What is DLP® technology?
While Texas Instruments is known worldwide for high-quality projection applications, including award-winning DLP Cinema®, the imaging choice for nearly 90 percent of the world’s digital theatre screens, TI’s DLP technology enables a diverse range of display and advanced light control applications. The Digital Micromirror Device (DMD), or DLP chip, is a high speed, efficient MEMS light steering device that can work with any type of light, including visible, infrared and ultraviolet. Using TI’s proven semiconductor manufacturing capabilities, each DMD contains up to 8.8 million individually controlled micromirrors built on top of an associated CMOS memory. Since 1996, TI has produced more than 40 million DLP chipsets for customers around the world.

Video and data display
Based on the same award-winning DLP display technology used in digital movie theatres, classrooms, and businesses worldwide, DLP® Pico™ chipsets enable developers to incorporate bright, efficient, high-definition projection into the smallest applications. To accelerate end product development, TI maintains the most extensive pico ecosystem of optical engine manufacturers in the industry. From cinemas to classrooms to cellphones, TI’s DLP technology offers a way to satisfy virtually any application or form factor requirement and can display on freeform, curved surfaces.

Advanced light control
With a portfolio of chipsets optimized for speed, resolution, and wavelength, DLP advanced light control technology enables high-performance solutions that help customers solve difficult problems across the spectrum of ultraviolet, visible, and near-infrared light. Built upon an industry-leading position in digital cinema and consumer projection, the DLP advanced light control product portfolio is highly differentiated for digital lithography, machine vision, 3D printing, spectroscopy and several other emerging applications. With TI’s powerful yet easy-to-use development tools, customers are now able to introduce innovative products to market faster and more easily.

Automotive
TI’s state-of-the-art semiconductor products help manufacturers and system suppliers deliver world-class features to the automotive market. This extensive automotive portfolio includes analog power management, interface and signal chain solutions, along with DLP displays, ADAS and infotainment processors, Hercules™ TMS570 microcontrollers and wireless connectivity solutions.

DLP chipsets for automotive are based on award-winning DLP Cinema technology and deliver robust solutions, bright and vivid image quality for head-up display and flexibility for adaptive headlight applications. From large-scale digital dashboards and center console touchscreens that seamlessly integrate with curved interiors, to smart headlamps that improve visibility during inclement weather, DLP technology can help automobile manufacturers differentiate their unique safety features and enhance the driver experience.
How DLP technology works
During operation, the DMD controller loads each underlying memory cell with a “1” or a “0”. Next, a micromirror clocking pulse is applied, causing each micromirror to switch to a plus or minus 12° landed state. In a projection system, the +12° landed state corresponds to an “on” pixel, and the -12° landed state corresponds to an “off” pixel. Grayscale patterns are created by programming the on/off-duty cycle of each mirror. And simultaneously, multiple light sources are multiplexed to create full RGB color images. In advanced light control applications, the ±12° states offer two general purpose output ports with a pattern and its inverse.

The DMD works in concert with an optical module containing optics and illumination to create the heart of the projection engine. The controller is installed on the electronics board near the optical module to control the DMD and perform necessary data formatting and processing functions.

TRP architecture explained
TI's proprietary TRP architecture and adaptive DLP® IntelliBright™ suite of algorithms enable developers to increase brightness or consume less power. TI chipsets incorporating TRP architecture can incorporate twice the number of pixels and deliver 30 percent greater optical efficiency and up to 50 percent power savings on a frame-by-frame basis than previous TI architectures of comparable resolution.

TRP architecture benefits
- Twice the pixels
- 30 percent greater optical efficiency
- Up to 50 percent power savings

Each DLP TRP pixel is 1/20°, the width of a human hair
DLP Technology and Products

Capabilities

Video and data display capabilities
DLP video and data display products empower developers to incorporate bright, efficient, high-definition projection into the smallest applications. The DLP chip offers extremely flexible and programmable light management, enabling a wide range of display applications.

- **Great image quality** – DLP video and data display chipsets are based on proven DLP Cinema technology and provide unique advantages, including outstanding readability, precise color, fast digital video performance, HD resolution, and the ability to work with any light source, including lamp, LED or laser.
- **Any size** – DLP chips are available in several resolutions and package sizes to enable developers to innovate a broad range of industrial, enterprise and consumer electronics applications. With optical modules as thin as 5.5 mm, the DLP ecosystem of optical engine manufacturers offers a wide range of turnkey optical modules to serve virtually any size requirement.
- **Any shape** – The unique micromirror structure of DLP chips enables projected display on virtually any surface shape, including curved and freeform surfaces.
- **Robust touch** – DLP technology can enable the transformation of virtually any surface into an interactive display and can incorporate wire-free physical knobs within a free-form rear-projection display.

Advanced light control
TI's advanced light control technology and extensive ecosystem enables flexible optical sensing and illumination.

- **Structured light** – DLP technology enables Programmable Structured Light. With this method, a series of patterns is projected upon a target object while a sensor detects the distortions of the patterns that result from a non-flat surface. Compared with Contact Coordinate Measurements (CCM) or scanning lasers, DLP systems can produce non-contact, highly accurate 3D data in real-time, facilitating 3D Machine Vision.

- **Wavelength selection** – With DLP technology, a dispersive optical element is used to spread light into spatially separated wavelengths on the surface of the DMD chip. The number of mirrors turned on/off in each DMD column is used to select and attenuate the corresponding wavelength. One common example of wavelength selection is a spectrometer that can analyze liquids and solids in areas such as food, agriculture, pharmaceuticals and plastics.

- **Digital exposure** – Systems based on DLP technology project digital patterns from the DMD that selectively cure and harden a layer of photopolymer or resin in one shot. These systems have higher throughputs than point-by-point technologies while achieving micron-scale patterns. PCB Lithography and 3D Printers use this capability today.

Light source agnostic
DLP technology can support a broad range of light sources, including LED, laser, UHP, and xenon, depending on the application need. DLP technology can also support a wide spectrum of wavelengths from ultraviolet (365 nm wavelength) to near infrared (2500 nm); in some cases, DLP chips are designed for a specific wavelength.

[Images of embedded projection from tablet, spectroscopy, PCB lithography]
DLP Technology and Products

Development tools

TI offers many versatile and flexible platforms that help accelerate development time. At the heart of every evaluation module (EVM) is a DLP chipset, which includes a DMD and a controller.

The DLP LightCrafter™ Display 2010 EVM is an easy-to-use evaluation module for the 0.2” TRP WVGA display chipset. It includes an optical module (~25 lum), an HDMI interface (for input data) and the DLP LightCrafter Display GUI for configuration.

DLP LightCrafter Display 2010 EVM

0.2” TRP WVGA display chipset
– DLP2010 DMD
– DLPC3435 display controller
– DLPA2000 power management/LED driver

The DLP LightCrafter 4500 EVM provides a flexible light steering solution with high brightness and resolution for industrial, medical and scientific applications. The DLP LightCrafter 4500 features the 0.45” WXGA chipset and offers a compelling combination of resolution, brightness, and programmability in a small form factor.

Developers can easily create, store, and display high-speed pattern sequences through the EVM’s USB-based application programming interface (API) and easy-to-use graphical user interface (GUI).

DLP LightCrafter 4500 EVM

0.45” WXGA chipset
– DLP4500 DMD
– DLPC350 digital controller

EVM catalog

<table>
<thead>
<tr>
<th>Name</th>
<th>Device Included</th>
<th>Software</th>
<th>Features</th>
<th>Price ($ U.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video and data display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLP LightCrafter Display 2010</td>
<td>DLP2010</td>
<td>DLPC3435/3435</td>
<td>DLPA2005</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP LightCrafter Display 3010</td>
<td>DLP3010</td>
<td>DLPC3435/3438</td>
<td>DLPA2005</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP LightCrafter Display 4710</td>
<td>DLP4710</td>
<td>2x DLPC3439</td>
<td>DLPA3005</td>
<td>Yes</td>
</tr>
<tr>
<td>Advanced light control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLP LightCrafter 3000</td>
<td>DLP3000</td>
<td>DLPC300</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP LightCrafter 4500</td>
<td>DLP4500</td>
<td>DLPC350</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP LightCrafter 6500</td>
<td>DLP6500PYE</td>
<td>DLPC800</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP LightCrafter 9000</td>
<td>DLP9000</td>
<td>DLPC900</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP NIRscan</td>
<td>DLP4500NIR</td>
<td>DLPC350</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP NIRscan Nano</td>
<td>DLPC2010NIR</td>
<td>DLPC150</td>
<td>NO</td>
<td>Yes</td>
</tr>
<tr>
<td>DLP Discovery 4100</td>
<td>DLPC000, DLPC000U, DLPC500, DLP500U</td>
<td>DLPC410</td>
<td>No</td>
<td>Fast pattern rates for light exposure and image capture; Maximum flexibility to format and sequence light patterns</td>
</tr>
</tbody>
</table>

TI Designs

TI Designs, TI’s comprehensive reference design library, helps jump-start system design. Designs include schematics or block diagrams, BOMs, design files and test reports that support a broad range of applications. Examples of TI Designs pertaining to DLP technology include:

DLP Products TI Designs

Video and data display

Ultra Mobile, Ultra Low Power Display Reference Design Using DLP Technology
Portable, Low Power HD Projection Display using DLP Technology
Full HD 1080p Projection Display Reference Design using DLP Pico Technology
Portable, High Brightness HD Projection Display Reference Design using DLP Technology

Advanced light control

DLP Near-Infrared Spectrometer for Optical Analysis of Liquids & Solids Reference Design
DLP Ultra-mobile NIR Spectrometer for Portable Chemical Analysis with Bluetooth Connectivity
Portable Point Cloud Generation for 3D Scanning using DLP Technology Reference Design
High Res, Portable Light Steering Reference Design using DLP Technology
Accurate Point Cloud Generation for 3D Machine Vision Applications using DLP Technology
High Resolution 3D Scanner for Factory Automation using DLP Technology
Best-in-class Combination Stereolithography 3D Printer Development Using DLP Technology
High Speed DLP Sub-system for Industrial 3D Printing and Digital Lithography Reference Design
DLP Technology and Products

DLP technology ecosystem

The DLP ecosystem, consisting of the DLP Design Network and optical engine manufacturers, aids developers in accelerating product development and time to market.

• The DLP Design Network is a group of independent, well-established companies that provide hardware/software integration, optics design, system integration, prototyping, manufacturing services, and turnkey solutions to a worldwide customer base to accelerate product development and time to market with DLP technology. Visit ti.com/dlp-design-house for more information.

• DLP optical engine manufacturers are independent, well-established companies that provide turnkey optical modules to a worldwide customer base. These modules incorporate a Digital Micromirror Device (DMD), an LED-based illumination source, and the necessary optical elements that form the core of a projection system. TI customers can procure optical modules directly from these optical engine manufacturers to accelerate product development and time to market. Visit ti.com/dlp-modules for more information.

Market opportunities

TI’s DLP technology is highly flexible and enables a diverse range of display and advanced light control applications for industrial, automotive, enterprise, medical and consumer market segments.

<table>
<thead>
<tr>
<th>Industrial</th>
<th>Enterprise</th>
<th>Personal electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Control panels</td>
<td>• Government</td>
<td>• Gaming: dual console, interactive</td>
</tr>
<tr>
<td>• Human machine interface</td>
<td>• Education</td>
<td>• Wearable display</td>
</tr>
<tr>
<td>• 3D machine vision</td>
<td>• Cinema</td>
<td>• Mobile phones</td>
</tr>
<tr>
<td>• Spectroscopy</td>
<td>• Large venue</td>
<td>• Tablets</td>
</tr>
<tr>
<td>• 3D printing</td>
<td>• Mobile projection</td>
<td>• Camcorders</td>
</tr>
<tr>
<td>• PCB Lithography</td>
<td>• Laptops</td>
<td>• 3D printing</td>
</tr>
<tr>
<td>• Digital signage: interactive surface, storefront, retail</td>
<td></td>
<td>• Smart home</td>
</tr>
<tr>
<td>• Commercial gaming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Automotive</th>
<th>Medical</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Head-up display</td>
<td>• Spectroscopy</td>
</tr>
<tr>
<td>• Center console</td>
<td>• 3D printing</td>
</tr>
<tr>
<td>• Smart headlights</td>
<td>• 3D machine vision</td>
</tr>
</tbody>
</table>

DLP video and data display technology enables a broad range of industrial and consumer electronics wearable display applications, including augmented reality and immersive full field of view.

Affordable near-infrared spectrometer with more than 30,000:1 signal-to-noise ratio for <1 second measurements.
DLP Technology and Products

Chipset catalog - video and data display

<table>
<thead>
<tr>
<th>DMD Number</th>
<th>Resolution</th>
<th>Array Diagonal</th>
<th>Controller</th>
<th>Micromirror Driver</th>
<th>Max Pattern Rate</th>
<th>Max Pixel Data Rate</th>
<th>Optimization Wavelengths</th>
<th>Pixel Pitch</th>
<th>Pixel Orientation</th>
<th>EVM</th>
<th>DMD Package Dimensions (lxwxh)</th>
<th>DMD Price ($U.S.)</th>
<th>Controller Price ($U.S.)</th>
<th>PMIC Price ($U.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLPC2010</td>
<td>854 x 480</td>
<td>0.20"</td>
<td>DLPC3434/3435</td>
<td>DLPA2000/05</td>
<td>RGB 120 Hz</td>
<td>420-700 nm (visible)</td>
<td>5.4 μm Orthogonal</td>
<td>TRP</td>
<td>Plug and play</td>
<td>DLP IntelliBright</td>
<td>LightCrafter Display 7100</td>
<td>15.9 x 5.3 x 3.18 mm</td>
<td>40.60FJ</td>
<td>80.07</td>
</tr>
<tr>
<td>DLPC3000</td>
<td>854 x 480</td>
<td>0.30"</td>
<td>DLPC2607</td>
<td>PD1000</td>
<td>RGB 120 Hz</td>
<td>420-700 nm (visible)</td>
<td>7.6 μm Diamond</td>
<td>VSP</td>
<td>Parallel interface</td>
<td>DLP2607 DISPLAY EVM</td>
<td>DLP2607 DISPLAY EVM</td>
<td>17.6 x 5.92 x 3.1 mm</td>
<td>50.62FG</td>
<td>85</td>
</tr>
<tr>
<td>DLPC3010</td>
<td>1280 x 720</td>
<td>0.30"</td>
<td>DLPC3433/38</td>
<td>DLPC3000</td>
<td>RGB 120 Hz</td>
<td>420-700 nm (visible)</td>
<td>5.4 μm Orthogonal</td>
<td>TRP</td>
<td>Plug and play</td>
<td>DLP IntelliBright</td>
<td>LightCrafter Display 3010</td>
<td>18.2 x 7.1 x 3.78 mm</td>
<td>57.61FJ</td>
<td>103.88</td>
</tr>
<tr>
<td>DLPC4501</td>
<td>1280 x 800</td>
<td>0.45"</td>
<td>DLPC4001</td>
<td>None</td>
<td>RGB 120 Hz</td>
<td>420-700 nm (visible)</td>
<td>7.6 μm Diamond</td>
<td>VSP</td>
<td>Parallel interface</td>
<td>DLP4001 DISPLAY EVM</td>
<td>DLP4001 DISPLAY EVM</td>
<td>20.7 x 9.1 x 4.2 mm</td>
<td>80.62FG</td>
<td>128</td>
</tr>
<tr>
<td>DLPC4710</td>
<td>1920 x 1080</td>
<td>0.47"</td>
<td>DLPC3439</td>
<td>DLPC3005</td>
<td>RGB 120 Hz</td>
<td>420-700 nm (visible)</td>
<td>5.4 μm Orthogonal</td>
<td>TRP</td>
<td>DLP IntelliBright</td>
<td>Display 4710</td>
<td>DLP2607 Display EVM</td>
<td>24.5 x 11.1 x 3.78 mm</td>
<td>100.62FG</td>
<td>179</td>
</tr>
</tbody>
</table>

*Third Party EVM

Chipset catalog - advanced light control

<table>
<thead>
<tr>
<th>DMD Number *</th>
<th>Micromirror Array</th>
<th>Array Diagonal</th>
<th>Controller</th>
<th>Micromirror Driver</th>
<th>Max Pattern Rate</th>
<th>Max Pixel Data Rate</th>
<th>Optimization Wavelengths</th>
<th>Pixel Pitch</th>
<th>Pixel Orientation</th>
<th>EVM</th>
<th>DMD Package Dimensions (lxwxh)</th>
<th>DMD Price ($U.S.)</th>
<th>Controller Price ($U.S.)</th>
<th>PMIC Price ($U.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLPC3000</td>
<td>608 x 684</td>
<td>0.30"</td>
<td>DLPC300</td>
<td>——</td>
<td>4,000 Hz (binary)</td>
<td>1.7 Gbps</td>
<td>420-700 nm (visible)</td>
<td>7.6 μm Diamond</td>
<td>LightCrafter</td>
<td>16.6 x 7.1 x 3.54 mm</td>
<td>95</td>
<td>16</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC4500</td>
<td>912 x 1140</td>
<td>0.45"</td>
<td>DLPC350</td>
<td>——</td>
<td>4,225 Hz (binary)</td>
<td>4.4 Gbps</td>
<td>420-700 nm (visible)</td>
<td>7.6 μm Diamond</td>
<td>LightCrafter</td>
<td>20.7 x 9.1 x 3.33 mm</td>
<td>143</td>
<td>96</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC4500NR</td>
<td>912 x 1140</td>
<td>0.45"</td>
<td>DLPC350</td>
<td>——</td>
<td>4,225 Hz (binary)</td>
<td>4.4 Gbps</td>
<td>700 - 2500 nm</td>
<td>7.6 μm Diamond</td>
<td>NIRscan Nano</td>
<td>20.7 x 9.1 x 3.33 mm</td>
<td>315</td>
<td>56</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC5500</td>
<td>1024 x 768</td>
<td>0.55"</td>
<td>DLPC200</td>
<td>DLPC200</td>
<td>5,000 Hz (binary)</td>
<td>3.8 Gbps</td>
<td>420-700 nm (visible)</td>
<td>10.8 μm Orthogonal</td>
<td>LightCrafter</td>
<td>32.2 x 22.5 x 3.86 mm</td>
<td>403</td>
<td>140</td>
<td>12.36</td>
<td></td>
</tr>
<tr>
<td>DLPC6500YE</td>
<td>1920 x 1080</td>
<td>0.65"</td>
<td>DLPC900</td>
<td>——</td>
<td>9,500 Hz (binary)</td>
<td>19.7 Gbps</td>
<td>420-700 nm (visible)</td>
<td>7.6 μm Orthogonal</td>
<td>LightCrafter</td>
<td>40.6 x 31.8 x 6 mm</td>
<td>588</td>
<td>160</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC6500FQ</td>
<td>1920 x 1080</td>
<td>0.65"</td>
<td>DLPC900</td>
<td>——</td>
<td>9,500 Hz (binary)</td>
<td>19.7 Gbps</td>
<td>400-700 nm (visible)</td>
<td>7.6 μm Orthogonal</td>
<td>LightCrafter</td>
<td>32 x 41 mm</td>
<td>1,137</td>
<td>160</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC7000</td>
<td>1024 x 768</td>
<td>0.7"</td>
<td>DLPC410</td>
<td>DLPC200</td>
<td>32,552 Hz (binary)</td>
<td>25.2 Gbps</td>
<td>420-700 nm (visible)</td>
<td>13.6 μm Orthogonal</td>
<td>Discovery 4100</td>
<td>40.6 x 31.75 x 6.01 mm</td>
<td>787</td>
<td>193</td>
<td>12.36</td>
<td></td>
</tr>
<tr>
<td>DLPC7000UV</td>
<td>1024 x 768</td>
<td>0.7"</td>
<td>DLPC410</td>
<td>DLPC200</td>
<td>32,552 Hz (binary)</td>
<td>25.2 Gbps</td>
<td>363-420 nm (visible)</td>
<td>13.6 μm Orthogonal</td>
<td>Discovery 4100</td>
<td>40.6 x 31.75 x 6.01 mm</td>
<td>3,763</td>
<td>193</td>
<td>12.36</td>
<td></td>
</tr>
<tr>
<td>DLPC9000</td>
<td>2560 x 1600</td>
<td>0.9"</td>
<td>DLPC350</td>
<td>(qty 2)</td>
<td>9,500 Hz (binary)</td>
<td>38 Gbps</td>
<td>400-700 nm (visible)</td>
<td>7.6 μm Orthogonal</td>
<td>LightCrafter 9000</td>
<td>42.2 x 42.2 x 7.7 mm</td>
<td>2,783</td>
<td>160</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC9000X</td>
<td>2560 x 1600</td>
<td>0.9"</td>
<td>DLPC310</td>
<td>(qty 2)</td>
<td>14,989 Hz (binary)</td>
<td>61.1 Gbps</td>
<td>400-700 nm (visible)</td>
<td>7.6 μm Orthogonal</td>
<td>LightCrafter 9000</td>
<td>42.2 x 42.2 x 7 mm</td>
<td>4,449</td>
<td>295</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DLPC9500</td>
<td>1920 x 1080</td>
<td>0.95"</td>
<td>DLPC410</td>
<td>(qty 2)</td>
<td>23,148 Hz (binary)</td>
<td>48 Gbps</td>
<td>400-700 nm (visible)</td>
<td>10.8 μm Orthogonal</td>
<td>Discovery 4100</td>
<td>42.2 x 42.2 x 7 mm</td>
<td>6,999</td>
<td>193</td>
<td>12.36</td>
<td></td>
</tr>
<tr>
<td>DLPC9500UV</td>
<td>1920 x 1080</td>
<td>0.95"</td>
<td>DLPC410</td>
<td>(qty 2)</td>
<td>23,148 Hz (binary)</td>
<td>48 Gbps</td>
<td>363-420 nm (visible)</td>
<td>10.8 μm Orthogonal</td>
<td>Discovery 4100</td>
<td>42.2 x 42.2 x 7 mm</td>
<td>6,999</td>
<td>193</td>
<td>12.36</td>
<td></td>
</tr>
</tbody>
</table>

*Addressable pixels Note: Multiple package types exist for DMDs. Visit ti.com/dlp to see all packages.

DLP Products DMD Catalog

Video and data display

- Array diagonal: 0.2" Resolution: WVGA 854x480
- Array diagonal: 0.3" Resolution: XGA 1024x768
- Array diagonal: 0.45" Resolution: WXGA 1280x800
- Array diagonal: 0.47" Resolution: 1920x1080

Advanced light control

- Array diagonal: 0.2" Micromirror array: 920x1080
- Array diagonal: 0.3" Micromirror array: 1024x768
- Array diagonal: 0.45" Micromirror array: 1280x800
- Array diagonal: 0.55" Micromirror array: 1920x1080
- Array diagonal: 0.65" Micromirror array: 1920x1080

ti.com/dlp

Texas Instruments Q2 2016
TI Worldwide Technical Support

Internet
TI Semiconductor Product Information Center
Home Page
support.ti.com

TI E2ETM Community Home Page
ti.com/dlp-e2e

Product Information Centers

Americas
Phone +1(512) 434-1560

Brazil
Phone 0800-891-2616

Mexico
Phone 0800-670-7544
Fax +1(972) 927-6377
Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone
European Free Call 00800-ASK-TEXAS
(00800 275 83927)
International +49 (0) 8161 80 2121
Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax +(49) (0) 8161 80 2045
Internet www.ti.com/asktexas
Direct Email asktexas@ti.com

Asia

Phone

Note: Toll-free numbers may not support mobile and IP phones.

Australia 1-800-999-084
China 800-820-8682
Hong Kong 800-96-5941
India 000-800-100-8888
Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010
International +86-21-23073444
Fax +86-21-23073686
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

A021014

DLP®, DLP Cinema®, and the DLP and DLP Cinema logos are registered trademarks of Texas Instruments. The platform bar, Discovery, IntelliBright, NIRscan and LightCrafter are trademarks of Texas Instruments.

© 2016 Texas Instruments Incorporated
Printed in U.S.A.

DLPB010E
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Products</th>
<th>TI E2E Community</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>interfaceti.com</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated