
TLC7701-Q1, TLC7705-Q1, TLC7733-Q1 MICROPOWER SUPPLY VOLTAGE SUPERVISORS

SGLS208A - OCTOBER 2003 - REVISED MAY 2008

- **Qualified for Automotive Applications**
- **Power-On Reset Generator**
- **Automatic Reset Generation After** Voltage Drop
- **Precision Voltage Sensor**
- **Temperature-Compensated Voltage** Reference
- **Programmable Delay Time by External** Capacitor
- Supply Voltage Range . . . 2 V to 6 V
- Defined RESET Output from V_{DD} ≥1 V
- **Power-Down Control Support for Static RAM With Battery Backup**
- Maximum Supply Current of 16 μ A
- **Power Saving Totem-Pole Outputs**

description

The TLC77xx family of micropower supply voltage supervisors provide reset control, primarily in microcomputer and microprocessor systems.

During power-on, $\overline{\text{RESET}}$ is asserted when V_{DD} reaches 1 V. After minimum V_{DD} (\geq 2 V) is established, the circuit monitors SENSE voltage and keeps the reset outputs active as long as SENSE voltage (VI(SENSE)) remains below the threshold voltage. An internal timer delays return of the output to the inactive state to ensure proper system reset. The delay time, t_d, is determined by an external capacitor:

$$t_d = 2.1 \times 10^4 \times C_T$$

Where

C_T is in farads

t_d is in seconds

Except for the TLC7701, which can be customized with two external resistors, each supervisor has a fixed SENSE threshold voltage set by an internal voltage divider. When SENSE voltage drops below the threshold voltage, the outputs become active and stay in that state until SENSE voltage returns above threshold voltage and the delay time, t_d, has expired.

In addition to the power-on-reset and undervoltage-supervisor function, the TLC77xx adds power-down control support for static RAM. When CONTROL is tied to GND, RESET will act as active high. The voltage monitor contains additional logic intended for control of static memories with battery backup during power failure. By driving the chip select (CS) of the memory circuit with the RESET output of the TLC77xx and with the CONTROL driven by the memory bank select signal (CSH1) of the microprocessor (see Figure 10), the memory circuit is automatically disabled during a power loss. (In this application the TLC77xx power has to be supplied by the battery.)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLC7701-Q1, TLC7705-Q1, TLC7733-Q1 MICROPOWER SUPPLY VOLTAGE SUPERVISORS

SGLS208A - OCTOBER 2003 - REVISED MAY 2008

ORDERING INFORMATION†‡

T _A	PACKAGE§		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP - PW	Tape and reel	TLC7701QPWRQ1	7701Q1
-40°C to 125°C	TSSOP - PW	Tape and reel	TLC7705QPWRQ1	7705Q1
	TSSOP - PW	Tape and reel	TLC7733QPWRQ1	7733Q1

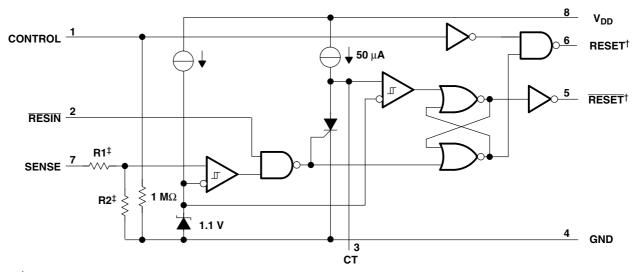

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

FUNCTION TABLE

CONTROL	RESIN	V _{I(SENSE)} >V _{IT+}	RESET	RESET
L	L	False	Н	L
L	L	True	Н	L
L	Н	False	Н	L
L	Н	True	L§	H§
Н	L	False	Н	L
Н	L	True	Н	L
Н	Н	False	Н	L
Н	Н	True	Н	H§

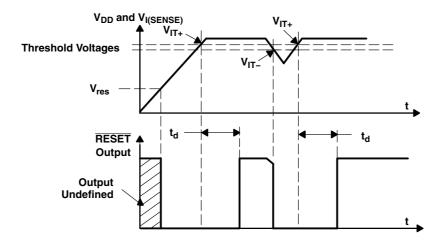
 $[\]S$ RESET and $\overline{\text{RESET}}$ states shown are valid for t > t_d.

logic symbol¶


 $[\]P$ This symbol is in accordance with ANSI/IEEE Std 91–1984 and IEC Publication 617-12.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

[§] The PW package is only available left-end taped and reeled (indicated by the R suffix on the device type; e.g., TLC7701QPWREP).


functional block diagram

- [†] Outputs are totem-pole configuration. External pullup or pulldown resistors are not required.
- [‡] Nominal values:

	R1 (Typ)	R2 (Typ)
TLC7701	0	∞
TLC7705	910 kΩ	290 kΩ
TLC7733	750 kΩ	450 kΩ

timing diagram

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Input voltage range, CONTROL, RESIN, SENSE (see Note 1)	–0.3 V to 7 V
Maximum low output current, I _{OL}	10 mA
Maximum high output current, I _{OH}	–10 mA
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$)	±10 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$)	±10 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : TL77xxQ	–40°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
PW	525 mW	4.2 mW/°C	273 mW	105 mW

recommended operating conditions at specified temperature range

			MIN	MAX	UNIT
Supply voltage, V _{DD}			2	6	V
Input voltage, V _I			0	V_{DD}	V
High-level input voltage at RESIN and CON	rol‡, V _{IH}		0.7×V _{DD}		V
Low-level input voltage at RESIN and CON	ROL [‡] , V _{IL}		0.2×V _{DD}		V
High-level output current, I _{OH}	14 . 0.714			-2	mA
Low-level output current, I _{OL}	V _{DD} ≥ 2.7 V			2	mA
Input transition rise and fall rate at RESIN a	id CONTROL, ∆t	/ΔV		100	ns/V
Operating free-air temperature range, T _A			-40	125	°C

 $^{^{\}ddagger}$ To ensure a low supply current, V_{IL} should be kept < 0.3 V and V_{IH} > V_{DD} – 0.3 V.

TLC7701-Q1, TLC7705-Q1, TLC7733-Q1 MICROPOWER SUPPLY VOLTAGE SUPERVISORS

SGLS208A - OCTOBER 2003 - REVISED MAY 2008

electrical characteristics over recommended operating conditions (see Note 2) (unless otherwise noted)

					٦	LC77xx			
	PARAMETE	ER		TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
				V _{DD} = 2 V	1.8				
l.,		l _{OH} = -20 μ/	A	V _{DD} = 2.7 V	2.5				
V _{OH}	High-level output voltage			V _{DD} = 4.5 V	4.3			V	
		$I_{OH} = -2 \text{ mA}$		V _{DD} = 4.5 V	3.7				
				V _{DD} = 2 V			0.2		
l.,		I _{OL} = 20 μA		V _{DD} = 2.7 V			0.2	.,	
V _{OL}	Low-level output voltage			V _{DD} = 4.5 V			0.2	V	
		$I_{OL} = 2 \text{ mA}$		V _{DD} = 4.5 V			0.5		
			TLC7701		1.04	1.1	1.16		
V_{IT-}	Negative-going input thresh SENSE (see Note 3)	TLC7705 TLC7733		V _{DD} = 2 V to 6 V	4.43	4.5	4.63	V	
	021102 (300 11010 b)			1	2.855	2.93	3.03		
			TLC7701			30			
V_{hys}	Hysteresis voltage, SENSE	TLC7705		V _{DD} = 2 V to 6 V		70		mV	
			TLC7733	1	70				
V _{res}	Power-up reset voltage‡			I _{OL} = 20 μA			1	V	
		RESIN		V _I = 0 V to V _{DD}			2		
l		CONTROL		$V_I = V_{DD}$		7	15		
l _l	Input current	SENSE		V _I = 5 V		5	10	μΑ	
		SENSE, TLC	7701 only	V _I = 5 V			2		
I _{DD}	Supply current			$\begin{aligned} & \overline{\text{RESIN}} = V_{DD}, \\ & \text{SENSE} = V_{DD} \geq V_{\text{IT}} \text{max} + 0.2 \text{ V} \\ & \text{CONTROL} = 0 \text{ V}, \text{Outputs open} \end{aligned}$		9	16	μΑ	
I _{DD(d)}	Supply current during t _d			$\begin{split} &V_{DD} = 5 \text{ V}, & V_{CT} = 0 \text{ ,} \\ &\overline{\text{RESIN}} = V_{DD}, & \text{SENSE} = V_{DD}, \\ &\text{CONTROL} = 0 \text{ V}, & \text{Outputs open} \end{split}$		120	150	μΑ	
C _I	Input capacitance, SENSE			$V_I = 0 V \text{ to } V_{DD}$		50		pF	

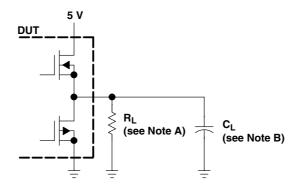
[†] Typical values apply at $T_A = 25$ °C.

[‡] The lowest supply voltage at which RESET becomes active. The symbol V_{res} is not currently listed within EIA or JEDEC standards for semiconductor symbology. Rise time of V_{DD} ≥ 15 μs/V.

NOTES: 2. All characteristics are measured with $C_T = 0.1 \mu F$.

^{3.} To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μ F) should be connected near the supply terminals.

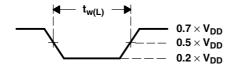
TLC7701-Q1, TLC7705-Q1, TLC7733-Q1 MICROPOWER SUPPLY VOLTAGE SUPERVISORS


SGLS208A - OCTOBER 2003 - REVISED MAY 2008

switching characteristics at V_{DD} = 5 V, R_L = 2 k $\Omega,\,C_L$ = 50 pF, T_A = Full Range (unless otherwise noted)

		MEASUR	ED		Т	LC77xx			
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _d	Delay time	$V_{I(SENSE)} \ge V_{IT+}$	RESET and RESET	$\begin{split} \overline{\text{RESIN}} &= 0.7 \times \text{V}_{DD}, \\ \text{CONTROL} &= 0.2 \times \text{V}_{DD}, \\ \text{C}_{T} &= 100 \text{ nF}, \\ \text{T}_{A} &= \text{Full range}, \\ \text{See timing diagram} \end{split}$	1.1	2.1	4.2	ms	
t _{PLH}	Propagation delay time, low-to-high-level output		DEACT				20		
t _{PHL}	Propagation delay time, high-to-low-level output		RESET	$V_{IH} = V_{IT+} max + 0.2 \text{ V},$ $V_{IL} = V_{IT-} min - 0.2 \text{ V},$			5		
t _{PLH}	Propagation delay time, low-to-high-level output	SENSE	DECET	$\overline{RESIN} = 0.7 \times V_{DD},$ $CONTROL = 0.2 \times V_{DD},$ $CT NOT$			5	μ\$	
t _{PHL}	Propagation delay time, high-to-low-level output		RESET CT = NC [†]			20			
t _{PLH}	Propagation delay time, low-to-high-level output		RESET	V 07.4V			20	μs	
t _{PHL}	Propagation delay time, high-to-low-level output	RESIN	RESET	$V_{IH} = 0.7 \times V_{DD},$ $V_{IL} = 0.2 \times V_{DD},$ $V_{DD} = 0.2 \times V_{DD}$			60	9	
t _{PLH}	Propagation delay time, low-to-high-level output	RESIN	RESET	SENSE = V_{IT+} max + 0.2 V, CONTROL = 0.2 × V_{DD} , CT = NC^{\dagger}			65	ns	
t _{PHL}	Propagation delay time, high-to-low-level output		HESET	C1 = NC1			20	μs	
t _{PLH}	Propagation delay time, low-to-high-level output	CONTROL	RESET	$V_{IH} = 0.7 \times V_{DD},$ $V_{IL} = 0.2 \times V_{DD},$			58	ns	
t _{PHL}	Propagation delay time, high-to-low-level output	CONTROL	RESET	$\begin{aligned} & \text{SENSE} = \text{V}_{\text{IT+}}\text{max} + 0.2 \text{ V}, \\ & \overline{\text{RESIN}} = 0.7 \times \text{V}_{\text{DD}}, \\ & \text{CT} = \text{NC}^{\dagger} \end{aligned}$			58	ns	
	Low-level minimum pulse	SENSE		$V_{IH} = V_{IT+} max + 0.2 \text{ V},$ $V_{IL} = V_{IT-} min - 0.2 \text{ V},$	3				
	duration to switch RESET and RESET	RESIN		$\begin{aligned} V_{IL} &= 0.2 \times V_{DD}, \\ V_{IH} &= 0.7 \times V_{DD} \end{aligned}$	1		μs		
t _r	Rise time		RESET	10% to 90%		8			
t _f	Fall time		and RESET	90% to 10%		4		ns/V	

 $^{^{\}dagger}$ NC = No capacitor, and includes up to 100-pF probe and jig capacitance.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. For switching characteristics, $R_L = 2 \text{ k}\Omega$. B. $C_L = 50 \text{ pF}$ includes jig and probe capacitance.

Figure 1. RESET AND RESET Output Configurations

I, Q, and Y suffixed devices

M suffixed devices

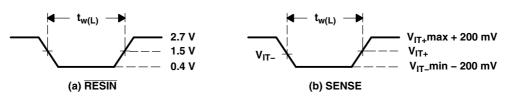
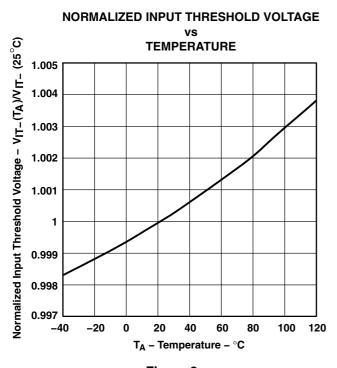



Figure 2. Input Pulse Definition Waveforms

TYPICAL CHARACTERISTICS

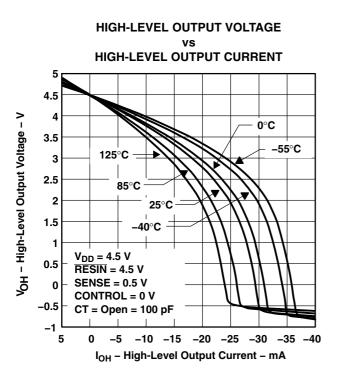


Figure 5

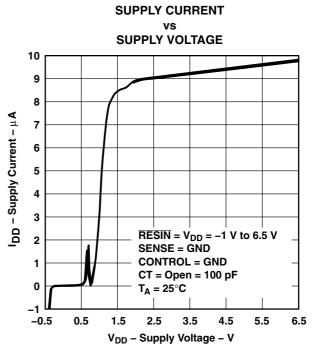


Figure 4

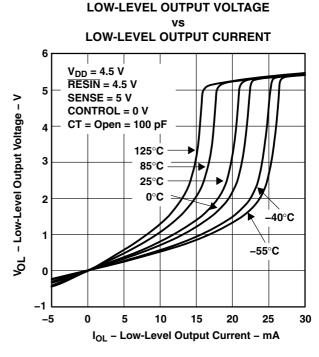


Figure 6

TYPICAL CHARACTERISTICS

INPUT CURRENT vs INPUT VOLTAGE AT SENSE

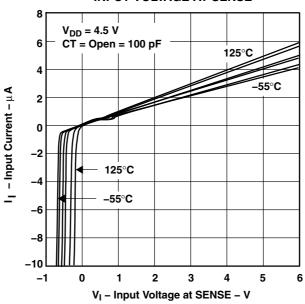


Figure 7

MINIMUM PULSE DURATION AT SENSE vs

SENSE THRESHOLD OVERDRIVE $V_{DD} = 2 V$ t_{W} – Minimum Pulse Duration at SENSE – μs Control = 0.4 V 6 RESIN = 1.4 V CT = Open = 100 pF 5 4 3 2 1 0 0 50 100 150 200 250 300 350 Sense Threshold Overdrive - mV

Figure 8

APPLICATION INFORMATION

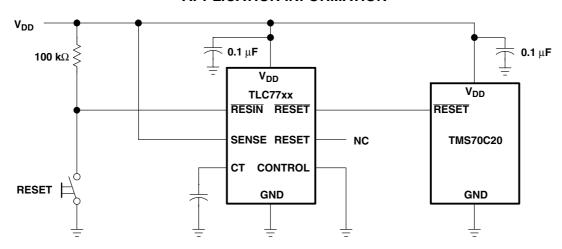


Figure 9. Reset Controller in a Microcomputer System

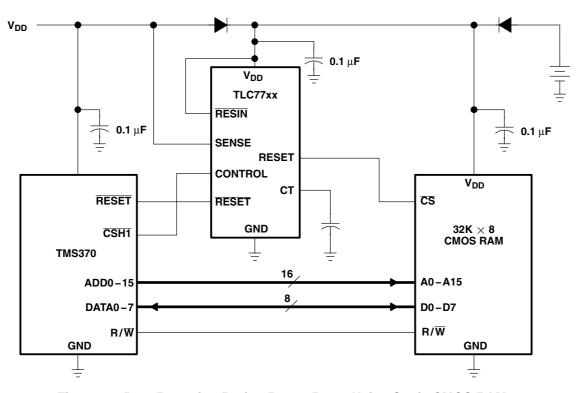


Figure 10. Data Retention During Power Down Using Static CMOS RAMs

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TLC7701QPWRQ1	Active	Production	TSSOP (PW) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7701Q1
TLC7701QPWRQ1.A	Active	Production	TSSOP (PW) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7701Q1
TLC7705QPWRG4Q1	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	-40 to 125	7705Q1
TLC7733QPWRQ1	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7733Q1
TLC7733QPWRQ1.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7733Q1

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

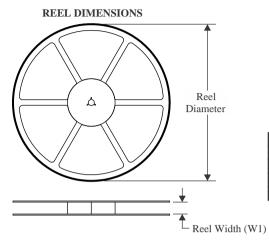
PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

OTHER QUALIFIED VERSIONS OF TLC77-Q1:

● Enhanced Product : TLC77-EP

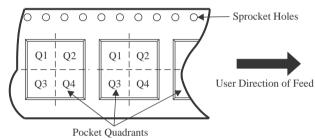
NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS WHO SHOPE THE STATE OF THE

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

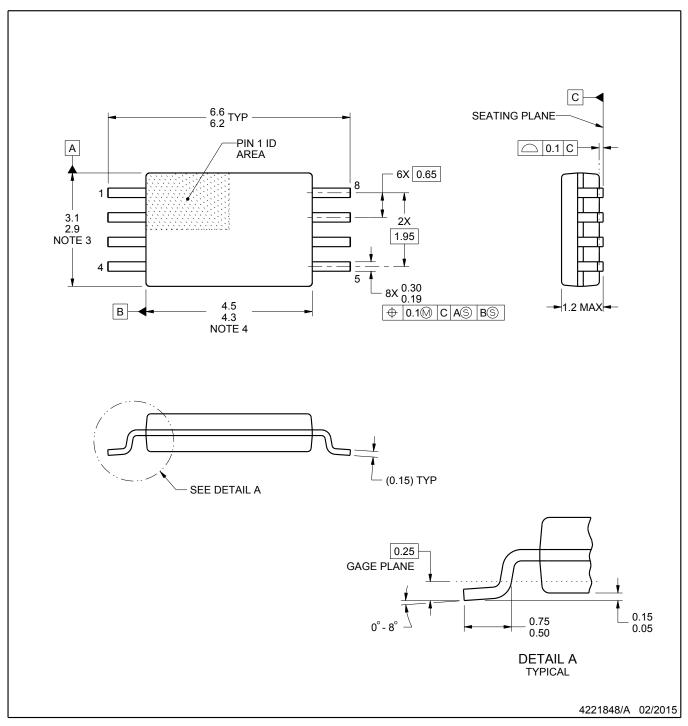


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC7701QPWRQ1	TSSOP	PW	8	2500	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC7733QPWRQ1	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

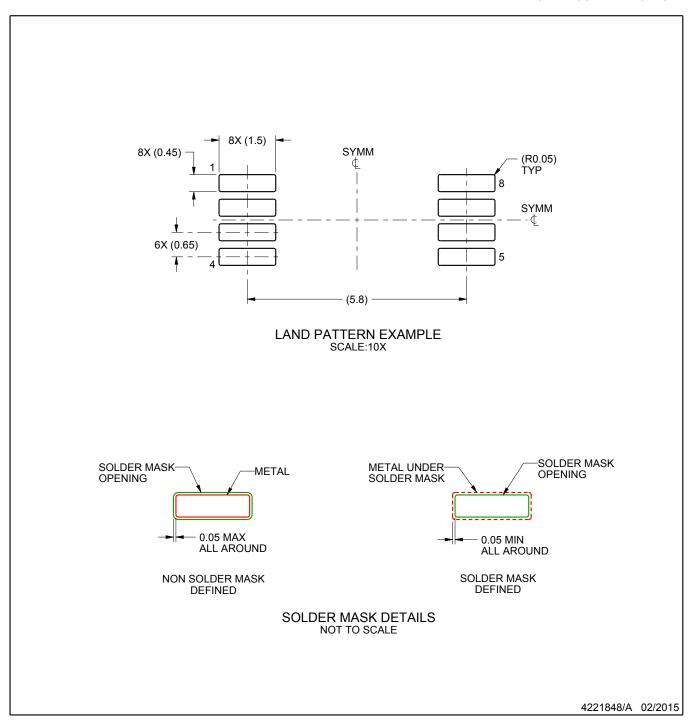


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC7701QPWRQ1	TSSOP	PW	8	2500	353.0	353.0	32.0
TLC7733QPWRQ1	TSSOP	PW	8	2000	353.0	353.0	32.0

SMALL OUTLINE PACKAGE

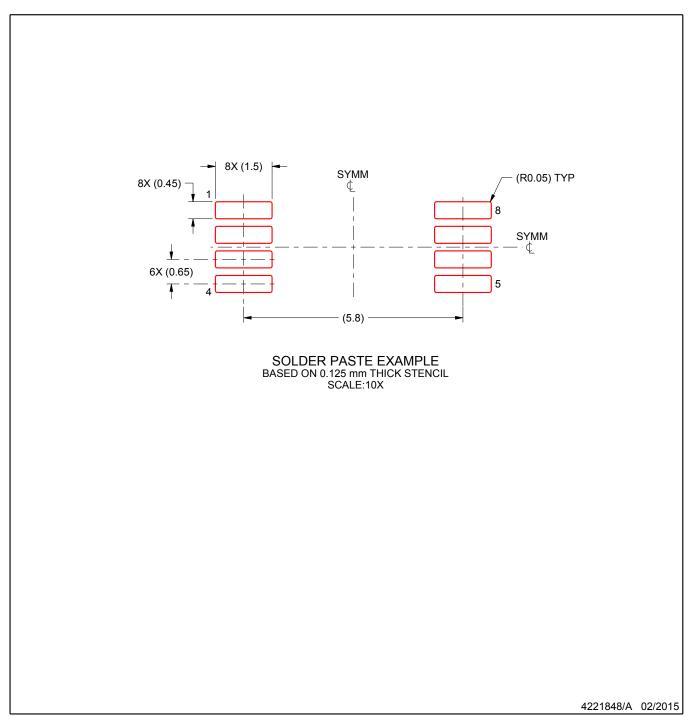
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025