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An outline of this session
• Using the analog capabilities of the MSP430FG4619 

to build a signal chain
• Getting a basic signal chain up & running
• Which speech codecs make sense for us? 
• Code implementing ADPCM
• Experimenting with the application
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Test setup

• A microphone amp, to capture your voice
• Mic > amp > ADC12 > compression > flash
• Flash > decompression > DAC12 > amp > PC
• Simple PC scope program to handle output
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External components

+

-
OA0

GND

P2.3

+

-
OA1

GND

Audio jack

+

-
OA2

ADC

DACDAC

GND

• The red box shows MCU elements
• Very little external circuitry is required to make a real 

signal chain work
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Microphone amplifier configuration

OA0CTL1 = OAFC_0;            /* General purpose amp */
OA0CTL0 = OAN_0 | OAP_1 | OAPM_3;
OA1CTL1 = OAFC_6 | OAFBR_2;  /* Inverting PGA */
OA1CTL0 = OAN_2 | OAP_0 | OAPM_3 | OAADC1;

OA0CTL1 = OAFC_0;            /* General purpose amp */
OA0CTL0 = OAN_0 | OAP_1 | OAPM_3;
OA1CTL1 = OAFC_6 | OAFBR_2;  /* Inverting PGA */
OA1CTL0 = OAN_2 | OAP_0 | OAPM_3 | OAADC1;
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Output amplifier configuration

OA2CTL1 = OAFC_1;            /* Unity gain buffer */
OA0CTL0 = OAP_2 | OAPM_3 | OAADC1;

OA2CTL1 = OAFC_1;            /* Unity gain buffer */
OA0CTL0 = OAP_2 | OAPM_3 | OAADC1;
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Let’s get started…..
• Find project “adpcm”, open it, build it, load it into the 

MSP430FG4619 on your board, and run it
• Connect the ATC board’s 3.5mm jack to your PC’s 

audio input jack
• Find the program “scope.exe”, and run it on your PC

Click on the “Snd card” button to light the yellow mark
You should see the output from your mic
If you can’t hear anything, click on “Snd pass”
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What is the code doing?

int32_t estimate;
estimate += ((((int32_t) signal << 16) - estimate) >> 10);
signal -= (*p >> 16);

int32_t estimate;
estimate += ((((int32_t) signal << 16) - estimate) >> 10);
signal -= (*p >> 16);

• It sets up the analog circuitry
• It initializes timer A to produce a sampling “tick”

8003.4 times/second
• It digitizes the mic. signal every tick
• It uses a single pole LPF to estimate and remove DC

• It converts the signal back to analog
• It sends the analog signal to your PC
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Why ADPCM?
To suit our goals we need a speech codec with:
• A fairly low bit rate
• Fairly low computational complexity
• Modest code and buffer requirements

• A-law/μ-law are simple, but the bit rate is high
• LPC can be complex to encode, less complex to 

decode. Might be good for alarms
• RPE, CELP, and other schemes offer good quality, 

but require a lot of computation and memory
• ADPCM offers a balance that fits our requirements
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What is ADPCM?...

• The μ-law and A-law codecs, used for the PSTN, 
compress 12 bit (72dB dynamic range) audio to 8 bits 
in a pseudo-logarithmic manner

They use 8 linear sections to approximate logarithmic
Give a fairly constant signal to distortion ratio (~30dB)
No state information carried from sample to sample
Encoded samples are a 3 bit “section” + a 4 bit linear value + a sign bit 
(c.f. characteristic + mantissa)
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…What is ADPCM?...

• What if we encode the difference between successive 
samples, rather than the samples themselves?

In low frequency sections this lets us encode in finer steps
In very high frequency sections it can increase the coarseness
Overall, it encodes the great majority of encoded samples more 
accurately
Decoding should start from the same level as the encoder
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…What is ADPCM?...

• Speech energy varies fairly slowly
• If we track the short term level, can we use variable 

step sizes, but avoid encoding the step size itself?
Could save 3 out of 8 bits by applying this idea directly to A-law or u-law

• Key issue: we need to ensure the decoder will exactly 
track the encoder in choosing step sizes

• We send the quantized difference between the 
current sample, and the decoded version of the 
previous sample

Both the encoder and decoder know these values, so they can track each 
other’s step size choices
Means the decoder must be nested inside the encoder
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…What is ADPCM?

• The quantization step size adapts every sample, to 
follow the short term signal level.

Adapting every sample is part of making the two ends track each other
If the quantized sample is small, we change to finer steps ( < range)
If the quantized sample is large, we change to coarser steps ( > range)
We prevent overrunning the ends of the step size table
The step pattern used is a key difference between ADPCM codecs

• Well quantized 4 bit (sign + 3 bit level) differences 
work almost as well as μ-law/A-law

Heavily used for speech storage, in things like voice mail systems

• 3 or 2 bit differences can give clear speech
Fine for things like alarms
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Putting it all together
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What limitations does ADPCM have?
• The decoder must track the encoder

Any bit errors in the data which upset decoding
The decoder must start decoding from the start of the encoded sequence

• This limitation can be mitigated by inserting periodic 
unencoded samples

Decoding can pick up from any unencoded sample, as long as we know 
where to look for it

• Tone bursts may suffer some corruption
Affects things like signaling tones (e.g. DTMF) on the PSTN
Not usually important for speech storage
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Which ADPCM?
• ADPCM is a general class of audio compression
• ITU G.726 is widely used for PSTN calls

Variants from 16kbps to 40kbps
Has a lot of complexity to achieve things we don’t care about

• OKI ADPCM is widely used for IVR and voice mail
Good quality; low compute requirements; low memory requirements
32kbps. Sometimes reduced to 24kbps. No lower bit rate option

• IMA (DVI, Intel) ADPCM is similar to OKI ADPCM
Good quality; low compute requirements; low memory requirements
32kbps

• Other ADPCM algorithms, at 2, 3 or 4 bits per sample
At 6k samples/second, 2 bit ADPCM runs at 12kbps
Low bit rate ADPCM and a PWM D/A converter can add voice alerts to 
small MSP430 parts
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static const int step_adjustment[8] =
{

-1, -1, -1, -1, 2, 4, 6, 8
};

static const int step_adjustment[8] =
{

-1, -1, -1, -1, 2, 4, 6, 8
};

IMA ADPCM state information
typedef struct
{

int last;
int step_index;

} ima_adpcm_state_t;

typedef struct
{

int last;
int step_index;

} ima_adpcm_state_t;
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static const int step_size[89] =
{

7,     8,     9,    10,    11,    12,    13,    14,
16,    17,    19,    21,    23,    25,    28,    31,
34,    37,    41,    45,    50,    55,    60,    66,
73,    80,    88,    97,   107,   118,   130,   143,
157,   173,   190,   209,   230,   253,   279,   307,
337,   371,   408,   449,   494,   544,   598,   658,
724,   796,   876,   963,  1060,  1166,  1282,  1411,
1552,  1707,  1878,  2066,  2272,  2499,  2749,  3024,
3327,  3660,  4026,  4428,  4871,  5358,  5894,  6484,
7132,  7845,  8630,  9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767

};

static const int step_size[89] =
{

7,     8,     9,    10,    11,    12,    13,    14,
16,    17,    19,    21,    23,    25,    28,    31,
34,    37,    41,    45,    50,    55,    60,    66,
73,    80,    88,    97,   107,   118,   130,   143,
157,   173,   190,   209,   230,   253,   279,   307,
337,   371,   408,   449,   494,   544,   598,   658,
724,   796,   876,   963,  1060,  1166,  1282,  1411,
1552,  1707,  1878,  2066,  2272,  2499,  2749,  3024,
3327,  3660,  4026,  4428,  4871,  5358,  5894,  6484,
7132,  7845,  8630,  9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767

};

IMA ADPCM step table
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uint8_t ima_adpcm_encode(ima_adpcm_state_t *s, int16_t linear)
{

int e, ss, adpcm, diff, initial_e;
ss = step_size[s->step_index];
initial_e = e = linear - s->last;
diff = ss >> 3; adpcm =  (uint8_t) 0x00;

if (e < 0)   {adpcm =  (uint8_t) 0x08; e  = -e;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x04; e -= ss;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x02; e -= ss;}

if (e >= ss) {adpcm |= (uint8_t) 0x01; e -= ss;}
diff = (initial_e < 0)

?  initial_e + e - diff :  initial_e - e + diff;
s->last = diff + s->last;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0) s->step_index = 0;
else if (s->step_index > 88) s->step_index = 88;
return adpcm;

}

uint8_t ima_adpcm_encode(ima_adpcm_state_t *s, int16_t linear)
{

int e, ss, adpcm, diff, initial_e;
ss = step_size[s->step_index];
initial_e = e = linear - s->last;
diff = ss >> 3; adpcm =  (uint8_t) 0x00;

if (e < 0)   {adpcm =  (uint8_t) 0x08; e  = -e;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x04; e -= ss;}
ss >>= 1; if (e >= ss) {adpcm |= (uint8_t) 0x02; e -= ss;}

if (e >= ss) {adpcm |= (uint8_t) 0x01; e -= ss;}
diff = (initial_e < 0)

?  initial_e + e - diff :  initial_e - e + diff;
s->last = diff + s->last;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0) s->step_index = 0;
else if (s->step_index > 88) s->step_index = 88;
return adpcm;

}

IMA ADPCM encode
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int16_t ima_adpcm_decode(ima_adpcm_state_t *s, uint8_t adpcm)
{

int e, ss; int16_t linear;
ss = step_size[s->step_index];
e = ss >> 3;
if (adpcm & 0x01) e += (ss >> 2);
if (adpcm & 0x02) e += (ss >> 1);
if (adpcm & 0x04) e += ss;
if (adpcm & 0x08) e = -e;
linear = s->last + e;
s->last = linear;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0)        s->step_index = 0;
else if (s->step_index > 88)  s->step_index = 88;
return linear;

}

int16_t ima_adpcm_decode(ima_adpcm_state_t *s, uint8_t adpcm)
{

int e, ss; int16_t linear;
ss = step_size[s->step_index];
e = ss >> 3;
if (adpcm & 0x01) e += (ss >> 2);
if (adpcm & 0x02) e += (ss >> 1);
if (adpcm & 0x04) e += ss;
if (adpcm & 0x08) e = -e;
linear = s->last + e;
s->last = linear;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0)        s->step_index = 0;
else if (s->step_index > 88)  s->step_index = 88;
return linear;

}

IMA ADPCM decode
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Let’s compress and decompress
• The lab software let’s us choose amongst

IMA ADPCM (define “USE_IMA”)
Oki ADPCM (define “USE_OKI”)
Low bit rate ADPCM, suitable for things like spoken alarms  (define 
“USE_2BIT”)

• Make sure one of these is defined near the top of 
adpcm_app.c

• Adjust the ADC12 interrupt routine to encode and 
decode the digitized samples

• Experiment with quality of the various codecs
IMA and Oki should be similar, and good
The 2-bit codec is poorer, but uses half the bit rate

• Try reducing the sampling rate, to reduce the bit rate, 
if you have time
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Using extended flash memory in C
• The IAR and CCE compilers support extended 

function pointers, but not extended data pointers
Using extended memory for data storage requires special handling.
IAR provide the functions below, to allow direct reading or writing of any 
address in memory

• We will use the direct memory access functions to 
store and retrieve audio from the upper 64k of flash 
memory

int __data20_read_short(long int flash_addr);
void __data20_write_short(long int flash_addr, int value);

int __data20_read_short(long int flash_addr);
void __data20_write_short(long int flash_addr, int value);
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Erasing the flash memory
• The CPU can easily erase flash memory

Set up the flash timing generator
Set the flash control registers to enable erasing of the flash
Write any value into any location in the page to be erased
Wait for completion – only needed if not running from the Flash being 
erased (e.g. running code in RAM)
Set the flash control registers to prevent accidental writing to flash
All timing is handled by the hardware – about 16ms per page

FCTL2 = FWKEY | FSSEL_1 | FTG_???;
FCTL3 = FWKEY;                  /* Unlock the flash */
FCTL1 = FWKEY | ERASE;          /* Enable erasing */
__data20_write_short(ptr, 0);   /* Erase the flash page */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY;                  /* Disable erase/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */

FCTL2 = FWKEY | FSSEL_1 | FTG_???;
FCTL3 = FWKEY;                  /* Unlock the flash */
FCTL1 = FWKEY | ERASE;          /* Enable erasing */
__data20_write_short(ptr, 0);   /* Erase the flash page */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY;                  /* Disable erase/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */
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Writing audio to the flash memory.
• The CPU can easily write to flash memory

Set up the flash timing generator.
Set the flash control registers to enable writing to the flash.
Write values into the required memory locations.
Wait for completion – only needed if not running from the Flash being 
erased (e.g. running code in RAM)
Set the flash control registers to prevent accidental writing to flash.
All timing is handled by the hardware – about 75us per word.
Writing is fast enough to keep up at 8000 samples/second.

FCTL2 = FWKEY | FSSEL_1 | FN_???;
FCTL3 = FWKEY;                  /* Unlock the flash */
FCTL1 = FWKEY | WRT; /* Enable writing */
__data20_write_short(ptr, val); /* Write to the flash */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY;                  /* Disable erasing/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */

FCTL2 = FWKEY | FSSEL_1 | FN_???;
FCTL3 = FWKEY;                  /* Unlock the flash */
FCTL1 = FWKEY | WRT; /* Enable writing */
__data20_write_short(ptr, val); /* Write to the flash */
while (FCTL3 & BUSY); /* Wait for completion */
FCTL1 = FWKEY;                  /* Disable erasing/writing */
FCTL3 = FWKEY | LOCK; /* Lock the flash */
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Let’s store and replay
• The supplied code contains all the elements of a 

record and replay scheme
• Adjust the code to make those elements perform a 

recording to flash memory, followed by a repeating 
replay from flash memory

LED4 will be on while record is in progress
The code contains the ability to restart recording during playback, by 
pressing the button in the corner of the board

• Try the different codecs
• Try reducing the sampling rate, to see the effect on 

quality, and the minimum bit rate that might suit your 
needs
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Summary
• The analog facilities in a number of MSP430 family 

devices are sufficient to realize complete practical 
signal chains with just a few passive components

• The processing capabilities of the MSP430 are 
sufficient to implement some interesting real world 
signal processing tasks

• What if I use an MSP430 with limited resources?
Any of the MSP430 ADC converters are adequate for simple voice 
applications – ADC10, ADC12, SD16, SD16A, or even a slope converter 
built with just a comparator
Timers A and B have up/down modes that can be used to build an 
adequate PWM based DAC for many uses – e.g. voice alert replay of 
stored data

• SPI interfaced flash memories permit large scale data 
logging at very low power with the MSP430

x00geoff
Text Box
SLAP122
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