Introduction to MSP430 ADCs

Lane Westlund
MSP430 Applications Engineer
Texas Instruments
Agenda

• Analog measurements with the MSP430
 ▪ Comparator, ADC10, ADC12, SD16, SD16_A
• Hands-on lab with ADC12
• Summary
Comparator A

- References usable internally and externally
- Low-pass filter selectable by software
- Input terminal multiplexer
- One interrupt vector with enable
Comparator-Based Slope ADC

- 10-bit+ accuracy
- Resistive sensors
- Low battery detect
- Very low cost
- App note SLAA038

\[
t_x = R_x \times C \times \ln \left(\frac{V_{CAREF}}{V_{CC}} \right)
\]

\[
R_{NTC} = 10k \times \frac{t_{NTC}}{t_{10k}}
\]
Example: Thermistor

- $R_{REF} = 10K$, $R_M = NTC$
- $V_{CAREF} = V_{CC} \times e^{-t/RC}$
- Relationship simplifies to single multiply & divide operations

$$R_{NTC} = 10k \times \frac{t_{NTC}}{t_{10k}}$$
Slope Resistance Considerations

- Measurement as accurate as R_{REF}
- V_{CC} independent
- Resolution based on number of max counts possible
- Precharge of C_M impacts accuracy
- Slope measurement time duration a function of RC
Integrating A/D Voltage Measurement

- V_{IN} range is near full scale
- $P_{X,Y}$ toggling creates a 1-bit DAC at V_{OUT}
- Match V_{OUT} to V_{IN}
- SLAA104

Used for voltage sensors, 10-bit+ resolution as accurate as V_{CC}

© 2006 Texas Instruments Inc, Slide 7
Integrating A/D Considerations

• Resolution determined by times through S/W loop
• Inherently excellent noise immunity
• V_{CC} must be known
• DAC pulse symmetry required
• Select RC values for $< +/- 1$ LSB V_{OUT} ripple
• Reference: SLAA104
ADC10

- 200ksps+
- Autoscan
- Single Sequence Repeat-single Repeat-sequence
- Int/ext reference
- TA SOC triggers
- Data transfer controller
- 30us ref settling, No decoupling required
Why Is Autoscan + DTC Important?

70 cycles/Sample Fully Automatic

// Software
Res[pRes++] = ADC10MEM;
ADC10CTL0 &= ~ENC;
if (pRes < NR_CONV)
{
 CurrINCH++;
 if (CurrINCH == 3)
 CurrINCH = 0;
 ADC10CTL1 &= ~INCH_3;
 ADC10CTL1 |= CurrINCH;
 ADC10CTL0 |= ENC+ADC10SC;
}

// Autoscan + DTC
_BIS_SR(CPUOFF);
ADC12

- 200ksps+
- Single Sequence Repeat-single Repeat-sequence
- Int/ext reference
- TA/TB SOC triggers
- Configuration memory/buffer
- DMA enabled
ADC12 Conversion Memory

- 16 memory buffer
- Each interrupt capable
- Each DMA enabled
Conversion Sequences

- Single or repeat
- Flexible channel selection
- Complete conversion timing control

<table>
<thead>
<tr>
<th>ADC12MEMa</th>
<th>0</th>
<th>SREFx</th>
<th>INCHx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12MEMb</td>
<td>0</td>
<td>SREFx</td>
<td>INCHx</td>
</tr>
<tr>
<td>ADC12MEMc</td>
<td>0</td>
<td>SREFx</td>
<td>INCHx</td>
</tr>
<tr>
<td>ADC12MEMd</td>
<td>1</td>
<td>SREFx</td>
<td>INCHx</td>
</tr>
</tbody>
</table>
Timer SOC Triggers - Accuracy

Automatic SOC trigger eliminates phase error
Timer SOC Triggers – Low-Power

// Interrupt
; MSP430 ISR to start conversion
BIS #ADC12SC,&ADC12CTL0 ; Start conversion
RETI ; Return
;

<table>
<thead>
<tr>
<th>CPU cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>
ADC12 Reference Decoupling

- Power Supply
- Any used VRef

Any used reference must be decoupled with > 5uf
MSP430 SD16 Sigma-Delta Overview

• 16-bit sigma-delta architecture
• Independent converters
• 4096 samples per second
• Differential input
• Independent PGA
• Internal 1.2V reference
• Internal temperature sensor
• Converters can be grouped
• 2.7 – 3.6V
SD16 Features

- ‘F42x & ‘FE42x
- Multiple channels
- Single external input per channel
- Up to 256 OSR
- 1MHz f_M

SD16 Control Block

V_{REF}

Temperature sensor

Reference f_M

Divider

MCLK SMCLK ACLK TACLK

Ax.0 Ax.1 Ax.2 Ax.3 Ax.4 Ax.5 Ax.6 Ax.7

PGA 2nd Order ΣΔ Mod

Group/Start Conversion Logic

SD16PREx

SD16MEMx

© 2006 Texas Instruments Inc, Slide 18
SD16_A Overview

- ‘F42x0 & ‘F20x3
- Single channel
- Multiple input pairs
- Input buffer
- AV_{cc} measure
- 30kHz to 1.1MHz
- f_M divider
- Up to 1024 OSR
SD16 A Input Design

• Four external input pairs
• Fully differential
• Internal channels:
 - Temperature
 - $AV_{CC}/11$
 - Offset shunt
• Selectable current vs. speed input buffer
• PGA: 1, 2, 4, 8, 16 & 32x

• SD16AEx bits for internal A_{IN}- connection to AV_{SS}

* Buffer not in ‘F20x3 devices
Input Select vs. Channel Select

• **SD16_A**: 1 channel, 4 external inputs per channel
 - MSP430F42x0 & MSP430F20x3

• **SD16**: 3 channels, 1 external input per channel
 - MSP430FE42x & MSP430F42x

• Channels are independent & can operate in parallel

• Inputs are multiplexed into each channel & must be selected/sampled sequentially
SD16 Conversion Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Channel, Single Conversion</td>
<td>A single channel is converted once.</td>
</tr>
<tr>
<td>Single Channel, Continuous Conversion</td>
<td>A single channel is converted continuously.</td>
</tr>
<tr>
<td>Group of Channels, Single Conversion (SD16 only)</td>
<td>A group of channels is converted once.</td>
</tr>
<tr>
<td>Group of Channels, Continuous conversion (SD16 only)</td>
<td>A group of channels is converted continuously.</td>
</tr>
</tbody>
</table>
Analog Input Range

- What is V_{REF}?
- What is the PGA setting?

$$V_{FSR} = \frac{V_{\text{ref}}}{2 \cdot \frac{GAIN}{PGA}}$$

- Applies to all inputs & modes

* $0V = Vss$ (SD16), $0V = \text{relative}$ (SD16A)
Input Step Response

- Key for mux switching
- Decimation filter must cycle out the delta
- SD16INTDLYx sets automatic settling time to 1st conversion interrupt
- \(f_M = 1.048\text{MHz}; \) OSR = 256
 - \(f_{\text{SAMPLE}} = 4.096\text{ ksp} \)s ->
 - \(t_{\text{SETTLE(MAX)}} \sim 732\text{usec} \)
Internal Reference

- **Internal 1.2V reference**
- **20ppm temperature coefficient**
- **V_{REF} Options:**
 - External ref: $SD16REFON = 0$, $SD16VMIDON = 0$
 - Internal ref: $SD16REFON = 1$, $SD16VMIDON = 0$
 - Internal ref w/ buffered output: $SD16REFON = 1$, $SD16VMIDON = 1$

- **For temperature (A6): use internal reference**

© 2006 Texas Instruments Inc, Slide 25
Internal Reference Settling Time

- $C_{VREF} = 470\text{nF}$
- Ref buffer = +100x faster reference settling
- Disable once settled
SD16 Data

- Normal mode reads 16-bit
- 24-bit access available
Agenda

• Analog measurements with the MSP430
 - Comparator, ADC10, ADC12, SD16, SD16_A

• Hands-on lab with ADC12

• Summary
ADC Lab – Goal

• Use ADC12 integrated temperature sensor
• Setup ADC12 to perform single conversion
• Loop continuously, converting to Degrees F and C in software
• Touch the MSP430 with finger to change temperature
ADC Lab - Considerations

- What must be set to make the ADC work?
- Sampling Time
- Input Clock
- Trigger
- Input Channel
- Mode
ADC Lab – Code

ADC12CTL0 = _________________________________;
// Setup ADC12, ref., sampling time
ADC12CTL1 = ___; // Use sampling timer
ADC12MCTL0 = _____________; // Select channel A10, Vref+
ADC12IE = 0x01; // Enable ADC12IFG.0
for (i = 0; i < 0x3600; i++); // Delay for reference start
ADC12CTL0 |= ENC; // Enable conversions
__enable_interrupt(); // Enable interrupts

while(1)
{
 ADC12CTL0 |= _______; // Start conversion
ADC Lab – Sampling Time

• Check DeviceDatasheet

<table>
<thead>
<tr>
<th>SENSOR(sample)</th>
<th>Sample time required if channel 10 is selected (see Note 3)</th>
<th>ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB</th>
<th>2.2 V</th>
<th>30</th>
<th>3 V</th>
<th>30</th>
<th>μs</th>
</tr>
</thead>
</table>

• Available clocks:
 - ACLK (32.768 kHz)
 - SMCLK (1 MHz)
 - ADC internal OSC:

<table>
<thead>
<tr>
<th>fADC12OSC (Internal ADC12 oscillator)</th>
<th>ADC12DIV=0, fADC12CLK=fADC12OSC</th>
<th>VCC = 2.2 V/3 V</th>
<th>3.7</th>
<th>5</th>
<th>6.3</th>
<th>MHz</th>
</tr>
</thead>
</table>

30us with a 6 MHz clock = 189 clocks
ADC Lab – Reference

- ADC12 has a built-in reference generator that is selectable to be 1.5V or 2.5V
- ADC12 can also accept an external reference on the Veref+/Veref- pins
- ADC12 can select Vcc as a reference
ADC Lab Setting the bits

$$ADC12CTL0 = ADC12ON + REFON + REF2_5V + SHT0_7;$$

<table>
<thead>
<tr>
<th>SHT0x Bits</th>
<th>ADC12CLK cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111</td>
<td>192</td>
</tr>
<tr>
<td>REF2_5V</td>
<td>Bit 6</td>
</tr>
<tr>
<td>0</td>
<td>1.5 V</td>
</tr>
<tr>
<td>1</td>
<td>2.5 V</td>
</tr>
<tr>
<td>REFON</td>
<td>Bit 5</td>
</tr>
<tr>
<td>0</td>
<td>Reference off</td>
</tr>
<tr>
<td>1</td>
<td>Reference on</td>
</tr>
<tr>
<td>ADC12ON</td>
<td>Bit 4</td>
</tr>
<tr>
<td>0</td>
<td>ADC12 off</td>
</tr>
<tr>
<td>1</td>
<td>ADC12 on</td>
</tr>
</tbody>
</table>

$$ADC12CTL1 = SHP;$$

SHP Bit 9 Sample-and-hold pulse-mode select. This bit selects the source of the sampling signal (SAMPCON) to be either the output of the sampling timer or the sample-input signal directly.

Sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for registers ADC12MEM0 to ADC12MEM7.

Reference generator voltage. REFON must also be set.

Reference generator on

ADC12 on
ADC Lab - Defaults

- **ADC12CTL1**

<table>
<thead>
<tr>
<th>SHSx</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11-10</td>
<td>00 ADC12SC bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 Timer_A.OUT1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Timer_B.OUT0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 Timer_B.OUT1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADC12</th>
<th>SSELx</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-3</td>
<td>00</td>
<td>ADC12OSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>ACLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>MCLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>SMCLK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQx</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-1</td>
<td>00 Single-channel, single-conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 Sequence-of-channels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Repeat-single-channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 Repeat-sequence-of-channels</td>
</tr>
</tbody>
</table>
ADC Lab – Configuring the conversion

<table>
<thead>
<tr>
<th>SREFx</th>
<th>Bits</th>
<th>Select reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6-4</td>
<td>000 $V_{R_+} = AV_{CC}$ and $V_{R_-} = AV_{SS}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>001 $V_{R_+} = V_{REF_+}$ and $V_{R_-} = AV_{SS}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>010 $V_{R_+} = V_{REF_+}$ and $V_{R_-} = AV_{SS}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>011 $V_{R_+} = V_{REF_+}$ and $V_{R_-} = AV_{SS}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 $V_{R_+} = AV_{CC}$ and $V_{R_-} = V_{REF_-}/V_{REF_-}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 $V_{R_+} = V_{REF_+}$ and $V_{R_-} = V_{REF_-}/V_{REF_-}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 $V_{R_+} = V_{REF_+}$ and $V_{R_-} = V_{REF_-}/V_{REF_-}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111 $V_{R_+} = V_{REF_+}$ and $V_{R_-} = V_{REF_-}/V_{REF_-}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCHx</th>
<th>Bits</th>
<th>Input channel select</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-0</td>
<td>0000 A0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0001 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0100 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0101 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0110 A6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0111 A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 V_{REF_+}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1001 V_{REF_-}/V_{REF_-}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1010 Temperature sensor</td>
</tr>
</tbody>
</table>

ADC12MCTL0 = INCH_10 + SREF_1;
ADC Lab – Final code

ADC12CTL0 = ADC12ON + REFON + REF2_5V + SHT0_7;
// Setup ADC12, ref., sampling time
ADC12CTL1 = SHP; // Use sampling timer
ADC12MCTL0 = INCH_10 + SREF_1; // Select channel A10, Vref+
ADC12IE = 0x01; // Enable ADC12IFG.0
for (i = 0; i < 0x3600; i++); // Delay for reference start
ADC12CTL0 |= ENC; // Enable conversions
__enable_interrupt(); // Enable interrupts

while(1)
{
 ADC12CTL0 |= ADC12SC; // Start conversion
Agenda

• Analog measurements with the MSP430
 ▪ Comparator, ADC10, ADC12, SD16, SD16_A

• Hands-on lab with ADC12

• Summary
Selecting an MSP430 ADC

<table>
<thead>
<tr>
<th></th>
<th>channels</th>
<th>f_{SAMPLE} (ksp/s)</th>
<th>min</th>
<th>max</th>
<th>res</th>
<th>A_{IN}</th>
<th>reference</th>
<th>triggering</th>
<th>gain</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC10</td>
<td>8</td>
<td>34</td>
<td>8</td>
<td>200+</td>
<td>10</td>
<td>57 Vss to Vref</td>
<td>1.4-3.6</td>
<td>1.5/2.5V</td>
<td>+/-1mA</td>
<td>SW/Timer/Cont</td>
</tr>
<tr>
<td>ADC12</td>
<td>12</td>
<td>34</td>
<td>12</td>
<td>200+</td>
<td>12</td>
<td>68 Vss to Vref</td>
<td>1.4-3.6</td>
<td>1.5/2.5V</td>
<td>+/-1mA</td>
<td>SW/Timer/Cont</td>
</tr>
<tr>
<td>SD16</td>
<td>3 ind</td>
<td>~4</td>
<td>16</td>
<td>85</td>
<td>16</td>
<td>+/-600mV</td>
<td>1.0-1.5</td>
<td>1.2V</td>
<td>+/-1mA</td>
<td>SW/Cont</td>
</tr>
<tr>
<td>SD16_A</td>
<td>4 mux'd</td>
<td>~0.03</td>
<td>16</td>
<td>85</td>
<td>16</td>
<td>+/-600mV</td>
<td>1.0-1.5</td>
<td>1.2V</td>
<td>+/-1mA</td>
<td>SW/Cont</td>
</tr>
</tbody>
</table>

- Voltage range to be measured?
- Max frequency for A_{IN}?
- How much resolution?
- Differential inputs?
- Reference range?
- Multiple channels?
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>Low Power</td>
<td>Video & Imaging</td>
<td>www.ti.com/lpw</td>
</tr>
<tr>
<td>Wireless</td>
<td>Wireless</td>
<td>www.ti.com/wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated