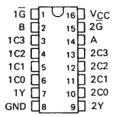
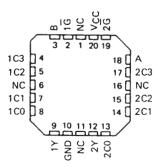
SDLS147 - SEPTEMBER 1972 - REVISED MARCH 1988

- Three-State Version of SN54/74LS153, SN54/74S153
- Schottky-Diode-Clamped Transistors
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to Serial Conversion
- Fully Compatible with Most TTL Circuits
- Low Power Dissipation
   1 S253
   35 mW Typic

'LS253 . . . 35 mW Typical 'S253 . . . 225 mW Typical


#### description

Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.


The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level.

SN54LS253, SN54S253 . . . J OR W PACKAGE SN74LS253, SN74S253 . . . D OR N PACKAGE

(TOP VIEW)



## SN54LS253, SN54S253...FK PACKAGE (TOP VIEW)



NC-No internal connection

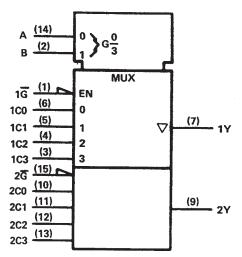
#### **FUNCTION TABLE**

| 1 | ECT<br>UTS |    | DATA | INPUTS |    | OUTPUT<br>CONTROL | ОUТРUТ |
|---|------------|----|------|--------|----|-------------------|--------|
| В | Α          | CO | C1   | C2     | C3 | Ğ                 | Υ      |
| X | X X        |    | X    | X      | X  | Н                 | Z      |
| Ł | L          | L  | X    | X      | X  | L                 | L      |
| L | L          | Н  | X    | X      | X  | L                 | н      |
| L | Н          | ×  | L    | X      | Х  | L                 | L      |
| L | Н          | ×  | Н    | X      | X  | L                 | н      |
| Н | L          | ×  | ×    | L      | ×  | L                 | L      |
| н | L          | ×  | X    | Н      | X  | L                 | Н      |
| H | н н        |    | X    | X      | L  | L                 | L      |
| Н | н н        |    | X    | X      | Н  | L                 | Н      |

Address inputs A and B are common to both sections.

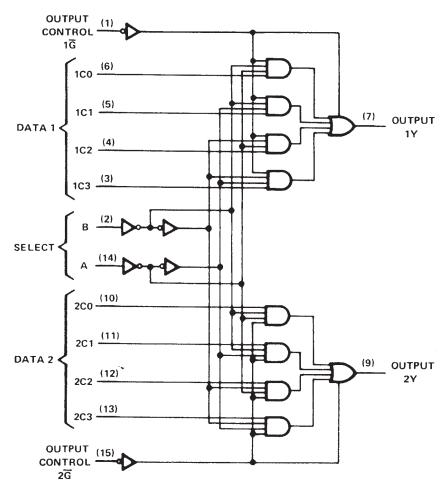
H = high level, L = low level, X = irrelevant, Z = high impedance (off)

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


| Supply voltage, VCC (see Note 1)                          | 7 V   |
|-----------------------------------------------------------|-------|
| Input voltage: 'LS253                                     | 7 V   |
| '\$253                                                    | 5.5 V |
| Off-state output voltage                                  |       |
| Operating free-air temperature range: SN54LS253, SN54S253 | 125°C |
| SN74LS253, SN74S253 0°C t                                 |       |
| Storage temperature range – 65°C to                       | 150°C |

NOTE 1: Voltage values are with respect to network ground terminal.

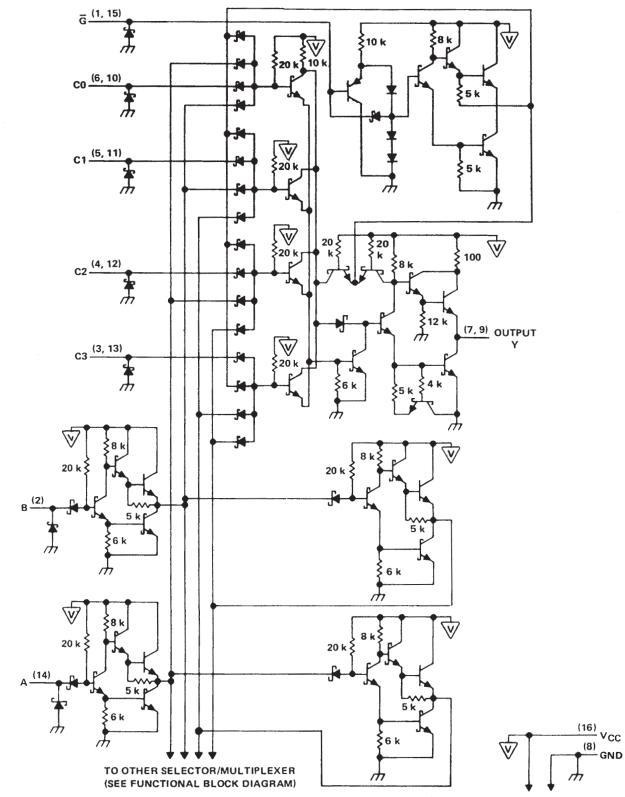
TEXAS INSTRUMENTS


SDLS147 - SEPTEMBER 1972 - REVISED MARCH 1988

#### logic symbol†



<sup>&</sup>lt;sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


### logic diagram (positive logic)



Pin numbers shown are for D, J, N, and W packages.



schematic (each selector/multiplexer, and the common select section)



Pin numbers shown are for D, J, N, and W packages.



SDLS147 - SEPTEMBER 1972 - REVISED MARCH 1988

#### recommended operating conditions

|     |                                | s    | SN54LS253 |     |      | SN74LS253 |       |      |
|-----|--------------------------------|------|-----------|-----|------|-----------|-------|------|
|     |                                | MIN  | NOM       | MAX | MIN  | NOM       | MAX   | UNIT |
| Vcc | Supply voltage                 | 4.5  | 5         | 5.5 | 4.75 | 5         | 5.25  | V    |
| VIH | High-level input voltage       | 2    |           |     | 2    |           |       | V    |
| VIL | Low-level input voltage        |      |           | 0.7 |      |           | 0.8   | V    |
| Іон | High-level output current      |      |           | - 1 |      |           | - 2.6 | mA   |
| IOL | Low-level output current       |      |           | 4   |      |           | 8     | mA   |
| TA  | Operating free-air temperature | - 55 |           | 125 | 0    |           | 70    | °c   |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |                        | TEST CONDITI           | ONCT       |                        | S    | N54LS2 | 53    | S    | N74LS2 | 53    |      |
|-----------|------------------------|------------------------|------------|------------------------|------|--------|-------|------|--------|-------|------|
| FANAMETEN |                        | 1521 CONDITI           | ONS        |                        | MIN  | TYP \$ | MAX   | MIN  | TYP‡   | MAX   | UNIT |
| VIK       | V <sub>CC</sub> = MIN, | $I_1 = -18 \text{ mA}$ |            |                        |      |        | - 1.5 |      |        | 1.5   | V    |
| VOH       | V <sub>CC</sub> = MIN, | V <sub>IH</sub> = 2 V, | VIL = MAX, | 1 <sub>OH</sub> = MAX  | 2.4  | 3.4    |       | 2.4  | 3.1    |       | V    |
| VOL       | V <sub>CC</sub> = MIN, | V <sub>IH</sub> = 2 V, | 1/ - 14AV  | IOL = 4 mA             |      | 0.25   | 0.4   |      | 0.25   | 0.4   | V    |
| VOL       | ACC - MIIA             | VIH - 2 V,             | VIL = MAX  | IOL = 8 mA             |      | ****   |       |      | 0.25   | 0.5   |      |
| loz       | VCC = MAX,             | V <sub>IH</sub> = 2 V  |            | V <sub>O</sub> = 2.7 V |      |        | 20    |      |        | 20    |      |
| 102       | VCC - WAX,             | VIH - Z V              |            | V <sub>O</sub> = 0.4 V |      |        | - 20  |      |        | 20    | μΑ   |
| 11        | V <sub>CC</sub> = MAX, | V <sub>1</sub> = 7 V   |            |                        |      |        | 0.1   |      |        | 0.1   | mΑ   |
| liH.      | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 2.7 V |            |                        |      |        | 20    |      |        | 20    | μΑ   |
| 1         | V <sub>CC</sub> = MAX, | V <sub>1</sub> = 0.4 V |            | Ğ                      |      |        | - 0.2 |      |        | - 0.2 |      |
| 115       | VCC - MIAA,            | V   - 0.4 V            |            | All other              |      |        | - 0.4 |      |        | - 0.4 | , mA |
| Ios§      | V <sub>CC</sub> = MAX  |                        |            |                        | - 30 |        | - 130 | - 30 |        | - 130 | mA   |
| loo       | V <sub>CC</sub> = MAX, | See Note 2             |            | Condition A            |      | 7      | 12    |      | 7      | 12    |      |
| ¹cc       | VCC - WAX,             | See Note 2             |            | Condition B            |      | 8.5    | 14    |      | 8.5    | 14    | mA   |

<sup>&</sup>lt;sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value spcified under recommended operating conditions.

NOTE 2: I<sub>CC</sub> is measured with the outputs open under the following conditions:

## switching characteristics, $V_{CC}$ = 5 V, $T_A$ = 25°C

| PARAMETER        | FROM<br>(INPUT) | TO (OUTPUT) | TEST CONDITIONS                     | MIN | TYP | MAX | UNIT |
|------------------|-----------------|-------------|-------------------------------------|-----|-----|-----|------|
| tPLH .           | Data            | Y           |                                     |     | 17  | 25  |      |
| tPHL.            | Data            | '           |                                     |     | 13  | 20  | ns   |
| <sup>t</sup> PLH | Select          |             | $C_L = 15 pF$ , $R_L = 2 k\Omega$ , |     | 30  | 45  |      |
| tPHL.            | Select          | '           | See Note 3                          |     | 21  | 32  | ns   |
| <sup>t</sup> PZH | Output          | _           |                                     |     | 15  | 28  |      |
| <sup>t</sup> PZL | Control         | '           |                                     |     | 15  | 23  | ns   |
| <sup>t</sup> PHZ | Output          |             | $C_L = 5 pF$ , $R_L = 2 k\Omega$ ,  |     | 27  | 41  |      |
| <sup>t</sup> PLZ | Control         | '           | See Note 3                          |     | 18  | 27  | ns   |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ} \text{C}$ .

<sup>§</sup> Not more than one output should be shorted at a time, and duration for the short-circuit should exceed one second.

A. All inputs grounded.

B. Output control at 4.5 V, all inputs grounded.

SDLS147 - SEPTEMBER 1972 - REVISED MARCH 1988

#### recommended operating conditions

|     |                                |      | SN54S253 |     |      | SN74S253 |       |      |
|-----|--------------------------------|------|----------|-----|------|----------|-------|------|
|     |                                | MIN  | NOM      | MAX | MIN  | NOM      | MAX   | UNIT |
| Vcc | Supply voltage                 | 4.5  | 5        | 5.5 | 4.75 | 5        | 5.25  | V    |
| VIH | High-level input voltage       | 2    |          |     | 2    |          |       | V    |
| VIL | Low-level input voltage        |      |          | 0.8 |      |          | 0.8   | V    |
| ЮН  | High-level output current      |      |          | -2  |      |          | - 6.5 | mA   |
| IOL | Low-level output current       |      |          | 20  |      |          | 20    | mA   |
| TA  | Operating free-air temperature | - 55 |          | 125 | 0    |          | 70    | °c   |

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER      |                        |                          | TEST CONDIT              | rions†      |                        | MIN  | түр‡ | MAX    | UNIT |
|----------------|------------------------|--------------------------|--------------------------|-------------|------------------------|------|------|--------|------|
| VIK            | VCC = MIN,             | I <sub>1</sub> = - 18 mA |                          |             |                        |      |      | - 1.2  | V    |
| Vон            | VCC = MIN,             | V <sub>1H</sub> = 2 V,   | V <sub>1L</sub> = 0.8 V, | IOH = MAX   | Series 54S             | 2,5  | 3.4  |        | V    |
| * OH           | VCC - WITH,            | VIH - 2 V,               | VIL - 0.8 V,             | IOH = MAX   | Series 74S             | 2.7  | 3.4  |        | 1 V  |
| VOL            | VCC = MIN,             | VIH = 2 V,               | VIL = 0.8 V,             | IOL = 20 mA |                        |      |      | 0.5    | V    |
| loz            | Vcc = MAX,             | VIH = 2 V                |                          |             | V <sub>O</sub> = 2.4 V |      |      | 50     |      |
| -02            | VCC - WAX,             | VIH - Z V                |                          |             | V <sub>O</sub> = 0.5 V |      |      | - 50   | μА   |
| 1 <sub>1</sub> | V <sub>CC</sub> = MAX, | V1 = 5.5 V               |                          |             |                        |      |      | 1      | mA   |
| IН             | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 2.7 V   |                          |             |                        |      |      | 50     | μΑ   |
| 111            | V00 - 110 V            | V: - 0.5 V               |                          |             | G = 0.8 V              |      |      | - 2    |      |
| •11.           | VCC = MAX,             | $V_I = 0.5 V$            |                          |             | G = 2 V                |      |      | - 0.25 | mA   |
| los§           | V <sub>CC</sub> = MAX  |                          |                          |             | 1                      | - 40 |      | - 100  | mA   |
| ¹cc            | V <sub>CC</sub> = MAX, | See Note 2               |                          |             | Condition A            |      | 45   | 70     |      |
|                | TOG = WAX,             | See Note 2               |                          |             | Condition B            |      | 65   | 85     | mA   |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

NOTE 2: ICC is measured with the outputs open under the following conditions:

- A. All inputs grounded.
- B. Output control at 4.5 V, all inputs grounded.

#### switching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25^{\circ} \text{C}$

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CON                                | IDITIONS               | MIN TYP | MAX  | UNIT |  |
|------------------|-----------------|----------------|-----------------------------------------|------------------------|---------|------|------|--|
| <sup>t</sup> PLH | Data            | ~              |                                         |                        | 6       | 9    |      |  |
| <sup>t</sup> PHL | Data            | 1              |                                         |                        | 6       | 9    | ns   |  |
| <sup>t</sup> PLH | Select          | · ·            | R <sub>L</sub> = 280 Ω,                 | C <sub>L</sub> = 15 pF | 11.5    | 18   |      |  |
| <sup>t</sup> PHL | ] 00.001        | '              | See Note 3                              | 12                     | 18      | ns   |      |  |
| <sup>t</sup> PZH | Output          | · ·            | *************************************** |                        | 11      | 16.5 |      |  |
| <sup>t</sup> PZL | Control         |                |                                         |                        | 12      | 18   | ns   |  |
| <sup>t</sup> PHZ | Output          | V              | R <sub>L</sub> = 280 Ω,                 | C <sub>L</sub> = 5 pF  | 6.5     | 9.5  |      |  |
| <sup>t</sup> PLZ | Control         | 1              | See Note 3                              |                        | 10      | 15   | ns   |  |

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.



<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ} \text{C}$ .

www.ti.com

om 1-May-2025

#### **PACKAGING INFORMATION**

| Orderable<br>part number | Status | Material type | Package   Pins | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6)              |
|--------------------------|--------|---------------|----------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|-------------------------------|
| 76017012A                | Active | Production    | LCCC (FK)   20 | 55   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 76017012A<br>SNJ54LS<br>253FK |
| 7601701EA                | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 7601701EA<br>SNJ54LS253J      |
| 7601701EA                | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 7601701EA<br>SNJ54LS253J      |
| JM38510/30908BEA         | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | JM38510/<br>30908BEA          |
| JM38510/30908BEA         | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | JM38510/<br>30908BEA          |
| JM38510/30908BFA         | Active | Production    | CFP (W)   16   | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | JM38510/<br>30908BFA          |
| JM38510/30908BFA         | Active | Production    | CFP (W)   16   | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | JM38510/<br>30908BFA          |
| SN54LS253J               | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | SN54LS253J                    |
| SN54LS253J               | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | SN54LS253J                    |
| SN74LS253DR              | Active | Production    | SOIC (D)   16  | 2500   LARGE T&R      | Yes             | NIPDAU                        | Level-1-260C-UNLIM         | 0 to 70      | LS253                         |
| SN74LS253DR              | Active | Production    | SOIC (D)   16  | 2500   LARGE T&R      | Yes             | NIPDAU                        | Level-1-260C-UNLIM         | 0 to 70      | LS253                         |
| SN74LS253N               | Active | Production    | PDIP (N)   16  | 25   TUBE             | Yes             | NIPDAU                        | N/A for Pkg Type           | 0 to 70      | SN74LS253N                    |
| SN74LS253N               | Active | Production    | PDIP (N)   16  | 25   TUBE             | Yes             | NIPDAU                        | N/A for Pkg Type           | 0 to 70      | SN74LS253N                    |
| SNJ54LS253FK             | Active | Production    | LCCC (FK)   20 | 55   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 76017012A<br>SNJ54LS<br>253FK |
| SNJ54LS253FK             | Active | Production    | LCCC (FK)   20 | 55   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 76017012A<br>SNJ54LS<br>253FK |
| SNJ54LS253J              | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 7601701EA<br>SNJ54LS253J      |
| SNJ54LS253J              | Active | Production    | CDIP (J)   16  | 25   TUBE             | No              | SNPB                          | N/A for Pkg Type           | -55 to 125   | 7601701EA<br>SNJ54LS253J      |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.



www.ti.com 1-May-2025

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not vet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

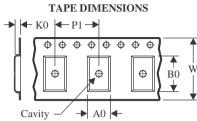
#### OTHER QUALIFIED VERSIONS OF SN54LS253, SN74LS253:

Catalog: SN74LS253

Military: SN54LS253

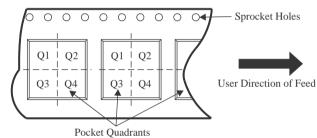
Catalog - TI's standard catalog product

Military - QML certified for Military and Defense Applications


NOTE: Qualified Version Definitions:

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 5-Dec-2023

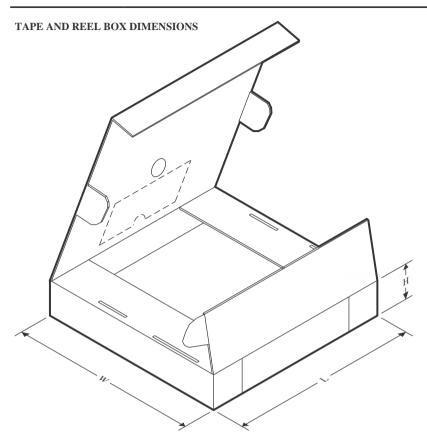

#### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



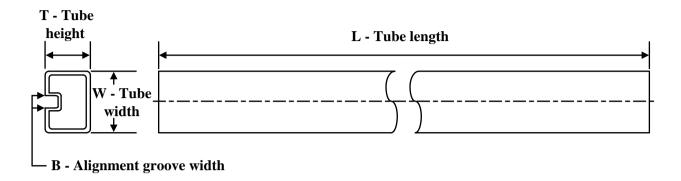

#### \*All dimensions are nominal

| Device      | U    | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74LS253DR | SOIC | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 5-Dec-2023



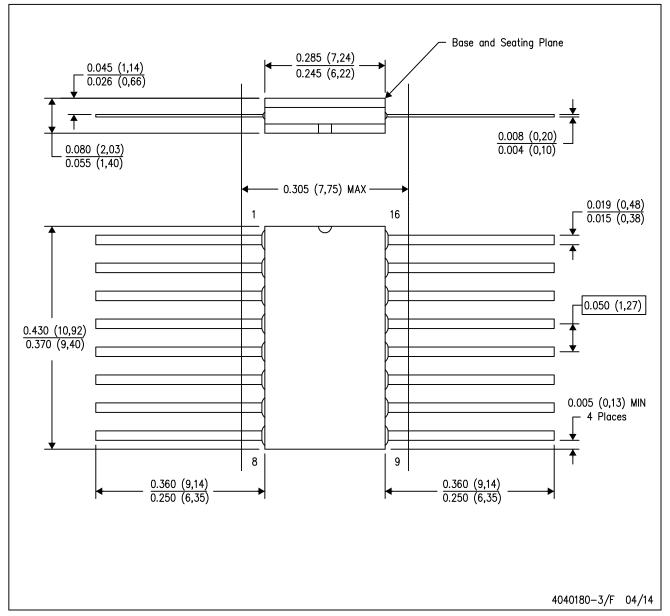

#### \*All dimensions are nominal

|   | Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
| ı | SN74LS253DR | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 5-Dec-2023

#### **TUBE**



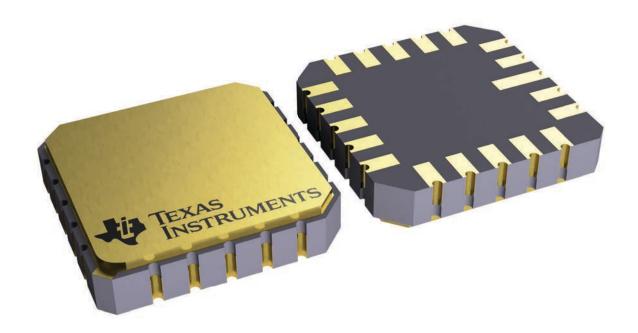

\*All dimensions are nominal

| Device           | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|------------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| 76017012A        | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |
| JM38510/30908BFA | W            | CFP          | 16   | 25  | 506.98 | 26.16  | 6220   | NA     |
| M38510/30908BFA  | W            | CFP          | 16   | 25  | 506.98 | 26.16  | 6220   | NA     |
| SN74LS253N       | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74LS253N       | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SNJ54LS253FK     | FK           | LCCC         | 20   | 55  | 506.98 | 12.06  | 2030   | NA     |

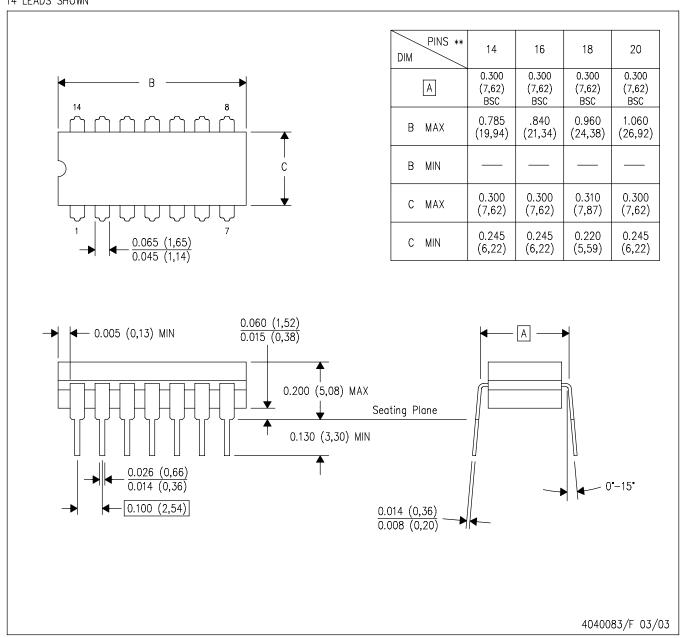
## W (R-GDFP-F16)

## CERAMIC DUAL FLATPACK




- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16




8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



## 14 LEADS SHOWN

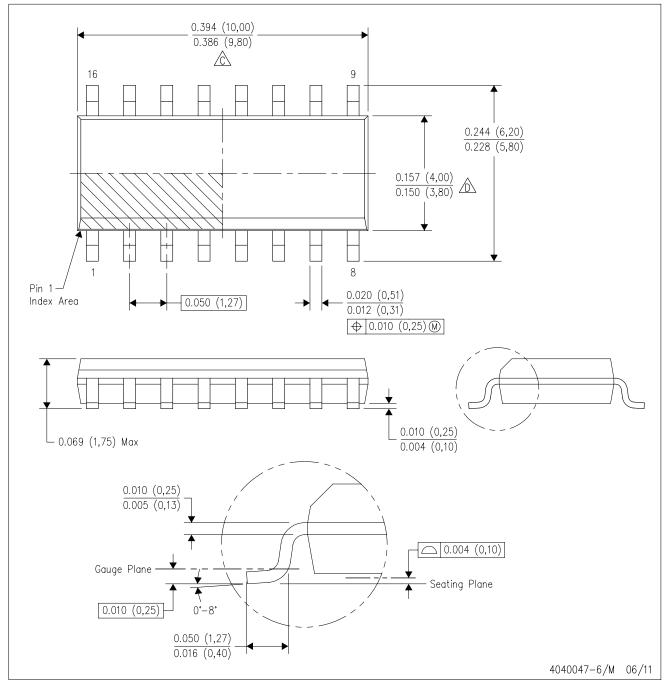


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

## N (R-PDIP-T\*\*)

## PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN




- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



## D (R-PDS0-G16)

#### PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated