Texas Instruments Robotics System Learning Kit
Module 6

Lecture: General Purpose Input Output – MSP432
You will learn in this module

- Review fundamentals of C programming namely:
 - Functions, parameters, conditionals, loops
 - Integer calculations, Time delays

- General Purpose Input Output
 - Positive and negative logic
 - Direction register
 - Input, output, friendly
 - Input/output current and voltage on pins

- Implement a two-layer input interface
 - Low-level input/output to line sensor
 - Mid-level sensor integration
Overview of Input/Output

Digital
- GPIO General Purpose Input Output
- UART Universal asynchronous receiver/transmitter
- SPI Serial peripheral interface
- I2C Inter-integrated circuit

Timer
- TimerA Periodic interrupts, input capture, and output
- Timer32 Periodic interrupts

Analog
- ADC14 Analog to digital converter
- Analog Comp Compare two analog signals
Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition

MSP432 Input/Output

14mm

Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP090
Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition

SEKP090

| General Purpose Input Output – MSP432

MSP432 LaunchPad

- USB to PC
- Debugger
- SW1
- J1/J3
- LED1
- Reset
- SW2
- MSP432
- J2/J4
- LED2
- J5
MSP432 LaunchPad

Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP090
MSP432 LaunchPad

Negative logic: low voltage means true

Positive logic: high voltage means true
Digital Interfacing (Circuit Model)

Voltage ↔ Digital

\[V_{OL} \leq V_{IL} \text{ for all inputs} \quad \text{and} \quad V_{OH} \geq V_{IH} \text{ for all inputs} \]

\[I_{OL} \geq \sum I_{IL} \text{ for all inputs} \quad \text{and} \quad I_{OH} \geq \sum I_{IH} \text{ for all inputs} \]
Digital Interfacing (Voltages)

Not 5V tolerant, all inputs must be 0 to 3.3V

<table>
<thead>
<tr>
<th>5.0</th>
<th>VCC</th>
<th>5.0</th>
<th>VCC</th>
<th>5.0</th>
<th>VCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.44</td>
<td>VOH</td>
<td>4.44</td>
<td>VOH</td>
<td>4.44</td>
<td>VOH</td>
</tr>
<tr>
<td>3.5</td>
<td>VIH</td>
<td>3.5</td>
<td>VIH</td>
<td>3.5</td>
<td>VIH</td>
</tr>
<tr>
<td>2.5</td>
<td>VIL</td>
<td>2.5</td>
<td>VIL</td>
<td>2.5</td>
<td>VIL</td>
</tr>
<tr>
<td>1.5</td>
<td>VIL</td>
<td>1.5</td>
<td>VIL</td>
<td>1.5</td>
<td>VIL</td>
</tr>
<tr>
<td>0.5</td>
<td>VIL</td>
<td>0.5</td>
<td>VIL</td>
<td>0.5</td>
<td>VIL</td>
</tr>
<tr>
<td>0.0</td>
<td>VIL</td>
<td>0.0</td>
<td>VIL</td>
<td>0.0</td>
<td>VIL</td>
</tr>
<tr>
<td>5V CMOS</td>
<td>ETL</td>
<td>5V CMOS</td>
<td>ETL</td>
<td>5V CMOS</td>
<td>ETL</td>
</tr>
<tr>
<td>HC, AHC, AC</td>
<td>ABTE</td>
<td>HC, AHC, AC</td>
<td>ABTE</td>
<td>HC, AHC, AC</td>
<td>ABTE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.3 V</th>
<th>MSP432</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>3.3</td>
</tr>
<tr>
<td>VCC</td>
<td>3.3</td>
</tr>
<tr>
<td>VCC</td>
<td>3.3</td>
</tr>
<tr>
<td>VCC</td>
<td>3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.5</th>
<th>VCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>VCC</td>
</tr>
<tr>
<td>2.5</td>
<td>VCC</td>
</tr>
<tr>
<td>2.5</td>
<td>VCC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.7</th>
<th>VOH</th>
<th>2.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>VOH</td>
<td>2.4</td>
</tr>
<tr>
<td>2.0</td>
<td>VOH</td>
<td>2.0</td>
</tr>
<tr>
<td>1.5</td>
<td>VOH</td>
<td>1.5</td>
</tr>
<tr>
<td>1.2</td>
<td>VOH</td>
<td>1.2</td>
</tr>
<tr>
<td>0.8</td>
<td>VOH</td>
<td>0.8</td>
</tr>
<tr>
<td>0.6</td>
<td>VOH</td>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>VOH</td>
<td>0.4</td>
</tr>
<tr>
<td>0.2</td>
<td>VOH</td>
<td>0.2</td>
</tr>
<tr>
<td>0.0</td>
<td>VOH</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.825</th>
<th>VIL</th>
<th>0.825</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>VIL</td>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>VIL</td>
<td>0.4</td>
</tr>
<tr>
<td>0.25</td>
<td>VIL</td>
<td>0.25</td>
</tr>
<tr>
<td>0.0</td>
<td>VIL</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>VIL</td>
</tr>
<tr>
<td>1.7</td>
<td>VIL</td>
</tr>
<tr>
<td>1.7</td>
<td>VIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>VIL</td>
</tr>
<tr>
<td>1.2</td>
<td>VIL</td>
</tr>
<tr>
<td>1.2</td>
<td>VIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.7</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>VIL</td>
</tr>
<tr>
<td>0.7</td>
<td>VIL</td>
</tr>
<tr>
<td>0.7</td>
<td>VIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.6</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>VIL</td>
</tr>
<tr>
<td>0.6</td>
<td>VIL</td>
</tr>
<tr>
<td>0.6</td>
<td>VIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.4</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>VIL</td>
</tr>
<tr>
<td>0.4</td>
<td>VIL</td>
</tr>
<tr>
<td>0.4</td>
<td>VIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.2</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>VIL</td>
</tr>
<tr>
<td>0.2</td>
<td>VIL</td>
</tr>
<tr>
<td>0.2</td>
<td>VIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.0</th>
<th>VIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>VIL</td>
</tr>
<tr>
<td>0.0</td>
<td>VIL</td>
</tr>
<tr>
<td>0.0</td>
<td>VIL</td>
</tr>
</tbody>
</table>

V_{OL} \leq V_{IL} \text{ for all inputs} \quad \text{and} \quad V_{OH} \geq V_{IH} \text{ for all inputs}

I_{OL} \geq \sum I_{IL} \text{ for all inputs} \quad \text{and} \quad I_{OH} \geq \sum I_{IH} \text{ for all inputs}
Digital Interfacing (Currents)

<table>
<thead>
<tr>
<th>Family</th>
<th>Example</th>
<th>I_{OH}</th>
<th>I_{OL}</th>
<th>I_{IH}</th>
<th>I_{IL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard TTL</td>
<td>7404</td>
<td>0.4 mA</td>
<td>16 mA</td>
<td>40 µA</td>
<td>1.6 mA</td>
</tr>
<tr>
<td>Schottky TTL</td>
<td>74S04</td>
<td>1 mA</td>
<td>20 mA</td>
<td>50 µA</td>
<td>2 mA</td>
</tr>
<tr>
<td>Low Power Schottky</td>
<td>74LS04</td>
<td>0.4 mA</td>
<td>4 mA</td>
<td>20 µA</td>
<td>0.4 mA</td>
</tr>
<tr>
<td>High Speed CMOS</td>
<td>74HC04</td>
<td>4 mA</td>
<td>4 mA</td>
<td>1 µA</td>
<td>1 µA</td>
</tr>
<tr>
<td>Adv High Speed CMOS</td>
<td>74AHC04</td>
<td>4 mA</td>
<td>4 mA</td>
<td>1 µA</td>
<td>1 µA</td>
</tr>
<tr>
<td>MSP432 regular drive</td>
<td>MSP432</td>
<td>6 mA</td>
<td>6 mA</td>
<td>20 nA</td>
<td>20 nA</td>
</tr>
<tr>
<td>MSP432 high drive</td>
<td>MSP432</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 nA</td>
<td>20 nA</td>
</tr>
<tr>
<td>TM4C 8mA-drive</td>
<td>TM4C123</td>
<td>8 mA</td>
<td>8 mA</td>
<td>2 µA</td>
<td>2 µA</td>
</tr>
<tr>
<td>TM4C 12mA-drive</td>
<td>TM4C1294</td>
<td>12 mA</td>
<td>12 mA</td>
<td>2 µA</td>
<td>2 µA</td>
</tr>
</tbody>
</table>

Increased drive strength on P2.0, P2.1, P2.2, and P2.3

\[
V_{OL} \leq V_{IL} \text{ for all inputs} \quad \text{and} \quad V_{OH} \geq V_{IH} \text{ for all inputs}
\]

\[
I_{OL} \geq \sum I_{IL} \text{ for all inputs} \quad \text{and} \quad I_{OH} \geq \sum I_{IH} \text{ for all inputs}
\]
Summary

- General Purpose Input Output
 - Voltage ↔ Digital
 - Positive and negative logic
 - Pins
 - Ports

- Interfacing
 - Voltage/current
 - Input/output
Module 6

Lecture: General Purpose Input Output - Programming
General Purpose Input Output – Programming

You will learn in this module

- General Purpose Input Output
 - Direction register
 - Input,
 - Output,
 - Friendly

- Implement a two-layer input interface
 - Low-level input/output to line sensor
 - Mid-level sensor integration
MSP432 Input Initialization

```c
// Make P1.1 an input
void SW1_Init(void){
    P1->SEL0 &= ~0x02;  
P1->SEL1 &= ~0x02;  
P1->DIR &= ~0x02;  
}
```

Alternate function
0 for GPIO
1 for alternate

Direction
0 for input
1 for output

Clear bit 1

Friendly means just changes the bits you need, without changing the bits you do not need.
// Read from P1.1
uint8_t Sw1(void)
{
 uint8_t data;
 data = P1->IN;
 data = data&0x02;
 return data;
}

uint8_t Sw1(void)
{
 return P1->IN&0x02;
}
MSP432 Output Initialization

```c
// Make P1.0 an output
void LED_Init(void){
    P1->SEL0 &= ~0x01;
    P1->SEL1 &= ~0x01;
    P1->DIR |= 0x01;
}
```

Alternate function
0 for GPIO
1 for alternate

Direction
0 for input
1 for output

Set bit 1

Read from PxIN
Read from PxOUT
Write to PxOUT
Write to PxDIR

Friendly means just changes the bits you need, without changing the bits you do not need.
void LED(uint8_t new) {
 uint8_t old;
 old = P1->OUT;
 old = old & (~0x01);
 new = new | old;
 P1->OUT = new;
}

void LED(uint8_t new) {
 P1->OUT = (P1->OUT & (~0x01)) | new;
}

1. Read from port
2. Clear bits of interest
3. Set/clear bits of interest
4. Write back to port

Friendly means just changes the bits you need, without changing the bits you do not need.
void SSR_Init(void) {
 P2->SEL0 &= ~0x08;
 P2->SEL1 &= ~0x08; // GPIO
 P2->DIR |= 0x08; // make pin out
 P2->DS |= 0x08; // high current
}
void SSR_On(void) {
 P2->OUT &= ~0x08; // P2.3=0
}
void SSR_Off(void) {
 P2->OUT |= 0x08; // P2.3=1
}

Negative logic
Optical Sensor Interface

1. P5.3 output high
2. P7.0 output high
3. Wait 10 us
4. P7.0 input
5. Wait 1 ms
6. Read P7.0
7. P5.3 output low

- **MSP432**
 - P7.0
 - P5.3

- **Line sensor**

- **QTR-8RC**

- **3.3V**

- **Digital**
 - White
 - Black

- **P7.0**
 - White
 - Software reads P7.0

- **Black**

- **White**

- **1ms**
Summary

- **General Purpose Input Output**
 - Voltage ↔ Digital
 - Positive and negative logic

- **Initialization**
 - Alternate function
 - Direction register
 - Pullup/pulldown registers
 - Increase drive strength

- **Input**
 - Read and mask

- **Output**
 - *Friendly*: Read, set/clear and write

1. Line sensor
2. Bump sensors
3. Motor direction
4. LCD output
5. Tachometer input
6. Ultrasonic I/O
7. BLE
8. Wifi
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated