



Order

Now







SN74LVC1404

SCES469F - AUGUST 2003 - REVISED MARCH 2020

# SN74LVC1404 Oscillator Driver for Crystal Oscillator or Ceramic Resonator

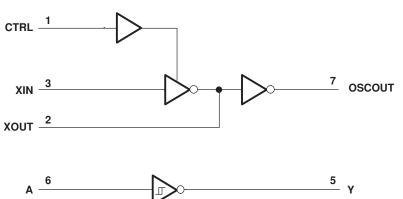
## 1 Features

- Available in the Texas Instruments NanoFree<sup>™</sup> package
- Supports 5-V V<sub>CC</sub> operation
- Inputs accept voltages to 5.5 V
- One buffered inverter with Schmitt-trigger input and two unbuffered inverters
- Integrated solution for oscillator applications
- Suitable for commonly used clock frequencies:
  - 15 kHz, 3.58 MHz, 4.43 MHz, 13 MHz, 25 MHz, 26 MHz, 27 MHz, 28 MHz
- Control input to disable the oscillator circuit
- Low power consumption (10-µA Max I<sub>CC</sub>) in standby state
- ±24-mA Output Drive at 3.3 V
- I<sub>off</sub> supports live insertion, partial-power-down mode, and back-drive protection
- Latch-up performance exceeds 100 mA Per JESD 78, Class II
- ESD protection exceeds JESD 22
  - 2000-V Human-body model (A114-A)
  - 200-V Machine model (A115-A)
  - 1000-V Charged-device model (C101)

## **4** Simplified Schematic

## 2 Applications

- Servers
- PCs and notebooks
- Network switches
- Wearable health and fitness devices
- Telecom infrastructures
- Electronic points-of-sale


## **3** Description

The SN74LVC1404 device consists of one inverter with a Schmitt-trigger input and two unbuffered inverters. It is designed for 1.65-V to 5.5-V  $V_{\rm CC}$  operation.

### Device Information<sup>(1)</sup>

| PART NUMBER    | PACKAGE   | BODY SIZE (NOM)   |
|----------------|-----------|-------------------|
| SN74LVC1404DCT | SM8 (8)   | 2.95 mm × 2.80 mm |
| SN74LVC1404DCU | VSSOP (8) | 2.30 mm × 2.00 mm |
| SN74LVC1404YZP | DSBGA (8) | 1.88 mm × 0.88 mm |

(1) For all available packages, see the orderable addendum at the end of the data sheet.



Product Folder Links: SN74LVC1404

## **Table of Contents**

| 1 | Feat | tures 1                                                    |  |  |  |  |  |  |
|---|------|------------------------------------------------------------|--|--|--|--|--|--|
| 2 | Арр  | lications1                                                 |  |  |  |  |  |  |
| 3 | Des  | cription 1                                                 |  |  |  |  |  |  |
| 4 | Sim  | plified Schematic1                                         |  |  |  |  |  |  |
| 5 |      |                                                            |  |  |  |  |  |  |
| 6 | Pin  | Configuration and Functions 3                              |  |  |  |  |  |  |
| 7 | Spe  | cifications 4                                              |  |  |  |  |  |  |
|   | 7.1  | Absolute Maximum Ratings 4                                 |  |  |  |  |  |  |
|   | 7.2  | ESD Ratings 4                                              |  |  |  |  |  |  |
|   | 7.3  | Recommended Operating Conditions5                          |  |  |  |  |  |  |
|   | 7.4  | Thermal Information 5                                      |  |  |  |  |  |  |
|   | 7.5  | Electrical Characteristics 6                               |  |  |  |  |  |  |
|   | 7.6  | Switching Characteristics, $C_L = 15 \text{ pF}$           |  |  |  |  |  |  |
|   | 7.7  | Switching Characteristics, $C_L = 30 \text{ pF}$ or 50 pF7 |  |  |  |  |  |  |
|   | 7.8  | Operating Characteristics7                                 |  |  |  |  |  |  |
|   | 7.9  | Typical Characteristics 7                                  |  |  |  |  |  |  |
| 8 | Para | ameter Measurement Information                             |  |  |  |  |  |  |
|   |      |                                                            |  |  |  |  |  |  |

| 9  | Deta | iled Description                  | 10   |
|----|------|-----------------------------------|------|
|    | 9.1  | Overview                          | . 10 |
|    | 9.2  | Functional Block Diagram          | . 10 |
|    | 9.3  | Feature Description               | . 10 |
|    | 9.4  | Device Functional Modes           | . 11 |
| 10 | Арр  | lication and Implementation       | 12   |
|    | 10.1 | Application Information           | . 12 |
|    | 10.2 | Typical Application               | . 12 |
| 11 | Pow  | ver Supply Recommendations        | 17   |
| 12 | Lay  | out                               | 17   |
|    | 12.1 | Layout Guidelines                 | . 17 |
|    |      | Layout Example                    |      |
| 13 | Dev  | ice and Documentation Support     | 18   |
|    | 13.1 | Trademarks                        | . 18 |
|    | 13.2 | Electrostatic Discharge Caution   | . 18 |
|    | 13.3 | Glossary                          | . 18 |
| 14 | Mec  | hanical, Packaging, and Orderable |      |
|    | Info | rmation                           | 18   |
|    |      |                                   |      |

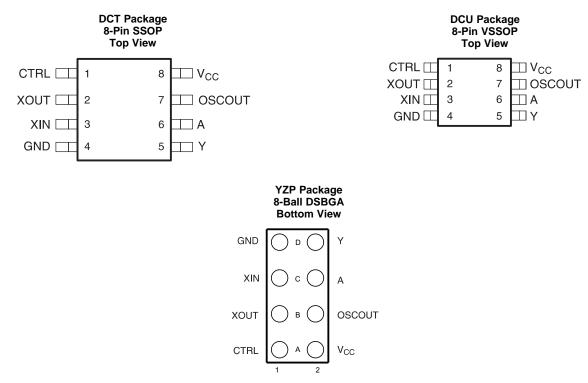
## 5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| C | hanges from Revision E (June 2014) to Revision F                              | Page |
|---|-------------------------------------------------------------------------------|------|
| • | Formatted pinout figures for search capability                                | 3    |
| • | Corrected pin numbering for the DSBGA package to match the mechanical drawing | 3    |
| • | Changed ESD Ratings table format to comply with JEDEC standards               | 4    |
| • | Added YZP T <sub>A</sub> MIN /MAX specs and package thermal information       | 5    |

### Changes from Revision D (January 2007) to Revision E

| • | Updated document to new TI data sheet format | . 1 |
|---|----------------------------------------------|-----|
| • | Removed Ordering Information table.          | . 1 |
|   | Added Applications.                          |     |
|   | Added Device Information table.              |     |
|   | Added Handling Ratings table.                |     |
|   | Changed MAX ambient temperature to 125°C     |     |
|   | Added Thermal Information table.             |     |
| • | Added Typical Characteristics.               | . 7 |




www.ti.com

Page



## 6 Pin Configuration and Functions



See mechanical drawings for dimensions.

Drawings not to scale

#### **Pin Functions**

| PIN     | NO. |        | I/O | DESCRIPTION            |
|---------|-----|--------|-----|------------------------|
| DCT/DCU | YZP | NAME   | 20  | DESCRIPTION            |
| 1       | A1  | CTRL   | Ι   | OSC Control            |
| 2       | B1  | XOUT   | 0   | Crystal Connection Out |
| 3       | C1  | XIN    | Ι   | Crystal Connection In  |
| 4       | D1  | GND    |     | Ground                 |
| 5       | D2  | Y      | 0   | Schmitt Trigger Output |
| 6       | C2  | А      | I   | Schmitt Trigger Input  |
| 7       | B2  | OSCOUT | 0   | Oscillator Output      |
| 8       | A2  | VCC    |     | Power Supply           |

## 7 Specifications

## 7.1 Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                  |                                                                                             |                     | MIN  | MAX                   | UNIT |
|------------------|---------------------------------------------------------------------------------------------|---------------------|------|-----------------------|------|
| V <sub>CC</sub>  | Supply voltage range                                                                        |                     | -0.5 | 6.5                   | V    |
| VI               | Input voltage range <sup>(2)</sup>                                                          | XIN, A, CTRL inputs | -0.5 | 6.5                   | V    |
| Vo               | Voltage range applied to any output in the high-impedance or power-off state <sup>(2)</sup> | Y output            | -0.5 | 6.5                   | V    |
| Vo               | Voltage range applied to any output in the high or low state $^{(2)(3)}$                    | XOUT, OSCOUT        | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                                                                         | V <sub>1</sub> < 0  |      | -50                   | mA   |
| I <sub>OK</sub>  | Output clamp current                                                                        | V <sub>O</sub> < 0  |      | -50                   | mA   |
| lo               | Continuous output current                                                                   |                     |      | ±50                   | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND                                           |                     |      | ±100                  | mA   |
| T <sub>stg</sub> | T <sub>stg</sub> Storage Temperature Range                                                  |                     |      | 150                   | °C   |
| TJ               | Junction Temperature                                                                        |                     |      | 150                   | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of  $V_{CC}$  is provided in the *Recommended Operating Conditions* table. (2)

(3)

## 7.2 ESD Ratings

|  |                                                                             |                         |                                                                                          | MAX   | UNIT |
|--|-----------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------|-------|------|
|  | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup> | ±2000                   | V                                                                                        |       |      |
|  | V <sub>(ESD)</sub>                                                          | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | ±1000 | V    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (2)



## 7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                       |                                                     |                                            | MIN  | MAX             | UNIT       |  |
|-----------------------|-----------------------------------------------------|--------------------------------------------|------|-----------------|------------|--|
| V                     | Supply voltage                                      | Operating                                  | 1.65 | 5.5             | V          |  |
| V <sub>CC</sub>       | Supply voltage                                      | Data retention only                        | 1.5  |                 | v          |  |
| VI                    | Input voltage (XIN, CTRL, A inputs)                 |                                            | 0    | 5.5             | V          |  |
| Vo                    | Output voltage (XOUT, OSCOUT, Y outputs)            |                                            | 0    | V <sub>CC</sub> | V          |  |
|                       |                                                     | V <sub>CC</sub> = 1.65 V                   |      | -4              |            |  |
|                       |                                                     | $V_{CC} = 2.3 V$                           |      | -8              |            |  |
| I <sub>OH</sub>       | High-level output current (OSCOUT, XOUT, Y outputs) | N 2N                                       |      | -16             | mA         |  |
|                       |                                                     | $V_{CC} = 3 V$                             |      | -24             |            |  |
|                       |                                                     | $V_{CC} = 4.5 V$                           |      | -32             |            |  |
|                       |                                                     | V <sub>CC</sub> = 1.65 V                   |      | 4               |            |  |
|                       | Low-level output current (OSCOUT, XOUT, Y outputs)  | V <sub>CC</sub> = 2.3 V                    |      | 8               |            |  |
| I <sub>OL</sub>       |                                                     | N 2.V                                      |      | 16              | mA         |  |
|                       |                                                     | $V_{CC} = 3 V$                             |      | 24              |            |  |
|                       |                                                     | $V_{CC} = 4.5 V$                           |      | 32              | 1          |  |
| $I_{OL}^{(2)}$        | Low-level output current (XOUT)                     | V <sub>CC</sub> = 1.65 V                   |      | 2               | mA         |  |
|                       |                                                     | V <sub>CC</sub> = 1.8 V ± 0.15 V           |      | 20              |            |  |
| A # / A               | land transition rise and fall time (CTDL insut)     | $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ |      | 20              | ns/V       |  |
| $\Delta t / \Delta v$ | Input transition rise and fall time (CTRL input)    | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |      | 10 r            |            |  |
|                       |                                                     | $V_{CC} = 5 V \pm 0.5 V$                   |      | 5               |            |  |
| <b>-</b>              |                                                     | DCU, DCT                                   | -40  | 125             | ° <b>O</b> |  |
| T <sub>A</sub>        | Operating free-air temperature                      | YZP                                        | -40  | 85              | °C         |  |

All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
 CTRL = Low, XIN = GND

## 7.4 Thermal Information

|                      | THERMAL METRIC <sup>(1)</sup>                |        | DCU    | YZP     |      |
|----------------------|----------------------------------------------|--------|--------|---------|------|
|                      |                                              | 8 PINS | 8 PINS | 8 BALLS | UNIT |
| $R_{\theta JA}$      | Junction-to-ambient thermal resistance       | 184.8  | 198.4  | 97.5    |      |
| $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 115.3  | 73.5   | 1.1     |      |
| $R_{\theta JB}$      | Junction-to-board thermal resistance         | 97.3   | 77.1   | 26.3    | °C/W |
| ΨJT                  | Junction-to-top characterization parameter   | 40.9   | 6.1    | 0.5     |      |
| ΨJB                  | Junction-to-board characterization parameter | 96.3   | 76.7   | 26.2    |      |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SCES469F-AUGUST 2003-REVISED MARCH 2020

www.ti.com

STRUMENTS

**EXAS** 

## 7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

| PARA                                 | METER             | TEST CONDITIONS                                                    | V <sub>cc</sub> | MIN TYP <sup>(1)</sup> | MAX  | UNIT |  |
|--------------------------------------|-------------------|--------------------------------------------------------------------|-----------------|------------------------|------|------|--|
|                                      |                   |                                                                    | 1.65 V          | 0.79                   | 1.16 |      |  |
| V <sub>T+</sub>                      |                   |                                                                    | 2.3 V           | 1.11                   | 1.56 |      |  |
| Positive-<br>going                   | A input           |                                                                    | 3 V             | 1.5                    | 1.87 | V    |  |
| threshold                            |                   |                                                                    | 4.5 V           | 2.16                   | 2.74 |      |  |
|                                      |                   |                                                                    | 5.5 V           | 2.61                   | 3.33 |      |  |
|                                      |                   |                                                                    | 1.65 V          | 0.39                   | 0.62 |      |  |
| V <sub>T-</sub>                      |                   |                                                                    | 2.3 V           | 0.58                   | 0.87 |      |  |
| Negative-                            | A input           |                                                                    | 3 V             | 0.84                   | 1.14 | V    |  |
| going<br>threshold                   |                   |                                                                    | 4.5 V           | 1.41                   | 1.79 |      |  |
|                                      |                   |                                                                    | 5.5 V           | 1.87                   | 2.29 |      |  |
|                                      |                   |                                                                    | 1.65 V          | 0.37                   | 0.62 |      |  |
| ΔV <sub>T</sub>                      |                   |                                                                    | 2.3 V           | 0.48                   | 0.77 |      |  |
| hysteresis                           | A input           |                                                                    | 3 V             | 0.56                   | 0.87 | V    |  |
| (V <sub>T+</sub> – V <sub>T–</sub> ) |                   |                                                                    | 4.5 V           | 0.71                   | 1.04 |      |  |
|                                      |                   |                                                                    | 5.5 V           | 0.71                   | 1.11 |      |  |
|                                      |                   | I <sub>OH</sub> = -100 μA                                          | 1.65 V to 5.5 V | V <sub>CC</sub> – 0.1  |      |      |  |
|                                      |                   | $I_{OH} = -4 \text{ mA}$                                           | 1.65 V          | 1.2                    |      |      |  |
| (2)                                  |                   | I <sub>OH</sub> = -8 mA                                            | 2.3 V           | 1.9                    |      | V    |  |
| V <sub>OH</sub> <sup>(2)</sup>       |                   | I <sub>OH</sub> = -16 mA                                           | 3 V             | 2.4                    |      |      |  |
|                                      |                   | $I_{OH} = -24 \text{ mA}$                                          | 3 V             | 2.3                    |      |      |  |
|                                      |                   | I <sub>OH</sub> = -32 mA                                           | 4.5 V           | 3.8                    |      |      |  |
|                                      |                   | I <sub>OL</sub> = 100 μA                                           | 1.65 V to 5.5 V |                        | 0.1  |      |  |
|                                      |                   | I <sub>OL</sub> = 4 mA                                             | 1.65 V          |                        | 0.45 |      |  |
| (2)                                  |                   | I <sub>OL</sub> = 8 mA                                             | 2.3 V           |                        | 0.3  | 1    |  |
| V <sub>OL</sub> <sup>(2)</sup>       |                   | I <sub>OL</sub> = 16 mA                                            | 3 V             |                        | 0.4  | V    |  |
|                                      |                   | I <sub>OL</sub> = 24 mA                                            | 3 V             |                        | 0.55 |      |  |
|                                      |                   | I <sub>OL</sub> = 32 mA                                            | 4.5 V           |                        | 0.55 |      |  |
| ,                                    | VOUT              | $I_{OL} = 100 \mu\text{A}$                                         | 1.65 V to 5.5 V |                        | 0.1  |      |  |
| V <sub>OL</sub>                      | XOUT              | $I_{OL} = 2 \text{ mA}$ CTRL = Low, XIN = GND                      | 1.65 V          |                        | 0.65 | V    |  |
| lı                                   | All inputs        | $V_1 = 5.5 \text{ V or GND}$                                       | 0 to 5.5 V      |                        | ±5   | μA   |  |
| off                                  | Y output          | $V_1 \text{ or } V_0 = 0 \text{ to } 5.5 \text{ V}$                | 0               |                        | ±10  | μA   |  |
| сс                                   |                   | $V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$                 | 1.65 V to 5.5 V |                        | 10   | μA   |  |
| ΔI <sub>CC</sub>                     | CTRL and A inputs | One input at $V_{CC} - 0.6 V$ ,<br>Other inputs at $V_{CC}$ or GND | 3 V to 5.5 V    |                        | μA   |      |  |
| C <sub>i</sub>                       | CTRL and A inputs | $V_{I} = V_{CC} \text{ or GND}$                                    | 3.3 V           | 3.5                    |      | pF   |  |
|                                      | XIN               |                                                                    |                 | 6                      |      |      |  |

(1) All typical values are at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ . (2)  $V_{IL} = 0 \text{ V}$  and  $V_{IH} = V_{CC}$  for XOUT and OSCOUT; the standard  $V_{T+}$  and  $V_{T-}$  levels should be applied for the Y output.



## 7.6 Switching Characteristics, $C_L = 15 \text{ pF}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

| PARAMETER       | FROM    | TO       | V <sub>CC</sub> = 1.8 V<br>± 0.15 V V <sub>CC</sub> = 2.5 V<br>± 0.2 V |      | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |      | V <sub>CC</sub> = 5 V<br>± 0.5 V |      | UNIT |      |    |
|-----------------|---------|----------|------------------------------------------------------------------------|------|------------------------------------|------|----------------------------------|------|------|------|----|
|                 | (INPUT) | (OUTPUT) | MIN                                                                    | MAX  | MIN                                | MAX  | MIN                              | MAX  | MIN  | MAX  |    |
|                 | А       | Y        | 2.8                                                                    | 15.1 | 1.6                                | 5.7  | 1.5                              | 4.6  | 0.9  | 4.4  |    |
|                 | XIN     | XOUT     | 1.7                                                                    | 9.6  | 1                                  | 3.2  | 1.1                              | 2.4  | 0.9  | 1.8  |    |
| <sup>t</sup> pd |         | OSCOUT   | 2.6                                                                    | 17.2 | 2                                  | 5.6  | 2                                | 4.1  | 1.5  | 3.2  | ns |
|                 | CTRL    | XOUT     | 3                                                                      | 28.2 | 1.8                                | 14.4 | 1.5                              | 12.2 | 1.1  | 10.2 |    |

## 7.7 Switching Characteristics, $C_L = 30 \text{ pF}$ or 50 pF

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

| PARAMETER       | FROM<br>(INPUT) | TO       | V <sub>CC</sub> =<br>± 0.1 |      | V <sub>CC</sub> =<br>± 0.2 |     | V <sub>CC</sub> =<br>± 0.3 |      | V <sub>CC</sub> =<br>± 0.5 |      | UNIT |
|-----------------|-----------------|----------|----------------------------|------|----------------------------|-----|----------------------------|------|----------------------------|------|------|
|                 | (INPUT)         | (OUTPUT) | MIN                        | MAX  | MIN                        | MAX | MIN                        | MAX  | MIN                        | MAX  |      |
|                 | А               | Y        | 3                          | 17.3 | 1.8                        | 7.4 | 1.8                        | 6.4  | 1                          | 5.3  |      |
|                 | XIN             | XOUT     | 1.2                        | 15.8 | 0.8                        | 5.8 | 1                          | 5.4  | 0.6                        | 4.6  | ~~   |
| t <sub>pd</sub> | AIN             | OSCOUT   | 3.5                        | 25.7 | 2.6                        | 7.1 | 2.8                        | 7.8  | 2                          | 6.7  | ns   |
|                 | CTRL            | XOUT     | 3.3                        | 24.5 | 2.1                        | 12  | 1.9                        | 12.7 | 1.1                        | 11.2 |      |

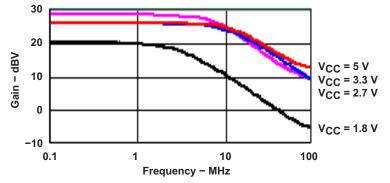
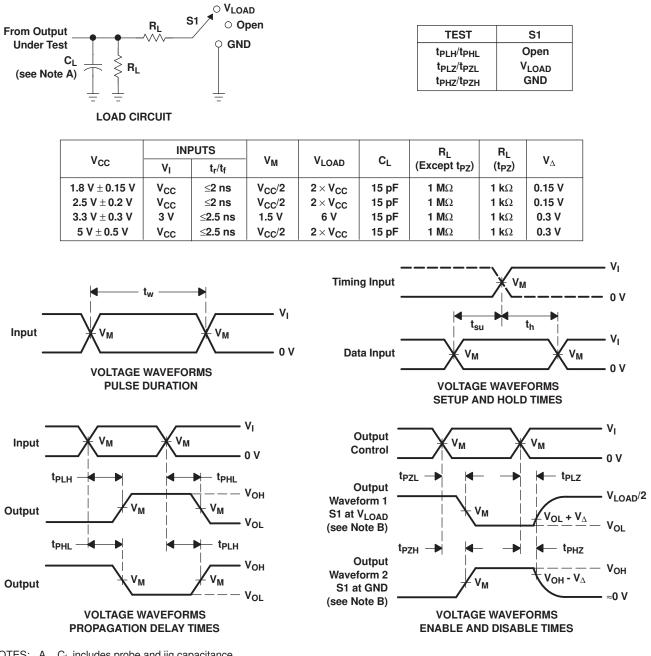
## 7.8 Operating Characteristics

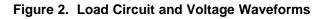
 $T_A = 25^{\circ}C$ 

|                 | PARAMETER                        | TEST<br>CONDITIONS | V <sub>CC</sub> = 1.8 V<br>TYP | V <sub>CC</sub> = 2.5 V<br>TYP | V <sub>CC</sub> = 3.3 V<br>TYP | V <sub>CC</sub> = 5 V<br>TYP | UNIT |
|-----------------|----------------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|------|
| $C_{\text{pd}}$ | Power dissipation<br>capacitance | f = 10 MHz         | 25                             | 26                             | 29                             | 39                           | pF   |

## 7.9 Typical Characteristics

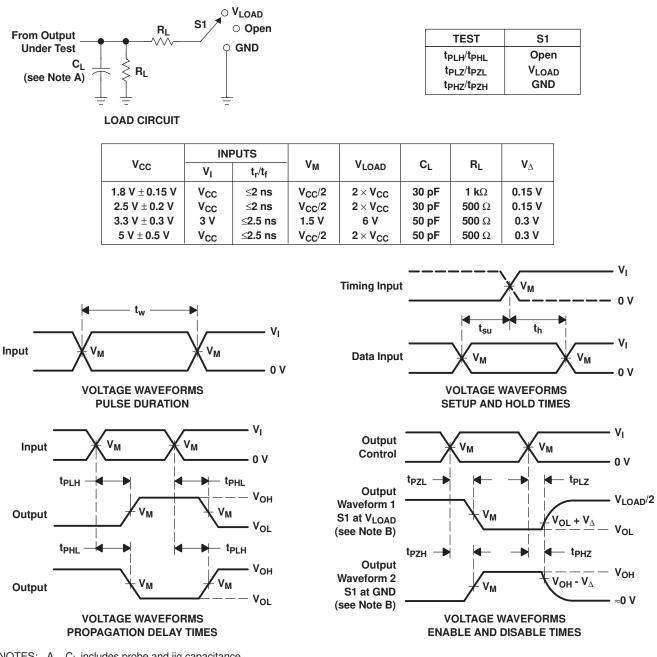
Figure 1 shows the open-loop-gain characteristics of the unbuffered inverter of the LVC1404 (that is, between XIN and XOUT). The device provides a high gain over a wide range of frequencies.



Figure 1. Open-Loop-Gain Characteristics

## 8 Parameter Measurement Information




NOTES: A. C<sub>1</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G. t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>.
- H. All parameters and waveforms are not applicable to all devices.





### Parameter Measurement Information (continued)



NOTES: A. C<sub>1</sub> includes probe and jig capacitance.

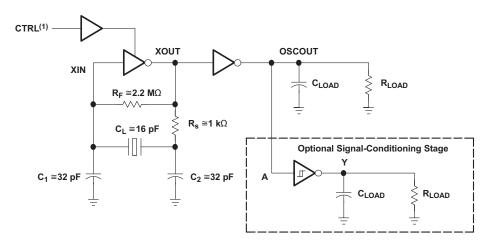
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.
- t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.

### Figure 3. Load Circuit and Voltage Waveforms



## 9 Detailed Description

## 9.1 Overview


The SN74LVC1404 device consists of one inverter with a Schmitt-trigger input and two unbuffered inverters. It is designed for 1.65-V to 5.5-V  $V_{CC}$  operation.

XIN and XOUT pins can be connected to a crystal or resonator in oscillator applications. The SN74LVC1404 device provides an additional unbuffered inverter (OSCOUT) and a Schmitt-trigger input inverter for signal conditioning (see the *Functional Block Diagram*). The control (CTRL) input disables the oscillator circuit to reduce power consumption. The oscillator circuit is disabled and the XOUT output is set to low level when CTRL is low. To ensure the oscillator circuit remains disabled during power up or power down, CTRL should be connected to GND through a pulldown resistor. The minimum value of the resistor is determined by the current-sourcing capability of the driver.

This device is fully specified for partial-power-down applications using  $I_{off}$ . The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

NanoFree<sup>™</sup> package technology is a major breakthrough in IC packaging concepts, using the die as the package.

## 9.2 Functional Block Diagram



## 9.3 Feature Description

- Wide operating voltage range
  - Operates from 1.65 V to 5.5 V
- · Has buffered output and un-buffered output from oscillator
- Schmitt-trigger buffer
  - Allows for extra buffering of the oscillator output
- I<sub>off</sub> feature
  - Allows voltages on the inputs and outputs when  $V_{CC}$  is 0 V



## 9.4 Device Functional Modes

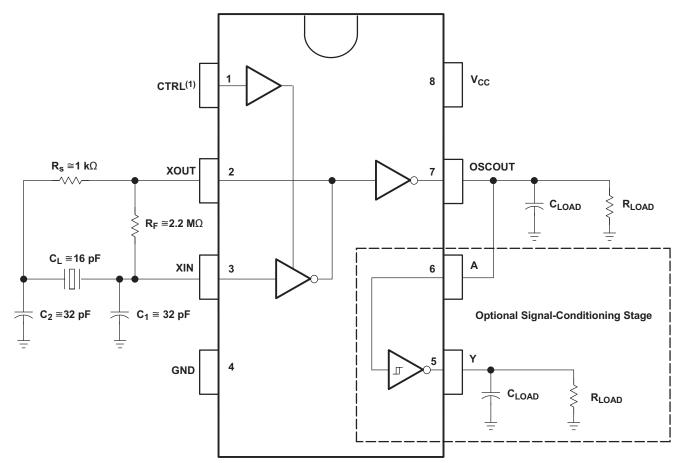
| INPU | JTS | OUTPUTS |        |  |  |  |  |  |  |  |
|------|-----|---------|--------|--|--|--|--|--|--|--|
| CTRL | XIN | XOUT    | OSCOUT |  |  |  |  |  |  |  |
| Н    | L   | Н       | L      |  |  |  |  |  |  |  |
| Н    | н   | L       | Н      |  |  |  |  |  |  |  |
| L    | х   | L       | Н      |  |  |  |  |  |  |  |

### Table 1. Function Table

### **Table 2. Function Table**

| INPUT<br>A | OUTPUT<br>Y |
|------------|-------------|
| L          | Н           |
| Н          | L           |

12 Submit Documentation Feedback


## **10** Application and Implementation

## **10.1** Application Information

Figure 4 shows a typical application of the SN74LVC1404 device in a Pierce oscillator circuit. The output voltage can be conditioned further by connecting OSCOUT to the Schmitt-trigger input inverter. The Schmitt-trigger input inverter produces a rail-to-rail voltage waveform. The recommended load for the crystal, shown in this example, is 16 pF. The value of the recommended load ( $C_L$ ) can be found in the crystal manufacturer's data sheet. Values

of C<sub>1</sub> and C<sub>2</sub> are chosen so that  $C_L = \frac{C_1 C_2}{C_1 + C_2}$  and  $C_1 \neq C_2$ . R<sub>s</sub> is the current-limiting resistor, and the value depends on the maximum power dissipation of the crystal. Generally, the recommended value of R<sub>s</sub> is specified in the crystal manufacturer's data sheet and, usually, this value is approximately equal to the reactance of C<sub>2</sub> at resonance frequency, that is, R<sub>s</sub> = X<sub>C2</sub>. R<sub>F</sub> is the feedback resistor that is used to bias the inverter in the linear region of operation. Usually, the value is chosen to be within 1 MΩ to 10 MΩ.

## **10.2 Typical Application**









## **Typical Application (continued)**

### 10.2.1 Design Requirements

- The open-loop gain of the unbuffered inverter decreases as power-supply voltage decreases. This decreases
  the closed-loop gain of the oscillator circuit. The value of R<sub>s</sub> can be decreased to increase the closed-loop
  gain, while maintaining the power dissipation of the crystal within the maximum limit.
- R<sub>s</sub> and C<sub>2</sub> form a low-pass filter and reduce spurious oscillations. Component values can be adjusted, based on the desired cutoff frequency.
- C<sub>2</sub> can be increased over C<sub>1</sub> to increase the phase shift and help in start-up of the oscillator. Increasing C<sub>2</sub> may affect the duty cycle of the output voltage.
- At high frequency, phase shift due to R<sub>s</sub> becomes significant. In this case, R<sub>s</sub> can be replaced by a capacitor to reduce the phase shift.

## 10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
  - Rise time and fall time specs: See ( $\Delta t/\Delta V$ ) in the *Recommended Operating Conditions* table.
  - Specified high and low levels: See (V<sub>IH</sub> and V<sub>IL</sub>) in the *Recommended Operating Conditions* table.
  - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid  $V_{CC}$ .
- 2. Recommended Output Conditions
  - Load currents should not exceed 50 mA per output and 100 mA total for the part.
  - Outputs should not be pulled above V<sub>CC</sub>.

## 10.2.2.1 Testing

After the selection of proper component values, the oscillator circuit should be tested, using these components, to ensure that the oscillator circuit shows required performance over the recommended operating conditions.

- Without a crystal, the oscillator circuit should not oscillate. To check this, the crystal can be replaced by its equivalent parallel-resonant resistance.
- When the power-supply voltage drops, the closed-loop gain of the oscillator circuit reduces. Ensure that the
  circuit oscillates at the appropriate frequency at the lowest V<sub>CC</sub> and highest V<sub>CC</sub>.
- Ensure that the duty cycle, start-up time, and frequency drift over time is within the system requirements.

SN74LVC1404

SCES469F - AUGUST 2003 - REVISED MARCH 2020

SN74LVC1404

SCES469F-AUGUST 2003-REVISED MARCH 2020



(1)

(2)

(3)

## **Typical Application (continued)**

### 10.2.3 Application Curves

### 10.2.3.1 LVC1404 in 25-MHz Crystal-Oscillator Circuit

 $C_1 \approx C_2 = 30 \text{ pF}$ 

 $X_{C2} = 200 \Omega$  (capacitive reactance at resonance frequency, that is, 25 MHz)  $V_{CC} = 3.3 V$ 

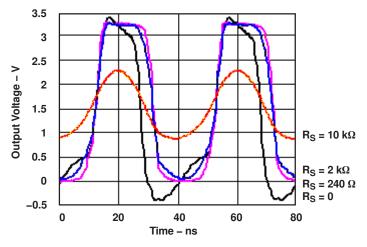



Figure 5. Effect of R<sub>s</sub> on Oscillator Waveform (Frequency = 25 MHz)

| (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 ( |                         |                            |  |  |  |  |  |  |  |
|------------------------------------------|-------------------------|----------------------------|--|--|--|--|--|--|--|
| R <sub>S</sub><br>(Ω)                    | l <sub>CC</sub><br>(mA) | Positive Duty Cycle<br>(%) |  |  |  |  |  |  |  |
| 0                                        | 22.2                    | 43                         |  |  |  |  |  |  |  |
| 240                                      | 11.1                    | 45.9                       |  |  |  |  |  |  |  |
| 2 k                                      | 7.3                     | 47.3                       |  |  |  |  |  |  |  |
| 10 k                                     | 8.6                     | 46.7                       |  |  |  |  |  |  |  |

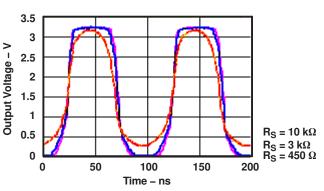
Table 3. Effect of  $R_s$  on Duty Cycle and  $I_{CC}$ (Frequency = 25 MHz)

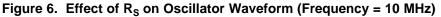


(4)

(5)

(6)


(7)


(8)

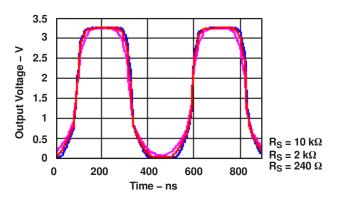
(9)

### 10.2.3.2 LVC1404 in 10-MHz Crystal-Oscillator Circuit

 $\label{eq:C1} \begin{array}{l} \mbox{$<$C_2$} = 30 \mbox{ pF} \\ X_{C2} = 480 \ \Omega \mbox{ (capacitive reactance at resonance frequency, that is, 10 MHz) } \\ V_{CC} = 3.3 \ V \end{array}$ 






| (Frequency = 10 MHz)  |                         |                            |  |  |  |  |  |  |  |  |
|-----------------------|-------------------------|----------------------------|--|--|--|--|--|--|--|--|
| R <sub>S</sub><br>(Ω) | l <sub>CC</sub><br>(mA) | Positive Duty Cycle<br>(%) |  |  |  |  |  |  |  |  |
| 450                   | 6.9                     | 40                         |  |  |  |  |  |  |  |  |
| 3 k                   | 8.4                     | 47.6                       |  |  |  |  |  |  |  |  |
| 10 k                  | 15.1                    | 43.9                       |  |  |  |  |  |  |  |  |

#### Table 4. Effect of $R_s$ on Duty Cycle and $I_{CC}$ (Frequency = 10 MHz)

### 10.2.3.3 LVC1404 in 2-MHz Crystal-Oscillator Circuit

 $C_1 \approx C_2 = 30 \text{ pF}$ 

 $X_{C2}$  = 2.4 k $\Omega$  (capacitive reactance at resonance frequency, that is, 2 MHz)  $V_{CC}$  = 3.3 V





| Table 5. Effect of R <sub>s</sub> on Duty Cycle and I <sub>CC</sub> |  |
|---------------------------------------------------------------------|--|
| (Frequency = 2 MHz)                                                 |  |

| R <sub>S</sub><br>(Ω) | l <sub>CC</sub><br>(mA) | Positive Duty Cycle<br>(%) |
|-----------------------|-------------------------|----------------------------|
| 240                   | 11.1                    | 45.9                       |
| 2 k                   | 7.3                     | 47.3                       |
| 10 k                  | 8.6                     | 46.7                       |

## 10.2.3.4 LVC1404 in 100-kHz Crystal-Oscillator Circuit

 $C_1 \approx C_2 = 30 \text{ pF}$ 

 $X_{C2}$  = 48 k $\Omega$  (capacitive reactance at resonance frequency, that is, 100 kHz)  $V_{CC}$  = 3.3 V

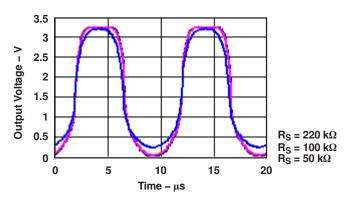



Figure 8. Effect of R<sub>s</sub> on Oscillator Waveform (Frequency = 100 kHz)

| Table 6. Effect of R <sub>S</sub> on Duty Cycle and I <sub>CC</sub> |  |
|---------------------------------------------------------------------|--|
| (Frequency = 100 kHz)                                               |  |

| R <sub>S</sub><br>(Ω) | l <sub>CC</sub><br>(mA) | Positive Duty Cycle<br>(%) |
|-----------------------|-------------------------|----------------------------|
| 50 k                  | 9                       | 46.4                       |
| 100 k                 | 9.5                     | 46.1                       |
| 220 k                 | 13.7                    | 44.3                       |

www.ti.com

(10)

(11)

(12)



## **11** Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V<sub>CC</sub> pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1  $\mu$ f is recommended; if there are multiple V<sub>CC</sub> pins, then 0.01  $\mu$ f or 0.022  $\mu$ f is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1  $\mu$ f and a 1  $\mu$ f are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

## 12 Layout

### 12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 9 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or  $V_{CC}$ , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the l/Os, so they cannot float when disabled.

## 12.2 Layout Example

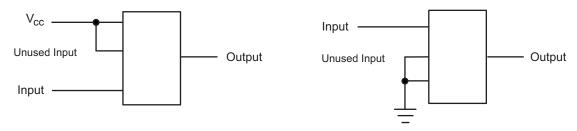



Figure 9. Layout Diagram



## **13 Device and Documentation Support**

## 13.1 Trademarks

NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

## **13.2 Electrostatic Discharge Caution**



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

## 13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

## 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



## PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins  | Package qty   Carrier | RoHS | Lead finish/         | MSL rating/        | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|-----------------|-----------------------|------|----------------------|--------------------|--------------|--------------|
|                       | (1)    | (2)           |                 |                       | (3)  | Ball material        | Peak reflow        |              | (6)          |
|                       |        |               |                 |                       |      | (4)                  | (5)                |              |              |
| SN74LVC1404DCTR       | Active | Production    | SSOP (DCT)   8  | 3000   LARGE T&R      | Yes  | NIPDAU   SN   NIPDAU | Level-1-260C-UNLIM | -40 to 125   | (2W85, CA4)  |
|                       |        |               |                 |                       |      |                      |                    |              | (R, Z)       |
| SN74LVC1404DCTR.Z     | Active | Production    | SSOP (DCT)   8  | 3000   LARGE T&R      | Yes  | NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (2W85, CA4)  |
|                       |        |               |                 |                       |      |                      |                    |              | (R, Z)       |
| SN74LVC1404DCUR       | Active | Production    | VSSOP (DCU)   8 | 3000   LARGE T&R      | Yes  | NIPDAU   SN          | Level-1-260C-UNLIM | -40 to 125   | (CA4J, CA4R) |
| SN74LVC1404DCUR.Z     | Active | Production    | VSSOP (DCU)   8 | 3000   LARGE T&R      | Yes  | SN                   | Level-1-260C-UNLIM | -40 to 125   | (CA4J, CA4R) |
| SN74LVC1404DCUR1G4.Z  | Active | Production    | VSSOP (DCU)   8 | 3000   LARGE T&R      | -    | Call TI              | Call TI            | -40 to 125   |              |
| SN74LVC1404YZPR       | Active | Production    | DSBGA (YZP)   8 | 3000   LARGE T&R      | Yes  | SNAGCU               | Level-1-260C-UNLIM | -40 to 85    | 44N          |
| SN74LVC1404YZPR.Z     | Active | Production    | DSBGA (YZP)   8 | 3000   LARGE T&R      | Yes  | SNAGCU               | Level-1-260C-UNLIM | -40 to 125   | 44N          |

<sup>(1)</sup> **Status:** For more details on status, see our product life cycle.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

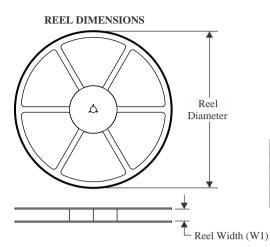
(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

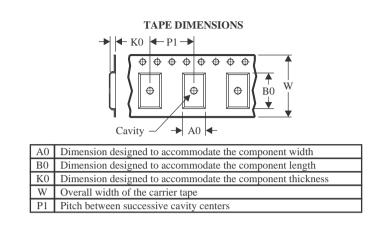
<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

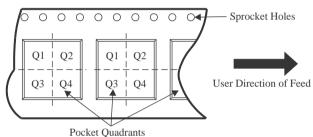
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.




In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




Texas

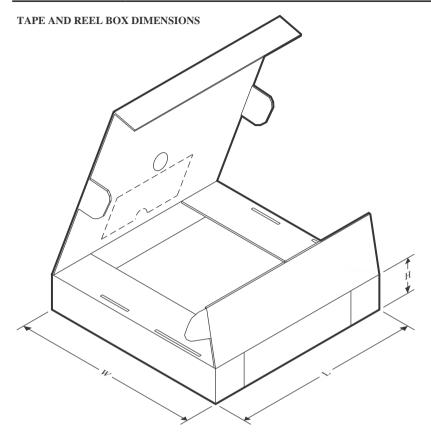

STRUMENTS

## TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |                 |                    |   |      |                          |                          |            | D          |            | D.         |           | t.               |
|-----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74LVC1404DCTR             | SSOP            | DCT                | 8 | 3000 | 180.0                    | 12.4                     | 3.15       | 4.35       | 1.55       | 4.0        | 12.0      | Q3               |
| SN74LVC1404DCUR             | VSSOP           | DCU                | 8 | 3000 | 178.0                    | 9.0                      | 2.25       | 3.35       | 1.05       | 4.0        | 8.0       | Q3               |
| SN74LVC1404DCUR             | VSSOP           | DCU                | 8 | 3000 | 180.0                    | 8.4                      | 2.25       | 3.35       | 1.05       | 4.0        | 8.0       | Q3               |
| SN74LVC1404YZPR             | DSBGA           | YZP                | 8 | 3000 | 178.0                    | 9.2                      | 1.02       | 2.02       | 0.63       | 4.0        | 8.0       | Q1               |



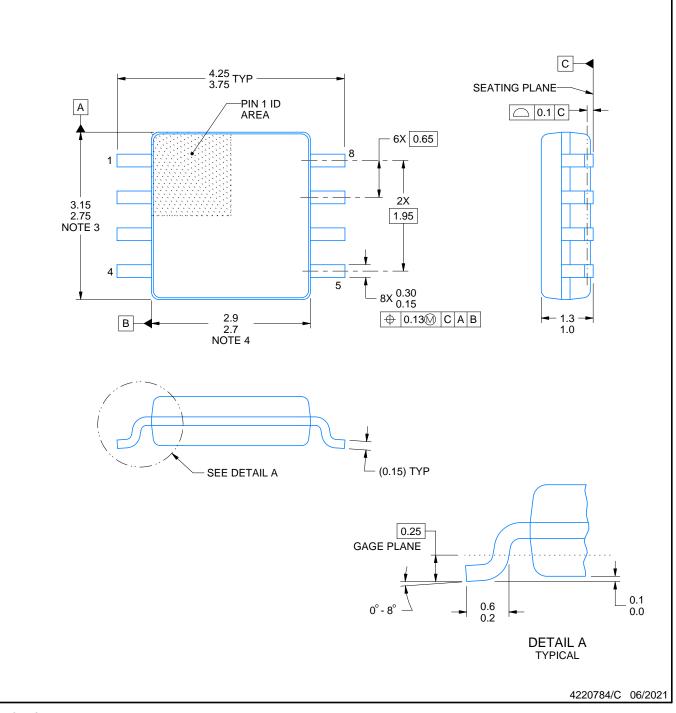
# PACKAGE MATERIALS INFORMATION

8-Oct-2024



\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LVC1404DCTR | SSOP         | DCT             | 8    | 3000 | 190.0       | 190.0      | 30.0        |
| SN74LVC1404DCUR | VSSOP        | DCU             | 8    | 3000 | 180.0       | 180.0      | 18.0        |
| SN74LVC1404DCUR | VSSOP        | DCU             | 8    | 3000 | 202.0       | 201.0      | 28.0        |
| SN74LVC1404YZPR | DSBGA        | YZP             | 8    | 3000 | 220.0       | 220.0      | 35.0        |


# **DCT0008A**



# **PACKAGE OUTLINE**

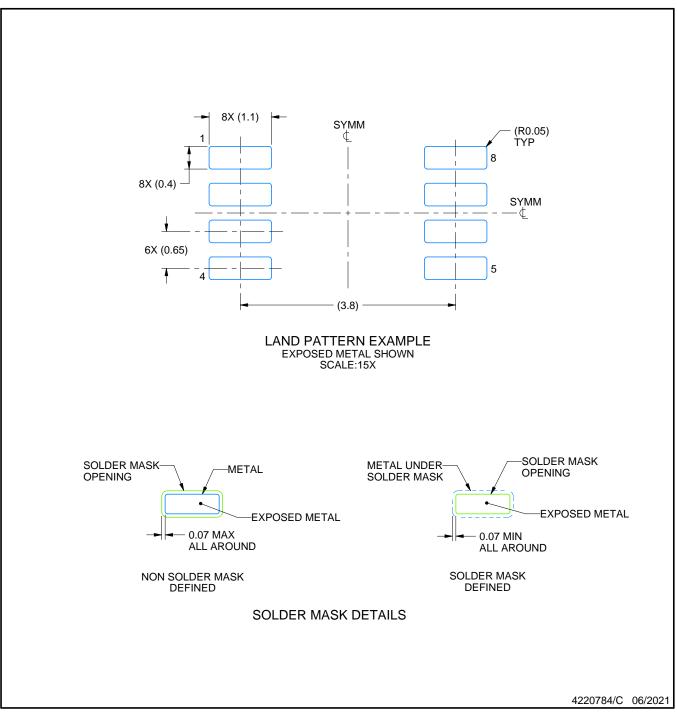
## SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.




# **DCT0008A**

# **EXAMPLE BOARD LAYOUT**

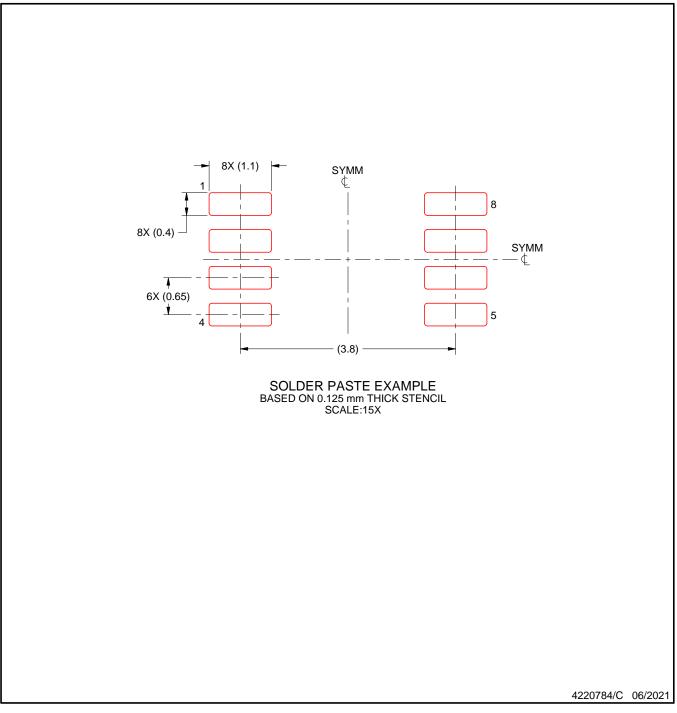
## SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

Publication IPC-7351 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# **DCT0008A**

# **EXAMPLE STENCIL DESIGN**

## SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.



<sup>7.</sup> Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


# YZP0008



# **PACKAGE OUTLINE**

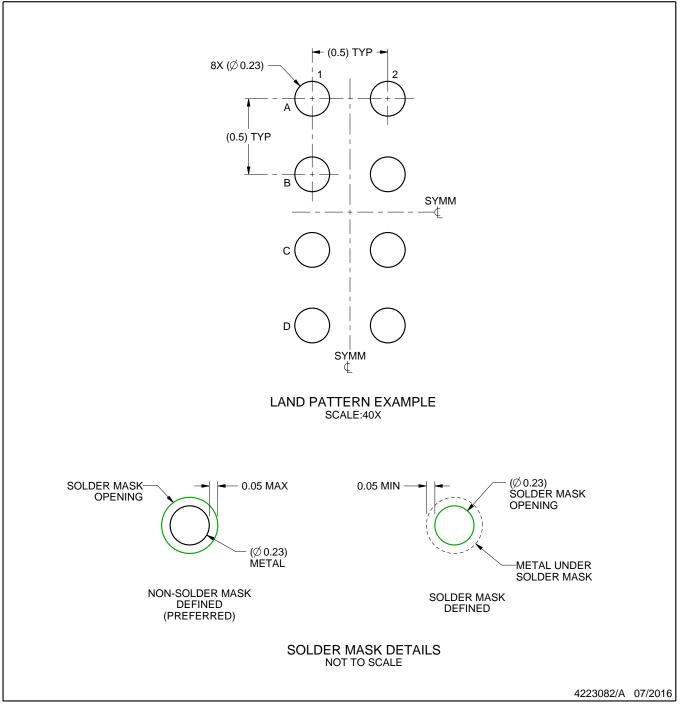
## DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.




# YZP0008

# **EXAMPLE BOARD LAYOUT**

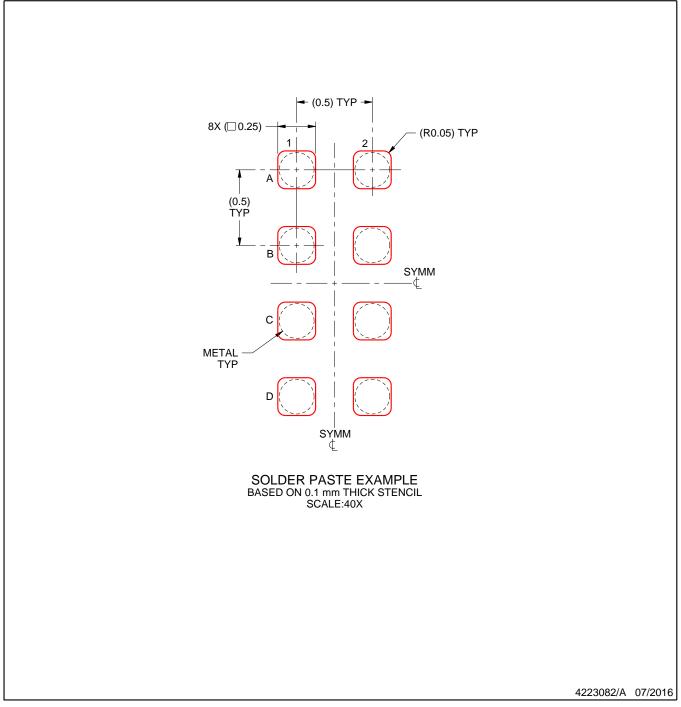
## DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).




# YZP0008

# **EXAMPLE STENCIL DESIGN**

## DSBGA - 0.5 mm max height

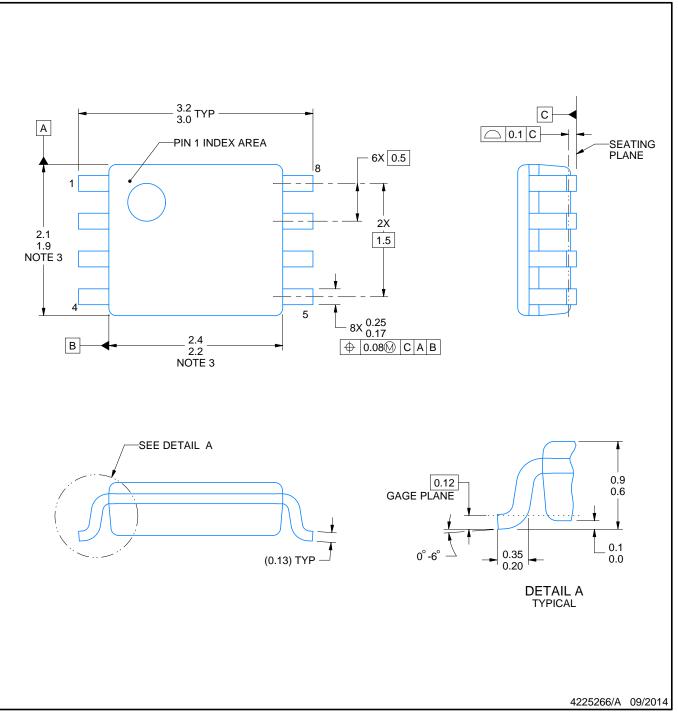
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.




# **DCU0008A**



# **PACKAGE OUTLINE**

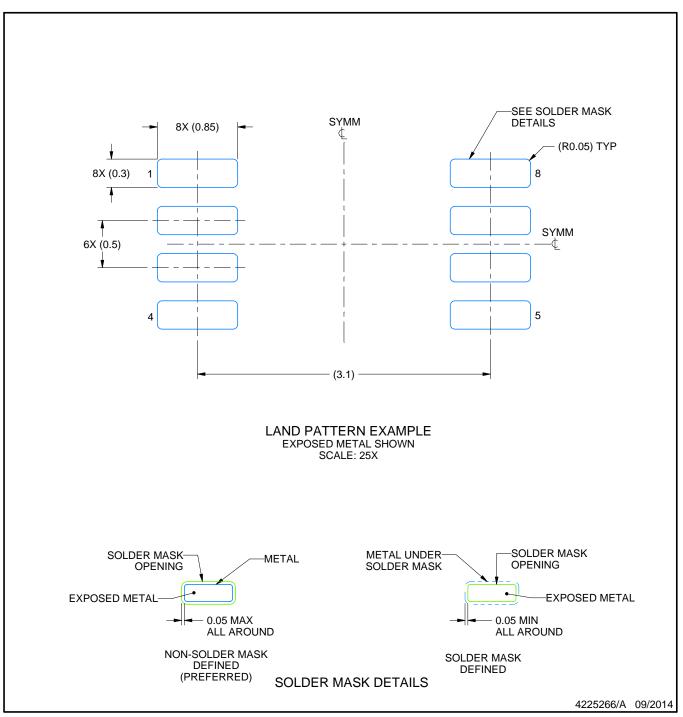
## VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-187 variation CA.




# DCU0008A

# **EXAMPLE BOARD LAYOUT**

## VSSOP - 0.9 mm max height

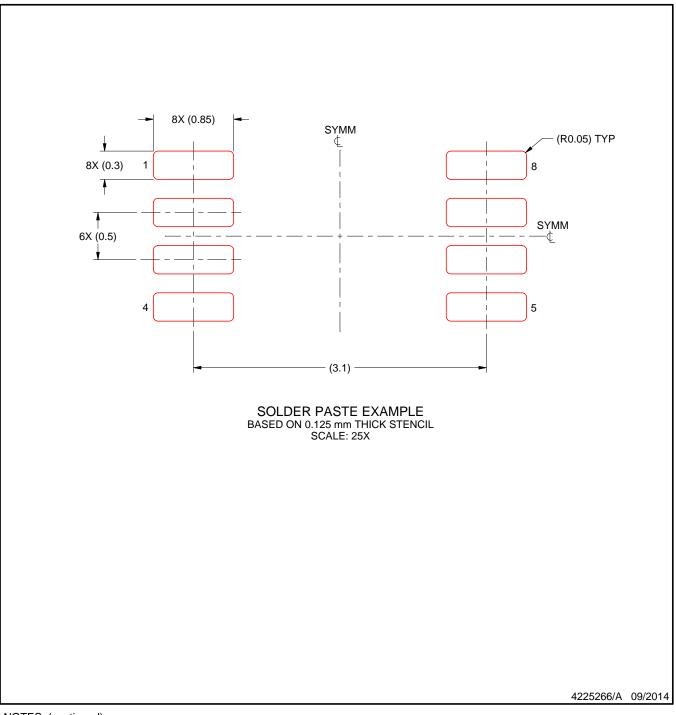
SMALL OUTLINE PACKAGE



NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# DCU0008A

# **EXAMPLE STENCIL DESIGN**

## VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.



<sup>7.</sup> Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated