
© 2006 Texas Instruments Inc, Slide 1

Hands-On: Realizing the MSP430 Signal
Chain through ADPCM

Steve Underwood
MSP430 FAE Asia
Texas Instruments

© 2006 Texas Instruments Inc, Slide 2

An outline of this session
• Using the analog capabilities of the MSP430FG4619

to build a signal chain
• Getting a basic signal chain up & running
• Which speech codecs make sense for us?
• Code implementing ADPCM
• Experimenting with the application

© 2006 Texas Instruments Inc, Slide 3

Test setup

• A microphone amp, to capture your voice
• Mic > amp > ADC12 > compression > flash
• Flash > decompression > DAC12 > amp > PC
• Simple PC scope program to handle output

© 2006 Texas Instruments Inc, Slide 4

An outline of this session
• Using the analog capabilities of the MSP430FG4619

to build a signal chain
• Getting a basic signal chain up & running
• Which speech codecs make sense for us?
• Code implementing ADPCM
• Experimenting with the application

© 2006 Texas Instruments Inc, Slide 5

External components

+

-
OA0

GND

P2.3

+

-
OA1

GND

Audio jack

+

-
OA2

ADC

DACDAC

GND

• The red box shows MCU elements
• Very little external circuitry is required to make a real

signal chain work

© 2006 Texas Instruments Inc, Slide 6

Microphone amplifier configuration

OA0CTL1 = OAFC_0; /* General purpose amp */
OA0CTL0 = OAN_0 | OAP_1 | OAPM_3;
OA1CTL1 = OAFC_6 | OAFBR_2; /* Inverting PGA */
OA1CTL0 = OAN_2 | OAP_0 | OAPM_3 | OAADC1;

OA0CTL1 = OAFC_0; /* General purpose amp */
OA0CTL0 = OAN_0 | OAP_1 | OAPM_3;
OA1CTL1 = OAFC_6 | OAFBR_2; /* Inverting PGA */
OA1CTL0 = OAN_2 | OAP_0 | OAPM_3 | OAADC1;

+

-
OA0

OAPM_3

GND

OA0I0

OA0I1

OA0O +

-
OA1

OAPM_3

DAC12_1OUT
OA1OOA1I0

GND

470

1k

3k3

1k

0

150k

15p

22n 3n3

1k4 15k

ADC

© 2006 Texas Instruments Inc, Slide 7

Output amplifier configuration

OA2CTL1 = OAFC_1; /* Unity gain buffer */
OA0CTL0 = OAP_2 | OAPM_3 | OAADC1;

OA2CTL1 = OAFC_1; /* Unity gain buffer */
OA0CTL0 = OAP_2 | OAPM_3 | OAADC1;

© 2006 Texas Instruments Inc, Slide 8

Let’s get started…..
• Find project “adpcm”, open it, build it, load it into the

MSP430FG4619 on your board, and run it
• Connect the ATC board’s 3.5mm jack to your PC’s

audio input jack
• Find the program “scope.exe”, and run it on your PC

Click on the “Snd card” button to light the yellow mark
You should see the output from your mic
If you can’t hear anything, click on “Snd pass”

© 2006 Texas Instruments Inc, Slide 9

What is the code doing?

int32_t estimate;
estimate += ((((int32_t) signal << 16) - estimate) >> 10);
signal -= (*p >> 16);

int32_t estimate;
estimate += ((((int32_t) signal << 16) - estimate) >> 10);
signal -= (*p >> 16);

• It sets up the analog circuitry
• It initializes timer A to produce a sampling “tick”

8003.4 times/second
• It digitizes the mic. signal every tick
• It uses a single pole LPF to estimate and remove DC

• It converts the signal back to analog
• It sends the analog signal to your PC

© 2006 Texas Instruments Inc, Slide 10

An outline of this session
• Using the analog capabilities of the MSP430FG4619

to build a signal chain
• Getting a basic signal chain up & running
• Which speech codecs make sense for us?
• Code implementing ADPCM
• Experimenting with the application

© 2006 Texas Instruments Inc, Slide 11

Why ADPCM?
To suit our goals we need a speech codec with:
• A fairly low bit rate
• Fairly low computational complexity
• Modest code and buffer requirements

• A-law/μ-law are simple, but the bit rate is high
• LPC can be complex to encode, less complex to

decode. Might be good for alarms
• RPE, CELP, and other schemes offer good quality,

but require a lot of computation and memory
• ADPCM offers a balance that fits our requirements

© 2006 Texas Instruments Inc, Slide 12

What is ADPCM?...

• The μ-law and A-law codecs, used for the PSTN,
compress 12 bit (72dB dynamic range) audio to 8 bits
in a pseudo-logarithmic manner

They use 8 linear sections to approximate logarithmic
Give a fairly constant signal to distortion ratio (~30dB)
No state information carried from sample to sample
Encoded samples are a 3 bit “section” + a 4 bit linear value + a sign bit
(c.f. characteristic + mantissa)

© 2006 Texas Instruments Inc, Slide 13

…What is ADPCM?...

• What if we encode the difference between successive
samples, rather than the samples themselves?

In low frequency sections this lets us encode in finer steps
In very high frequency sections it can increase the coarseness
Overall, it encodes the great majority of encoded samples more
accurately
Decoding should start from the same level as the encoder

© 2006 Texas Instruments Inc, Slide 14

…What is ADPCM?...

• Speech energy varies fairly slowly
• If we track the short term level, can we use variable

step sizes, but avoid encoding the step size itself?
Could save 3 out of 8 bits by applying this idea directly to A-law or u-law

• Key issue: we need to ensure the decoder will exactly
track the encoder in choosing step sizes

• We send the quantized difference between the
current sample, and the decoded version of the
previous sample

Both the encoder and decoder know these values, so they can track each
other’s step size choices
Means the decoder must be nested inside the encoder

© 2006 Texas Instruments Inc, Slide 15

…What is ADPCM?

• The quantization step size adapts every sample, to
follow the short term signal level.

Adapting every sample is part of making the two ends track each other
If the quantized sample is small, we change to finer steps (< range)
If the quantized sample is large, we change to coarser steps (> range)
We prevent overrunning the ends of the step size table
The step pattern used is a key difference between ADPCM codecs

• Well quantized 4 bit (sign + 3 bit level) differences
work almost as well as μ-law/A-law

Heavily used for speech storage, in things like voice mail systems

• 3 or 2 bit differences can give clear speech
Fine for things like alarms

© 2006 Texas Instruments Inc, Slide 16

Putting it all together

© 2006 Texas Instruments Inc, Slide 17

What limitations does ADPCM have?
• The decoder must track the encoder

Any bit errors in the data which upset decoding
The decoder must start decoding from the start of the encoded sequence

• This limitation can be mitigated by inserting periodic
unencoded samples

Decoding can pick up from any unencoded sample, as long as we know
where to look for it

• Tone bursts may suffer some corruption
Affects things like signaling tones (e.g. DTMF) on the PSTN
Not usually important for speech storage

© 2006 Texas Instruments Inc, Slide 18

Which ADPCM?
• ADPCM is a general class of audio compression
• ITU G.726 is widely used for PSTN calls

Variants from 16kbps to 40kbps
Has a lot of complexity to achieve things we don’t care about

• OKI ADPCM is widely used for IVR and voice mail
Good quality; low compute requirements; low memory requirements
32kbps. Sometimes reduced to 24kbps. No lower bit rate option

• IMA (DVI, Intel) ADPCM is similar to OKI ADPCM
Good quality; low compute requirements; low memory requirements
32kbps

• Other ADPCM algorithms, at 2, 3 or 4 bits per sample
At 6k samples/second, 2 bit ADPCM runs at 12kbps
Low bit rate ADPCM and a PWM D/A converter can add voice alerts to
small MSP430 parts

© 2006 Texas Instruments Inc, Slide 19

An outline of this session
• Using the analog capabilities of the MSP430FG4619

to build a signal chain
• Getting a basic signal chain up & running
• Which speech codecs make sense for us?
• Code implementing ADPCM
• Experimenting with the application

© 2006 Texas Instruments Inc, Slide 20

static const int step_adjustment[8] =
{

-1, -1, -1, -1, 2, 4, 6, 8
};

static const int step_adjustment[8] =
{

-1, -1, -1, -1, 2, 4, 6, 8
};

IMA ADPCM state information
typedef struct
{

int last;
int step_index;

} ima_adpcm_state_t;

typedef struct
{

int last;
int step_index;

} ima_adpcm_state_t;

© 2006 Texas Instruments Inc, Slide 21

static const int step_size[89] =
{

7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767

};

static const int step_size[89] =
{

7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767

};

IMA ADPCM step table

© 2006 Texas Instruments Inc, Slide 22

uint8_t ima_adpcm_encode(ima_adpcm_state_t *s, int16_t linear)
{

int e, ss, adpcm, diff, initial_e;
ss = step_size[s->step_index];
initial_e = e = linear - s->last;
diff = ss >> 3; adpcm = (uint8_t) 0x00;

if (e < 0) {adpcm = (uint8_t) 0x08; e = -e;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x04; e -= ss;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x02; e -= ss;}

if (e >= ss) {adpcm |= (uint8_t) 0x01; e -= ss;}
diff = (initial_e < 0)

? initial_e + e - diff : initial_e - e + diff;
s->last = diff + s->last;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0) s->step_index = 0;
else if (s->step_index > 88) s->step_index = 88;
return adpcm;

}

uint8_t ima_adpcm_encode(ima_adpcm_state_t *s, int16_t linear)
{

int e, ss, adpcm, diff, initial_e;
ss = step_size[s->step_index];
initial_e = e = linear - s->last;
diff = ss >> 3; adpcm = (uint8_t) 0x00;

if (e < 0) {adpcm = (uint8_t) 0x08; e = -e;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x04; e -= ss;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x02; e -= ss;}

if (e >= ss) {adpcm |= (uint8_t) 0x01; e -= ss;}
diff = (initial_e < 0)

? initial_e + e - diff : initial_e - e + diff;
s->last = diff + s->last;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0) s->step_index = 0;
else if (s->step_index > 88) s->step_index = 88;
return adpcm;

}

IMA ADPCM encode

© 2006 Texas Instruments Inc, Slide 23

int16_t ima_adpcm_decode(ima_adpcm_state_t *s, uint8_t adpcm)
{

int e, ss; int16_t linear;
ss = step_size[s->step_index];
e = ss >> 3;
if (adpcm & 0x01) e += (ss >> 2);
if (adpcm & 0x02) e += (ss >> 1);
if (adpcm & 0x04) e += ss;
if (adpcm & 0x08) e = -e;
linear = s->last + e;
s->last = linear;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0) s->step_index = 0;
else if (s->step_index > 88) s->step_index = 88;
return linear;

}

int16_t ima_adpcm_decode(ima_adpcm_state_t *s, uint8_t adpcm)
{

int e, ss; int16_t linear;
ss = step_size[s->step_index];
e = ss >> 3;
if (adpcm & 0x01) e += (ss >> 2);
if (adpcm & 0x02) e += (ss >> 1);
if (adpcm & 0x04) e += ss;
if (adpcm & 0x08) e = -e;
linear = s->last + e;
s->last = linear;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0) s->step_index = 0;
else if (s->step_index > 88) s->step_index = 88;
return linear;

}

IMA ADPCM decode

© 2006 Texas Instruments Inc, Slide 24

An outline of this session
• Using the analog capabilities of the MSP430FG4619

to build a signal chain
• Getting a basic signal chain up & running
• Which speech codecs make sense for us?
• Code implementing ADPCM
• Experimenting with the application

© 2006 Texas Instruments Inc, Slide 25

Let’s compress and decompress
• The lab software let’s us choose amongst

IMA ADPCM (define “USE_IMA”)
Oki ADPCM (define “USE_OKI”)
Low bit rate ADPCM, suitable for things like spoken alarms (define
“USE_2BIT”)

• Make sure one of these is defined near the top of
adpcm_app.c

• Adjust the ADC12 interrupt routine to encode and
decode the digitized samples

• Experiment with quality of the various codecs
IMA and Oki should be similar, and good
The 2-bit codec is poorer, but uses half the bit rate

• Try reducing the sampling rate, to reduce the bit rate,
if you have time

© 2006 Texas Instruments Inc, Slide 26

Using extended flash memory in C
• The IAR and CCE compilers support extended

function pointers, but not extended data pointers
Using extended memory for data storage requires special handling.
IAR provide the functions below, to allow direct reading or writing of any
address in memory

• We will use the direct memory access functions to
store and retrieve audio from the upper 64k of flash
memory

int __data20_read_short(long int flash_addr);
void __data20_write_short(long int flash_addr, int value);

int __data20_read_short(long int flash_addr);
void __data20_write_short(long int flash_addr, int value);

© 2006 Texas Instruments Inc, Slide 27

Erasing the flash memory
• The CPU can easily erase flash memory

Set up the flash timing generator
Set the flash control registers to enable erasing of the flash
Write any value into any location in the page to be erased
Wait for completion – only needed if not running from the Flash being
erased (e.g. running code in RAM)
Set the flash control registers to prevent accidental writing to flash
All timing is handled by the hardware – about 16ms per page

FCTL2 = FWKEY | FSSEL_1 | FTG_???;
FCTL3 = FWKEY; /* Unlock the flash */
FCTL1 = FWKEY | ERASE; /* Enable erasing */
__data20_write_short(ptr, 0); /* Erase the flash page */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY; /* Disable erase/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */

FCTL2 = FWKEY | FSSEL_1 | FTG_???;
FCTL3 = FWKEY; /* Unlock the flash */
FCTL1 = FWKEY | ERASE; /* Enable erasing */
__data20_write_short(ptr, 0); /* Erase the flash page */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY; /* Disable erase/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */

© 2006 Texas Instruments Inc, Slide 28

Writing audio to the flash memory.
• The CPU can easily write to flash memory

Set up the flash timing generator.
Set the flash control registers to enable writing to the flash.
Write values into the required memory locations.
Wait for completion – only needed if not running from the Flash being
erased (e.g. running code in RAM)
Set the flash control registers to prevent accidental writing to flash.
All timing is handled by the hardware – about 75us per word.
Writing is fast enough to keep up at 8000 samples/second.

FCTL2 = FWKEY | FSSEL_1 | FN_???;
FCTL3 = FWKEY; /* Unlock the flash */
FCTL1 = FWKEY | WRT; /* Enable writing */
__data20_write_short(ptr, val); /* Write to the flash */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY; /* Disable erasing/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */

FCTL2 = FWKEY | FSSEL_1 | FN_???;
FCTL3 = FWKEY; /* Unlock the flash */
FCTL1 = FWKEY | WRT; /* Enable writing */
__data20_write_short(ptr, val); /* Write to the flash */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY; /* Disable erasing/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */

© 2006 Texas Instruments Inc, Slide 29

Let’s store and replay
• The supplied code contains all the elements of a

record and replay scheme
• Adjust the code to make those elements perform a

recording to flash memory, followed by a repeating
replay from flash memory

LED4 will be on while record is in progress
The code contains the ability to restart recording during playback, by
pressing the button in the corner of the board

• Try the different codecs
• Try reducing the sampling rate, to see the effect on

quality, and the minimum bit rate that might suit your
needs

© 2006 Texas Instruments Inc, Slide 30

Summary
• The analog facilities in a number of MSP430 family

devices are sufficient to realize complete practical
signal chains with just a few passive components

• The processing capabilities of the MSP430 are
sufficient to implement some interesting real world
signal processing tasks

• What if I use an MSP430 with limited resources?
Any of the MSP430 ADC converters are adequate for simple voice
applications – ADC10, ADC12, SD16, SD16A, or even a slope converter
built with just a comparator
Timers A and B have up/down modes that can be used to build an
adequate PWM based DAC for many uses – e.g. voice alert replay of
stored data

• SPI interfaced flash memories permit large scale data
logging at very low power with the MSP430

x00geoff
Text Box
SLAP122

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

