Working with ADCs, OAs and the MSP430

Bonnie Baker
HPA Senior Applications Engineer
Texas Instruments
Agenda

• An Overview of the MSP430 Data Acquisition System

• SAR Converters
 ▪ The INS and OUTS of the SAR converter
 ▪ Useful Applications

• Using Op Amps
 ▪ Op Amp Configurations
 ▪ Driving SAR Converters
Where to Find ADCs and Op Amps

- Sensor Interface
- Voltage Reference Source
- Buffer
- Gain
- Difference Amplifier
- Instrumentation Amplifier
- Filter
- Level Shift

- Anti-Alias Filter
- Band-pass Filter
- Programmable Gain Amp
- Instrumentation Amp
- A/D Converter Driver

- Voltage Reference Source

- Actuator Driver
- Line Driver
- 4-20mA Driver

- Voltage Reference Source
- DDS Synthesis

- Microcontroller (μC)

- Power Amplifier

- Analog-to-Digital Converter (A/D)

- Digital-to-Analog Converter (D/A)
ADC Architectures

- There are many different ADC Architectures
 - Successive Approximation (SAR)
 - Sigma Delta (SD)
 - Slope or Dual Slope
 - Pipeline
 - Flash...as in quick, not memory

- All converters in the MSP430 chips are SAR and Sigma Delta types

- SAR determines the digital word
 - By approximating the input signal
 - Using an iterative process

- How the Sigma Delta converter determines the digital word
 - By oversampling
 - Applying Digital Filtering
Op Amp Architectures

• The Different Types Op Amp Architectures
 ▪ Single Supply
 – Rail to Rail In
 – Rail to Rail Out
 – CMOS or Bipolar
 ▪ Dual Supply

• All Op Amps (OAs) in the MSP430 chips are Single Supply, CMOS

• Our CMOS Op amp
 ▪ Easily Configured with the MSP430 Controller
 – General Purpose, Buffer, Comparator, PGA, Differential Amp
 ▪ Easily Programmed for
 – Optimized Gain
 – Bandwidth
 – etc
Agenda

• An Overview of the MSP430 Data Acquisition System

• SAR Converters
 - The INS and OUTS of the SAR converter
 - Useful Applications

• Using Op Amps
 - Op Amp Configurations
 - Driving SAR Converters
The SAR ADC

• Most Serial ADCs are SARs or Sigma Deltas

• The MSP439 SAR Converter
 ▪ SAR ADC = Successive Approximation Register, Analog-to-Digital Converter
 ▪ ADC12 – 12-bit Analog-to-Digital Converter

• SARs are Best for General Purpose Apps
 ▪ Very Prevalent for Signal Level Applications: Data Loggers, Temp Sensors, Bridge Sensors, General Purpose

• In the Market SARs
 ▪ Can be 8 to 18 bits of resolution
 ▪ Speed range: >10 ksps to < 5 Msps

• Usually require a Low-pass Filter before Analog Input
System Integration Using an A/D

- Input Signal Source
- Amplifier (Amp)
- Filter
- SAR Analog to Digital Converter
- Micro-Controller Engine
- Output
- Filter
- DAC or PWM

MSP430

© 2006 Texas Instruments Inc, Slide 8
SAR Converter – Block Diagram

Cap array is both the sample cap and a DAC

Shift Register

Control Logic

© 2006 Texas Instruments Inc, Slide 9
Successive Approximation Concept

Analog input

Vin

3/4FS

1/2FS

1/4FS

0

FS

DAC Output

Digital Output Code = 1010

Time

Bit = 1

Bit = 0

Bit = 1

Bit = 0

TEST MSB

TEST MSB -1

TEST MSB -2

TEST LSB
ADC Ideal Transfer Function

Digital Output Code

Analog Input Voltage

Ideal transfer function
ADC with Offset and Gain Error

- $y = a + (1+b)x$
 - where
 - $y =$ digital out
 - $x =$ analog in
 - $a =$ offset err
 - $b =$ gain err

- Every Ideal Code has Offset Error added
- Every ideal code is Multiplied by Gain Error
Offset/Gain Impact on Dynamic Range

- **ADC12 specifications**
 - Offset
 - $E_O \text{ typ} = \pm 2 \text{ LSB}$
 - $E_O \text{ max} = \pm 4 \text{ LSB}$
 - Gain
 - $E_G \text{ typ} = \pm 1.1 \text{ LSB}$
 - $E_G \text{ max} = \pm 2 \text{ LSB}$
 ($= \pm 0.0488\%$)
 - $1 \text{ LSB} = (V_{R+} - V_{R-})/ 2^{12}$
 - Easy to calibrate

Gain Error

Offset Error

Worse case

Dynamic Range = 4082 bits = 11.995 bits

Analog Voltage IN $\rightarrow V_{\text{REF}}$

Digital Code OUT $\rightarrow 4096$
DNL and INL Errors

- **Ideal transfer function**
- **Actual transfer function**

INL < 0

DNL < 0

Digital Output Code

Analog Voltage In

© 2006 Texas Instruments Inc, Slide 14
INL/DNL/Noise Impact on Dynamic Range

- **ADC12 specifications**
 - DNL error
 - $E_D \text{ max } = \pm 1.7 \text{ LSB}$
 - INL error
 - $E_I \text{ max } = \pm 1 \text{ LSB}$
 - $1 \text{ LSB } = (V_{R+} - V_{R-})/2^{12}$

- **INL, DNL and Noise errors move across the entire range**

- **Impacts the Effective Number of Bits (ENOB)**

- **Not Easily calibrated**

- **Effects Accuracy**
ADC Input Impedance

- Input Internal Impedance is Relatively Low
- A High Impedance Source Increases Sample Cap Charging Time
- Rise Time of Voltage on CI \(\sim (RS + RI) \times CI \)

\begin{align*}
R_S &= 2k \Omega \\
C_I &= 40pF
\end{align*}
Sample Cap Charging Time

1400 ns (min) Sample Period

Conversion Complete

Desired Voltage on C_I

Final Voltage on C_I

Rise Time of $(R_S + R_I) \times C_I$

V_C

SAMPCON

ADC12OSC/ADC12DIV

ADC12MEMX

Start Conversion

© 2006 Texas Instruments Inc, Slide 17
Alternative High Resolution Devices

• ADC12
 ▪ Resolution = 12 bits
 ▪ Minimum LSB size = VREF / 2^n = 1.5 V / 2^12 = 366 mV
 ▪ # channels = 12 to 16 (depends on part number)

• ADS8341
 ▪ Resolution = 16 bits
 ▪ Minimum LSB size = VREF / 2^n = 2.7 V / 2^16 = 41.2 mV
 ▪ # channels = 4

• ADS1100
 ▪ Resolution = 16 bits
 ▪ Minimum LSB size = VREF / 2^n = 2*2.7 V / 2^16 = 82.4 mV
 ▪ # channels = 1
Agenda

• An Overview of the MSP430 Data Acquisition System
• SAR Converters
 ▪ The INS and OUTS of the SAR converter
 ▪ Useful Applications
• Using Op Amps
 ▪ Op Amp Configurations
 ▪ Driving SAR Converters
Operational Amplifiers

- Most Prevalent Building Block in Analog Circuits
- Very Flexible - Large Variety of Functions

Circuits We Will Talk About
- General Purpose Op amp
- Unity Gain Buffer
- Comparator
- PGA (Programmable Gain Amplifier)
- Differential Amplifier
Where to Find Op Amps

- Sensor Interface
- Voltage Reference Source
- Buffer
- Gain
- Difference Amplifier
- Instrumentation Amplifier
- Filter
- Level Shift

- Actuator Driver
- Line Driver
- 4-20mA Driver

- Voltage Reference Source
- Anti-Alias Filter
- Band-pass Filter
- Programmable Gain Amp
- Instrumentation Amp
- A/D Converter Driver

- μC

- DDS Synthesis

- Forks

- Valve
Ideal Op Amp

POWER SUPPLY
- No min or max Voltage
- $I_{\text{SUPPLY}} = 0$ Amps
- Power Supply Rejection = ∞

OUTPUT
- $V_{\text{OUT}} = V_{\text{SS}}$ to V_{DD}
- $I_{\text{OUT}} = \infty$
- Slew Rate = ∞
- $Z_{\text{OUT}} = 0 \ \Omega$

INPUT
- Input Current (I_{B}) = 0
- Input Impedance (Z_{IN}) = ∞
- Input Voltage (V_{IN}) → no limits
- Zero Noise
- Zero DC error
- Common-Mode Rejection = ∞

SIGNAL TRANSFER
- Open Loop Gain = ∞
- Bandwidth = 0 → ∞
- Zero Harmonic Distortion

0.00

© 2006 Texas Instruments Inc, Slide 22
Open Loop vs Closed Loop Design

- OAFCx = 011

- Open Loop Configuration
 - In Comparator mode

- OAFCx = 000

- Closed Loop Configuration
 - Always a Connection from Output to Inverting Input
 - Gain is Dependant on Resistors

\[V_{OUT} = (1 + \frac{R_F}{R_IN}) \times V_{IN} \]

\[V_{OUT} = \text{High for } V_{IN} > V_{REF} \]
\[V_{OUT} = \text{Low for } V_{IN} < V_{REF} \]
Comparator Mode – OAFCh = 011

Temperature Sensor

\[V_A(t) \]

\[R_{\text{NTC}} || R_{\text{PAR}} \]

\[R_{\text{REF}} \]

\[V_{\text{TH}} \]

\[t = 0 \quad t = t_1 \quad t = t_2 \]

Time

\[\frac{R_{\text{NTC}} || R_{\text{PAR}}}{R_{\text{REF}}} = \frac{t_{\text{NTC}} || R_{\text{PAR}}}{t_{\text{REF}}} \]

Comparator Mode – OAFCh = 011

Temperature Sensor

\[V_A(t) \]

\[R_{\text{NTC}} || R_{\text{PAR}} \]

\[R_{\text{REF}} \]

\[V_{\text{TH}} = 0.25V_C \]

\[\text{Comparator} \]

\[\text{Timer} \]

\[C_{\text{INT}} \]

MSP430FG43x

© 2006 Texas Instruments Inc, Slide 24
General Op amp Mode – OAFCx = 000
General Op amp Mode – OAFCx = 000

Non-inverting Gain

\[
V_{OUT} = V_{IN} \left(1 + \frac{R_F}{R_{IN}}\right) - V_{REF} \cdot \frac{R_F}{R_{IN}}
\]
General Op amp Mode – OAFCx = 000

Inverting Gain

\[V_{\text{OUT}} = V_{\text{REF}} \left(1 + \frac{R_F}{R_{\text{IN}}}\right) - V_{\text{IN}} \frac{R_F}{R_{\text{IN}}} \]

\[V_{\text{REF}} = 0.5V_{\text{CC}} \]
Data Acquisition System

- Analog Gain and Signal Conditioning Cell
- Analog Low Pass Filter (LPF)
- Analog to Digital Conversion (ADC)
- Digital Filter

Input Signal Analog → Analog Gain and Signal Conditioning Cell → Analog Low Pass Filter (LPF) → Analog to Digital Conversion (ADC) → Digital Filter → Output Signal Digital
Noise Reduction with a Low Pass Filter

Noise Reduction or Anti-aliasing Filter

\[V_{IN} \]
\[R_{21} \]
\[R_{22} \]
\[R_{23} \]
\[C_{21} \]
\[C_{22} \]
\[V_{REF} \]
\[OA \]
\[ADC12 \]
Anti-alias Filter :: Nyquist Theorem

- **Signal at the Input of the A/D Converter**
 - \(f_{ALIASED} = |f_{IN} - N f_S| \)
 - Find \(N \) by making \(f_{ALIASED} < f_s / 2 \)

- **Digital Representation at the Output of the Converter**

Diagram

- **Analog Input**
 - \(N = 0 \)
 - \(N = 1 \)
 - \(N = 2 \)
 - \(N = 3 \)
 - \(N = 4 \)

- **Sampled Output Representation**
 - \(N = 0 \)
 - \(N = 1 \)
 - \(N = 2 \)
 - \(N = 3 \)
 - \(N = 4 \)

- **Frequency Points**
 - \(0 \)
 - \(f_s / 2 \)
 - \(f_s \)
 - \(2f_s \)
 - \(3f_s \)
 - \(4f_s \)
 - \(5f_s / 2 \)
 - \(7f_s / 2 \)
Filter Pro Software

• **Filter synthesis tool for designing**
 - Multi-section filter
 - Low-pass Filter
 - High-pass active filter

• **Supports**
 - 2nd to 10th order
 - Multiple-feedback (MFB) Filter Topology
 - Sallen-Key Filter Topology

• www.ti.com
Operational Amp Output Swing

- Rail-to-Rail Output Operation does not Exist
- How Close the Amplifier’s Output can Come to the Power Supplies (or “rails”) and still be Linear
- MSP430FG43x = \((VSS + 200\text{mV})\) {min} to \((VCC - 200\text{mV})\) {max}

\[
V_{OUT} = \left(1 + \frac{R_F}{R_{IN}}\right) V_{IN}
\]
Operational Amp Output Swing

Offset Voltage, V_{os} (mV)

Output Voltage, V_{OUT} (V)

Offset Voltage, V_{os} (mV)

Output Voltage, V_{OUT} (V)

© 2006 Texas Instruments Inc, Slide 33
Unity Gain Buffer Mode – OAFCx = 001

- Op Amp Internally connected as a buffer
- Non-inverting input available on a Controller pin
- Op Amp Output connected directly to ADC12
Op Amp Input Voltage Range

- **RRIP ON =**

 \((VSS - 0.1V) \{\text{min}\} \text{ to } (VCC + 0.1) \{\text{max}\}\)

- Charge pump on input stage is turned on
- Great Feature, not all amps have this!

- **RRIP OFF =**

 \((VSS - 0.1V) \{\text{min}\} \text{ to } (VCC - 1.2) \{\text{max}\}\)

- (Appropriate for Gains > 2)
PGA Mode –
Non-inverting Mode OAFCx = 100

\[V_{OUT} = G \times V_{IN} \]

MSP430FG44x

DACs or external

V_{IN}

Ax int/ext

V_{OUT}

R_{BOTTOM}

R R R R R

2R 2R 4R 4R

R_{TOP}

AV_{SS}

RRIP on

RRIP off

OAxCCTL1

111100x1 G=16
110100x1 G=8
101100x1 G=3.33
100100x1 G=4
011100x1 G=2.67
010100x1 G=2
001100x0 G=1.33
000100x0 G=1

PGA Non-inverting

© 2006 Texas Instruments Inc, Slide 36
PGA Mode – Inverting Mode OAFCx = 110

\[V_{OUT} = G \cdot V_{IN} + V_{REF}(1 - G) \]

MSP430FG44x

OAxCCTL1
- 111110x1 G=-15
- 110110x1 G=-7
- 101110x1 G=-4.33
- 100110x1 G=-3
- 011110x1 G=2.67
- 010110x1 G=-1.67
- 001110x1 G=-1
- 000110x0 G=-0.33

RRIP on

RRIP off

PGA Inverting

VOUT

IN

REF

TOP

BOTTOM

DACs or external
Bridge Network

INA326
\[G = 2 \left(\frac{R_2}{R_1} \right) = 245 \]

LCL-816G

V_{REF1}

R_{L1} R_{L2} R_1

R_2

C_1

OA

V_{REF2}

R_{21} R_{22} R_{23}

C_{21} C_{22}

SAR – ADC
12 bits

MSP430FG43x

μController
Functions

© 2006 Texas Instruments Inc, Slide 38
Summary

• **12-bit SAR Converter – ADC12**
 - 12-bit Resolution and Accuracy
 - Excellent Dynamic Range
 - For more Resolution – Discrete Options

• **Operational Amplifier – OA**
 - Standard Single Supply CMOS Op Amp
 - Rail-to-rail Input
 - Rail-to-rail Output
 - Six Configurations or Modes
 - For more Accuracy – Discrete Options
 - For more Complexity – Discrete Options

• **MSP430 Analog Options – Very Useful!**
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>Low Power</td>
<td>www.ti.com/lpw</td>
</tr>
<tr>
<td>Wireless</td>
<td>www.ti.com/wireless</td>
</tr>
</tbody>
</table>

Audio | www.ti.com/audio |
Automotive | www.ti.com/automotive |
Broadband | www.ti.com/broadband |
Digital Control | www.ti.com/digitalcontrol|
Military | www.ti.com/military |
Optical Networking | www.ti.com/opticalnetwork|
Security | www.ti.com/security |
Telephony | www.ti.com/telephony |
Video & Imaging | www.ti.com/video |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated