- Drive Capability and Output Counts
- 80 mA (Current Sink) x 16 Bits
- Constant Current Output Range
- 1 to 80 mA (Current Value Setting for All Output Terminals Using External Resistor)
- Constant Current Accuracy
- $\pm 1 \%$ (Typ)
- $\pm 4 \%$ (Max) (Maximum Error Between Bits, All Bits On)
- Voltage Applied to Constant Current Output Terminal
- Minimum 0.6 V (Output Current 40 mA )
- Minimum 1 V (Output Current 80 mA )
- Data Input
- Clock Synchronized 1 Bit Serial Input
- Data Output
- Clock Synchronized 1 bit Serial Output (With Timing Selection)
- Input/Output Signal Level . . . CMOS Level
- Power Supply Voltage ... 4.5 V to 5.5V
- Maximum Output Voltage . . . 17 V (Max)
- Data Transfer Rate . . . 20 MHz (Max)
- Operating Free-Air Temperature Range $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Available in 32 Pin HTSSOP DAP Package ( $\mathrm{P}_{\mathrm{D}}=3.9 \mathrm{~W}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
- LOD Function ... LED Open Detection (Error Signal Output at LED Disconnection)
- TSD Function ... Thermal Shutdown (Turn Output Off When Junction Temperature Exceeds Limit)


## description

The TLC5921 is a current-sink constant current driver incorporating shift register and data latch. The current value at constant current output can be set by one external register. The device also incorporates thermal shutdown (TSD) circuitry which turns constant current output off when the junction temperature exceeds the limit, and LED open detection (LOD) circuitry to report the LED was disconnected.

## TLC5921

## LED DRIVER

SLLS390 - SEPTEMBER 1999
functional block diagram

equivalent input and output schematic diagrams


## Terminal Functions

| TERMINAL |  | I/O | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| NAME | NO. |  |  |
| SIN | 5 | 1 | 1 bit serial data input |
| SOUT | 28 | O | 1 bit serial data output |
| SCLK | 4 | 1 | Clock input for data transfer. All the data in the shift register is shifted to MSB by 1 bit synchronizing to the rising edge of SCLK, and data at SIN is shifted to LSB at the same time. (Schmitt buffer input) |
| XLAT | 3 | 1 | Latch. When XLAT is high, data on shift register goes through latch. When XLAT is low, data is latched. Accordingly, if data on shift register is changed during XLAT high, this new value is latched (level latch). This terminal is internally pulled down with $100 \mathrm{k} \Omega$. |
| SOMODE | 30 | 1 | Timing select for serial data output. When SOMODE is low, output data on SOUT is changed synchronizing to the rising edge of SCLK. When SOMODE is high, output data on SOUT is changed synchronizing to the falling edge of SCLK. |
| OUT0 - OUT15 | $\begin{aligned} & \hline 7,8,10,11,12,13, \\ & 15,16,17,18,20, \\ & 21,22,23,25,26 \end{aligned}$ | O | Constant current output. |
| BLANK | 2 | 1 | Blank(Light off). When BLANK is high, all the output of constant current driver is turned off. When BLANK is low and data written to latch is 1 , the corresponding constant current output turns on (LED on). This terminal is internally pulled up with $100 \mathrm{k} \Omega$. |
| IREF | 31 | 1 | Constant current value setting. LED current is set to desired value by connecting external resistor between IREF and GND. The 38 times current compared to current across external resistor sink on output terminal. |
| XDOWN | 29 | O | Error output. XDOWN is configured as open collector. It goes low when TSD or LOD functions. |
| VCC | 32 |  | Power supply voltage |
| GND | 1 |  | Ground |
| PGND | 6,9,14,19,24,27 |  | Ground for LED driver. (Internally connected to GND) |
| THERMAL PAD | package bottom |  | Heat sink pad. This pad is connected to the lowest potential to IC or thermal layer. |

## absolute maximum ratings (see Note 1) $\dagger$

```
Supply voltage, \(\mathrm{V}_{\mathrm{CC}}\)
    -0.3 V to 7 V
Output current (dc), \(\mathrm{I}_{\mathrm{O}(\mathrm{LC})}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mA
```




```
Output voltage range, \(\mathrm{V}_{\mathrm{O}(\mathrm{OUT})}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 18 V
Storage temperature range, \(\mathrm{T}_{\text {stg }}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-40^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Continuous total power dissipation at (or below) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 3 W
Power dissipation rating at (or above) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(31.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
\(\dagger\) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to GND terminal.
```

recommended operating conditions
dc characteristics

| PARAMETER | CONDITIONS | MIN | NOM MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ |  | 4.5 | $5 \quad 5.5$ | V |
| Voltage applied to constant current output, $\mathrm{V}_{\mathrm{O}}$ | OUT0 to OUT15 off |  | 17 | V |
| High-level input voltage, $\mathrm{V}_{\mathrm{IH}}$ |  | 0.8 VCC | VCC | V |
| Low-level input voltage, $\mathrm{V}_{\text {IL }}$ |  | GND | 0.2 VCC | V |
| High-level output current, $\mathrm{I}_{\mathrm{OH}}$ | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, SOUT |  | -1 | mA |
| Low-level output current, IOL | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, SOUT, XDOWN |  | 1 |  |
| Constant output current, $\mathrm{I}_{\mathrm{O}(\mathrm{LC})}$ | OUT0 to OUT15 |  | 80 | mA |
| Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}$ |  | -20 | 85 | ${ }^{\circ} \mathrm{C}$ |

ac characteristics, MIN/MAX: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $85^{\circ} \mathrm{C}$
TYP: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

|  | PARAMETER | CONDITIONS | MIN | TYP MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fSCLK | SCLK clock frequency | At single operation |  | 20 | MHz |
|  |  | At cascade operation (SOMODE = L) |  | 15 |  |
| $\mathrm{t}_{\mathrm{wh}} / \mathrm{t}_{\mathrm{wl}}$ | SCLK pulse duration |  | 20 |  | ns |
| $t_{\text {wh }}$ | XLAT pulse duration |  | 10 |  | ns |
| $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$ | Rise/fall time |  |  | 100 | ns |
| $t_{\text {su }}$ | Setup time | SIN - SCLK | 5 |  | ns |
|  |  | XLAT - SCLK | 5 |  |  |
| th | Hold time | SIN - SCLK | 20 |  | ns |
|  |  | XLAT - SCLK | 20 |  |  |

## TLC5921

## LED DRIVER

SLLS390 - SEPTEMBER 1999
electrical characteristics, MIN/MAX: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $85^{\circ} \mathrm{C}$ TYP: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

|  | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage | $\mathrm{l} \mathrm{OH}=-1 \mathrm{~mA}$ | $\begin{array}{r} \hline \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \end{array}$ |  |  | V |
| V ${ }_{\text {OL }}$ | Low-level output voltage | $\mathrm{IOL}=1 \mathrm{~mA}$ |  |  | 0.5 | V |
| I | Input current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND (except BLANK, XLAT) |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| ICC | Supply current | Input signal is static, $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$, <br> $\mathrm{R}_{(\mathrm{IREF})}=10 \mathrm{k} \Omega$, All output bits turn off |  | 3 | 4.5 | mA |
|  |  | Input signal is static, $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ RIREF $=1300 \Omega$, All output bits turn off |  | 7 | 9 |  |
|  |  | Input signal is static, $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$, $\mathrm{R}_{\text {(IREF) }}=640 \Omega$, All output bits turn off |  | 11 | 15 |  |
|  |  | Data transfer, $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$, <br> $\mathrm{R}_{(\text {IREF })}=1300 \Omega$, All output bits turn on |  | 15 | 20 |  |
|  |  | Data transfer, $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$, <br> $\mathrm{R}_{(\text {IREF })}=640 \Omega$, All output bits turn on |  | 35 | 50 |  |
| IOL(C1) | Constant output current | $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}, \quad \mathrm{R}_{\text {(IREF })}=1300 \Omega$ | 35 | 40 | 45 | mA |
| IOL(C2) | Constant output current | $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \quad \mathrm{R}_{(\text {IREF })}=640 \Omega$ | 70 | 80 | 90 | mA |
| 1 lkg | Constant output leakage current | OUT0 to OUT15 (V) OUTn ) $=15 \mathrm{~V}$ ) |  |  | 0.1 | $\mu \mathrm{A}$ |
|  |  | XDOWN (5V pullup) |  |  | 1 | $\mu \mathrm{A}$ |
| $\Delta^{\text {I }}$ (LC) | Constant output current error between bit | $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}, \quad \mathrm{R}(\text { IREF })=640 \Omega$ <br> All output bits turn on |  | $\pm 1$ | $\pm 4$ | \% |
| ${ }^{1} \mathrm{O}$ (LC1) | Changes in constant output current depend on supply voltage | $\mathrm{V}_{\text {ref }}=1.3 \mathrm{~V}$ |  | $\pm 1$ | $\pm 4$ | \%/V |
| $1 \Delta \mathrm{O}$ (LC2) | Changes in constant output current depend on output voltage | $\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 3 \mathrm{~V}, & \mathrm{R}_{(\mathrm{IREF})}=1300 \Omega, \\ \mathrm{~V}_{\text {ref }}=1.3 \mathrm{~V}, & 1 \text { bit output turn on } \end{array}$ |  | $\pm 2$ | $\pm 6$ | \%/V |
| T(tsd) | TSD detection temperature | Junction temperature | 150 | 160 | 170 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {ref }}$ | Reference voltage | $\mathrm{R}_{\text {(IREF) }}=640 \Omega$ |  | 1.3 |  | V |
| $\mathrm{V}_{(\text {(LEDDET) }}$ | LED disconnection detection voltage |  |  | 0.3 |  | V |

switching characteristics, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

| PARAMETER |  | TEST CONDITIONS | MIN | TYP | MAX | UNIT <br> ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{tr}_{\mathrm{r}}$ | Rise time | SOUT |  | 15 | 20 |  |
|  |  | OUTn (see Figure 1) |  | 300 |  |  |
| tf | Fall time | SOUT |  | 5 | 15 | ns |
|  |  | OUTn |  | 300 |  |  |
| $t_{\text {pd }}$ | Propagation delay time | BLANK $\uparrow$ - OUTn |  | 400 | 650 | ns |
|  |  | BLANK $\downarrow$ - OUTn |  | 300 | 400 |  |
|  |  | BLANK $\uparrow$ - XDOWN (see Note 2) |  | 600 | 1000 |  |
|  |  | BLANK $\downarrow$ - XDOWN (see Note 2) |  | 500 | 1000 |  |
|  |  | SCLK - SOUT | 10 | 20 | 35 |  |

NOTE 2: At external resistor $5 \mathrm{k} \Omega$

## PARAMETER MEASUREMENT INFORMATION



Figure 1. Rise Time and Fall Time Test Circuit for OUTn


Figure 2. Timing Requirements

## PRINCIPLES OF OPERATION

## setting for constant output current value

The constant current value is determined by external resistor, $\mathrm{R}_{(\text {IREF })}$ between IREF and GND. Refer constant output current characteristics shown on Figure 5 for this external resistor value.

Note that more current flows if connect IREF to GND directly.

## constant output current operation

When BLANK is low, the corresponding output is turned on if data latch value is 1 , and turned off if data latch value is 0 . When BLANK is high, all outputs are forced to turn off. If there is constant current output terminal left unconnected (includes LED disconnection), it should be lighted on after writing zero to corresponding data latch to its output. If this operation is not done, supply current through constant current driver will increase.

## shift register latch

The shift register latch is configured with $16 \times 1$ bits. The 1 bit for constant current output data represents ON for constant current output if data is 1 , or OFF if data is 0 . The configuration of shift register latch is shown in below.


Figure 3. Relationship Between Shift Register and Latch

## SOUT output timing selection

By setting level of SOMODE, the SOUT output timing can be changed. When SOMODE is set to low, data is clocked out to SOUT synchronized on the rising edge of SCLK, and when SOMODE is set to high, data is clocked out to SOUT synchronized on the falling edge of SCLK. When SOMODE is set to high and shift operation is done, the data shift error can be prevented even though SCLK signal is externally buffered in serial. Note that the maximum data transfer rate in cascade operation is slower than that when SMODE is set to low.

## TSD (thermal shutdown)

When the junction temperature exceeds the limit, TSD starts to function and turn constant current output off and XDOWN goes low. Since XDOWN is configured with open-collector output, the outputs of multiple ICs can be concatenated. To recover from constant current output off-state to normal operation, power supply should be turned off and then turned on after several seconds.

## PRINCIPLES OF OPERATION

## LOD function (LED open detection)

If any terminal voltage of constant current output (OUTO TO 15) to be turned on is approximately below 0.3 V , XDOWN output goes low during output on by knowing LED disconnection. This function is operational for sixteen OUTn individually. To know which constant current output is disconnected, the level of XDOWN is repeatedly checked 16 times from OUT0 to OUT15 turning one constant current output on. The power supply voltage for LED should be set to that the constant current output is applied to above 0.4 V to prevent from XDOWN low when LED is lighting on normally. Note that on-time should be minimum1 $\mu \mathrm{s}$ after the constant current output is turned on since XDOWN output is required approximately $1 \mu \mathrm{~s}$.
As discussed earlier, XDOWN is used for both TSD and LOD function. Therefore, BLANK is used to know which one of TSD or LOD worked when XDOWN went low at LED disconnection, that is, in this condition, when set BLANK to high, all the constant current outputs are turned off and LOD disconnection detection is disabled, then, if XDOWN was changed to high, LED disconnection must be occurred.

Table 1 is an example for XDOWN output status using four LEDs.
Table 1. XDOWN Output Example

| LED NUMBER | 1 | 2 | 3 | 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LED STATUS | GOOD | NG | GOOD | NG |  |  |
| OUTn | ON | ON | ON | ON |  |  |
| DETECTION RESULT | GOOD | NG | GOOD | NG |  |  |
| XDOWN | LOW (by case 2, 4) |  |  |  |  |  |
| LED NUMBER | 1 | 2 | 3 | 4 |  |  |
| LED STATUS | GOOD | NG | GOOD | NG |  |  |
| OUTn | ON | ON | OFF | OFF |  |  |
| DETECTION RESULT | GOOD | NG | GOOD | GOOD |  |  |
| XDOWN | LOW (by case 2$)$ |  |  |  |  |  |
| LED NUMBER | 1 | 2 | 3 | 4 |  |  |
| LED STATUS | GOOD | NG | GOOD | NG |  |  |
| OUTn | OFF | OFF | OFF | OFF |  |  |
| DETECTION RESULT | GOOD | GOOD | GOOD | GOOD |  |  |
| XDOWN2 | HIGH-IMPEDANCE |  |  |  |  |  |

## noise reduction : output slope

When output current is 80 mA , the time to change constant current output to turn-on and turn-off is approximately 150 ns and 250 ns respectively. This allows to reduce concurrent switching noise occurred when multiple outputs turn or off at the same time.

## thermal pad

The thermal pad should be connected to GND to eliminate the noise influence since it is connected to the bottom side of IC chip. Also, desired thermal effect will be obtained by connecting this pad to the PCB pattern with better thermal conductivity.

## PRINCIPLES OF OPERATION

power rating - free-air temperature


NOTES: A. The data is based on simulation result. When TI recommended print circuit board is used, derate linearly at the rate of $31.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation above $25^{\circ} \mathrm{C}$ free-air temperature. $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{I}(\mathrm{LC})=80 \mathrm{~mA}, \mathrm{ICC}$ is typical value.
B. The thermal impedance will be varied depend on mounting conditions. Since PZP package established low thermal impedance by radiating heat from thermal pad, the thermal pad should be soldered to pattern with low thermal impedance.
C. The material for PCB should be selected considering the thermal characteristics since the temperature will rise around the thermal pad.

Figure 4. Power Rating

## PRINCIPLES OF OPERATION

## constant output current



Conditions: $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=1.3 \mathrm{~V}$
NOTE: The resistor, $\mathrm{R}_{\text {(IREF) }}$, should be located as close to IREF terminal as possible to avoid the noise influence.
Figure 5. Current on Constant Current Output vs External Resistor


NOTE: LED disconnected
Figure 6. Timing Diagram

InSTRUMENTS

## PACKAGING INFORMATION

| Orderable Device | Status <br> (1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan <br> (2) | Lead finish/ Ball material <br> (6) | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ} \mathrm{C}$ ) | Device Marking <br> (4/5) | Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLC5921DAP | ACTIVE | HTSSOP | DAP | 32 | 46 | RoHS \& Green | NIPDAU | Level-3-260C-168 HR | -20 to 85 | TLC5921 | Samples |
| TLC5921DAPR | ACTIVE | HTSSOP | DAP | 32 | 2000 | RoHS \& Green | NIPDAU | Level-3-260C-168 HR | -20 to 85 | TLC5921 | Samples |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " $\sim$ " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION


TAPE DIMENSIONS


| A0 | Dimension designed to accommodate the component width |
| :--- | :--- |
| B0 | Dimension designed to accommodate the component length |
| K0 | Dimension designed to accommodate the component thickness |
| W | Overall width of the carrier tape |
| P1 | Pitch between successive cavity centers |

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package Type | Package Drawing | Pins | SPQ | Reel Diameter (mm) | Reel Width W1 (mm) | $\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$ | Pin1 <br> Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLC5921DAPR | HTSSOP | DAP | 32 | 2000 | 330.0 | 24.4 | 8.6 | 11.5 | 1.6 | 12.0 | 24.0 | Q1 |


*All dimensions are nominal

| Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLC5921DAPR | HTSSOP | DAP | 32 | 2000 | 350.0 | 350.0 | 43.0 |

## TUBE


— B - Alignment groove width
*All dimensions are nominal

| Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T ( $\boldsymbol{\mu m}$ ) | B (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLC5921DAP | DAP | HTSSOP | 32 | 46 | 530 | 11.89 | 3600 | 4.9 |

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

DAP (R-PDSO-G32) PowerPAD ${ }^{\text {TM }}$ PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com [http://www.ti.com](http://www.ti.com).
Falls within JEDEC M0-153 Variation DCT.

PowerPAD is a trademark of Texas Instruments.

## DAP (R-PDSO-G32) <br> PowerPAD ${ }^{\text {TM }}$ PLASTIC SMALL OUTLINE

## THERMAL INFORMATION

This PowerPAD ${ }^{T M}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Top View
Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

## PowerPAD is a trademark of Texas Instruments.

DAP (R-PDSO-G32) PowerPAD ${ }^{\text {TM }}$ PLASTIC SMALL OUTLINE PACKAGE


NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004 and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
F. Contact the board fabrication site for recommended soldermask tolerances.

## PowerPAD is a trademark of Texas Instruments



NOTES:
PowerPAD is a trademark of Texas Instruments.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153
5. Features may differ and may not be present.


NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/sIma002) and SLMA004 (www.ti.com/lit/slma004).
9. Size of metal pad may vary due to creepage requirement.


| STENCIL <br> THICKNESS | SOLDER STENCIL <br> OPENING |
| :---: | :---: |
| 0.1 | $3.40 \times 4.18$ |
| 0.125 | $3.04 \times 3.74($ SHOWN $)$ |
| 0.15 | $2.78 \times 3.41$ |
| 0.175 | $2.57 \times 3.16$ |

NOTES: (continued)
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
11. Board assembly site may have different recommendations for stencil design.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

