280N			94	mA

 $^{^\}dagger_{\perp}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

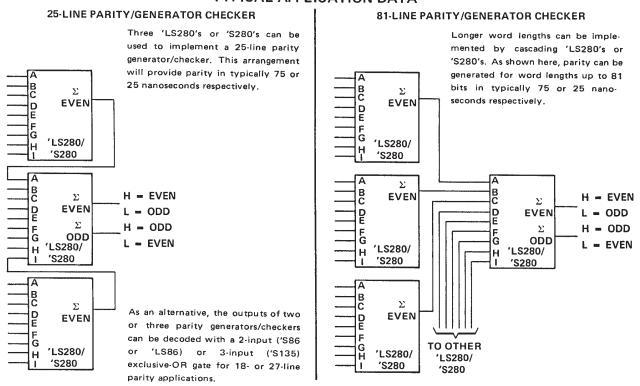
NOTE 2: I_{CC} is measured with all inputs grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Data	Σ Even			14	21	
tPHL t	Data	2 Even	$C_L = 15 pF$, $R_L = 280 \Omega$,		11.5	18	ns
^t PLH	Data	Σ Odd	See Note 3		14	21	
tPHL t	Data	2 Odd			11.5	18	ns


 $[\]P_{\text{tpLH}} = \text{propagation delay time, low-to-high-level output: } t_{\text{PHL}} = \text{propagation delay time, high-to-low-level output}$ NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

TYPICAL APPLICATION DATA

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
JM38510/32901BCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 32901BCA
JM38510/32901BCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 32901BCA
M38510/32901BCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 32901BCA
SN54LS280J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS280J
SN54LS280J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS280J
SN54S280J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54S280J
SN54S280J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54S280J
SN74LS280D	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS280
SN74LS280D.A	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS280
SN74LS280N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS280N
SN74LS280N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS280N
SN74LS280NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS280
SN74LS280NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS280
SNJ54LS280J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS280J
SNJ54LS280J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS280J
SNJ54LS280W	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS280W
SNJ54LS280W.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS280W
SNJ54S280J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54S280J
SNJ54S280J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54S280J
SNJ54S280W	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54S280W
SNJ54S280W.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54S280W

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

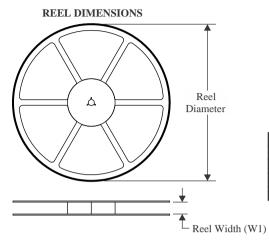
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

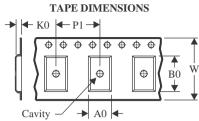
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS280, SN74LS280:

Catalog: SN74LS280

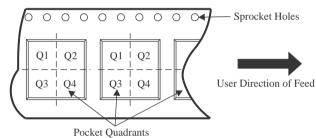
Military: SN54LS280


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

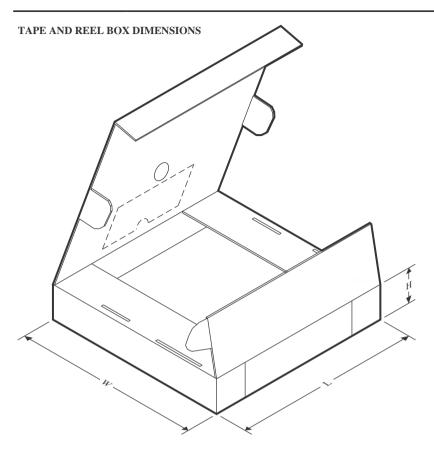
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

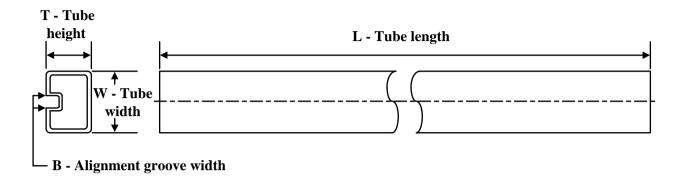


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS280NSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

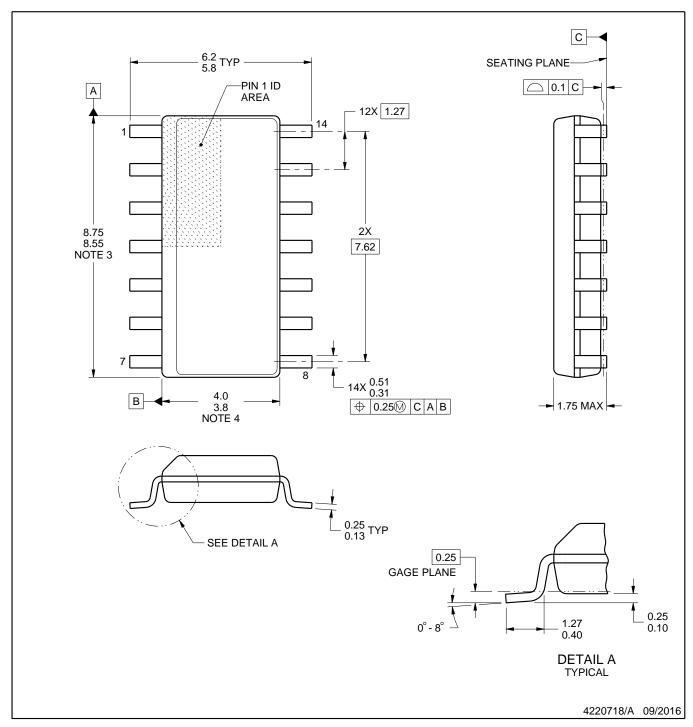

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS280NSR	SOP	NS	14	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

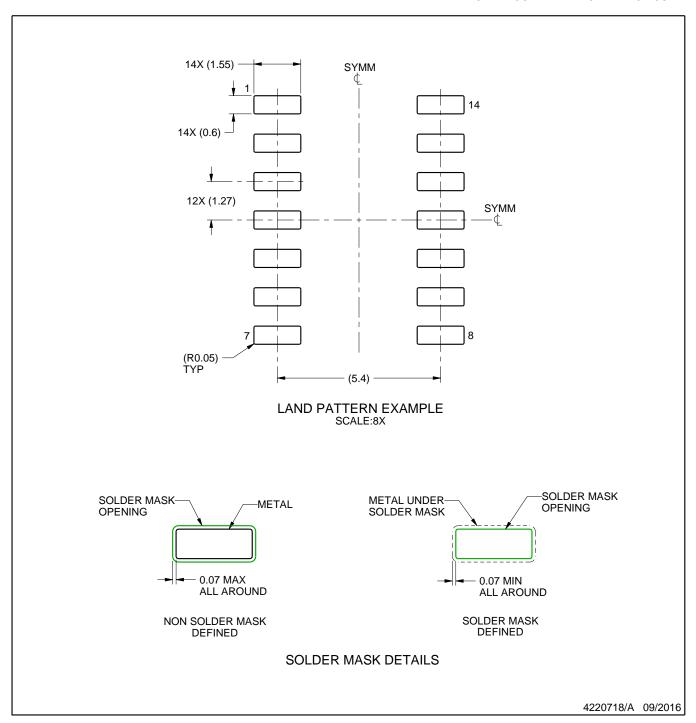
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LS280D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS280D.A	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS280N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS280N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS280N.A	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS280N.A	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54LS280W	W	CFP	14	25	506.98	26.16	6220	NA
SNJ54LS280W.A	W	CFP	14	25	506.98	26.16	6220	NA
SNJ54S280W	W	CFP	14	25	506.98	26.16	6220	NA
SNJ54S280W.A	W	CFP	14	25	506.98	26.16	6220	NA

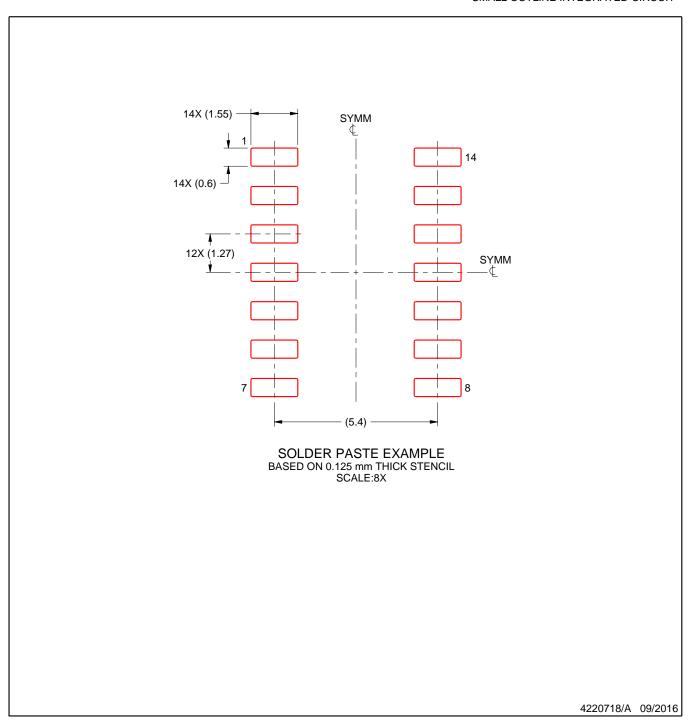
SMALL OUTLINE INTEGRATED CIRCUIT


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

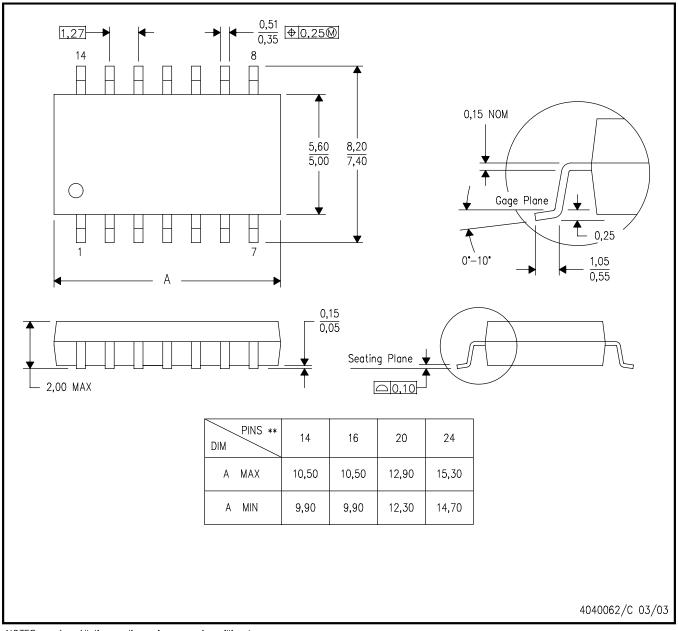
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

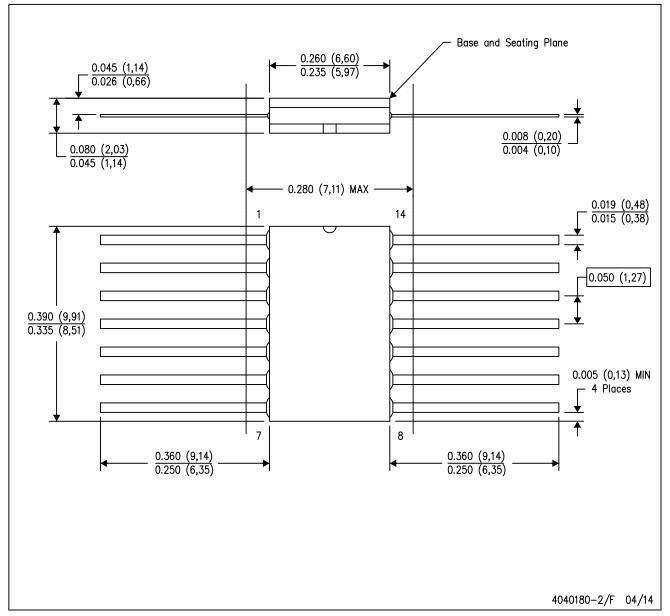


MECHANICAL DATA

NS (R-PDSO-G**)

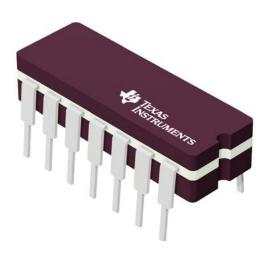
14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE



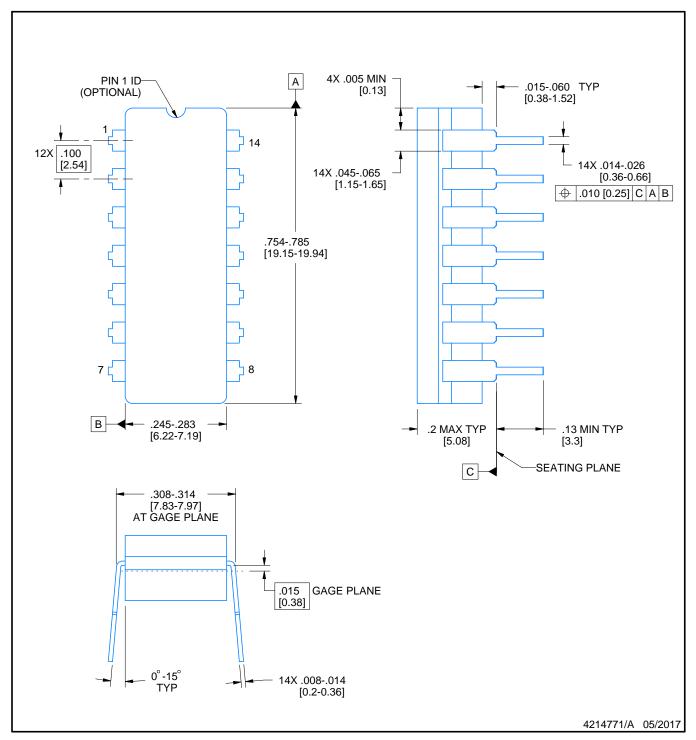
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

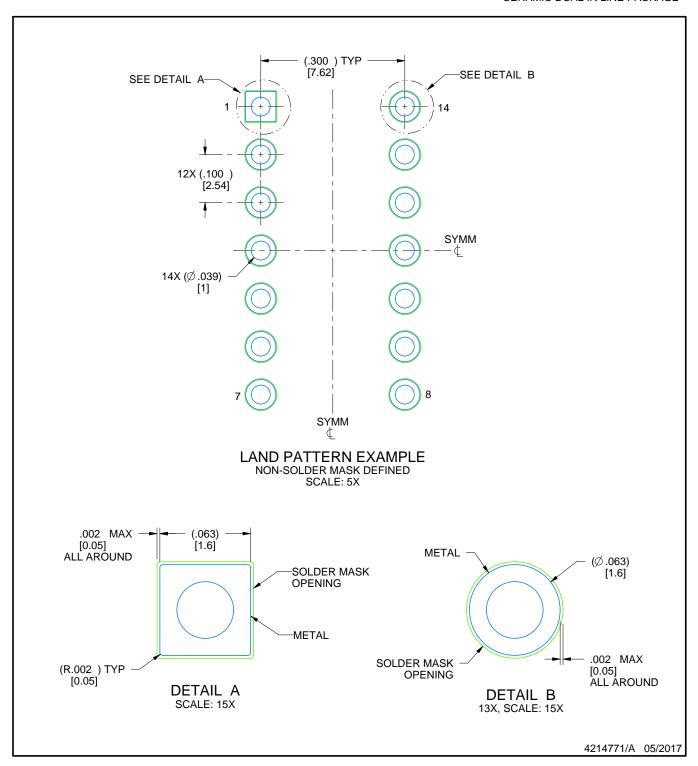

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14

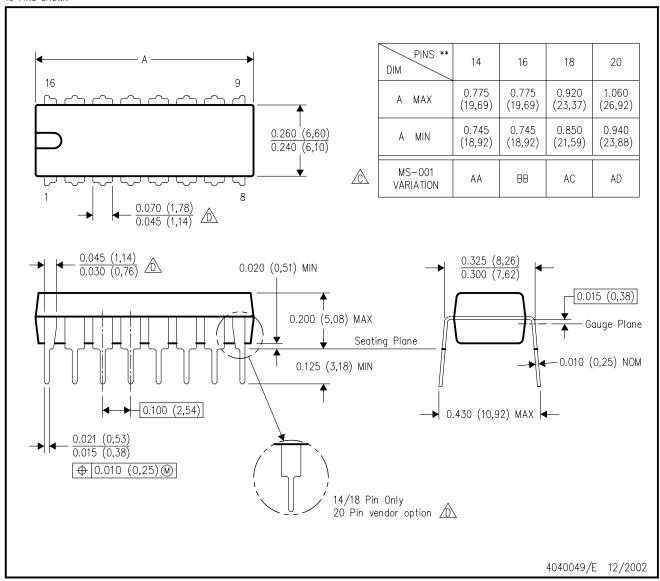
CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G


CERAMIC DUAL IN LINE PACKAGE

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.


CERAMIC DUAL IN LINE PACKAGE

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025