Leveraging MSP430 for Robust System Design

Lane Westlund
MSP430 Applications Engineer
Texas Instruments
Agenda

• Startup and Power Supply
• ESD
• Board Design
• Crystal Considerations
• Built-in Protection
• Software Considerations
Power On Reset (POR)

- Built-into MSP430s w/o brownout reset
- Consists of two parts:
 - Power-on reset detection
 - Power-on reset delay
- Guaranteed POR if VCC ≤ 0.2V and |dV/dt| ≥ 1V/ms
- POR is not a voltage supervising circuit!
POR Operation

- Code execution can start with V_{CC} as low as 0.8V
- V_{POR} is temperature dependent!
- Remember: $V_{\text{CCmin}} = 1.8$V
- Always obey max. MCLK vs. V_{CC}!
Brown Out Reset (BOR)

- Built-in BOR: all MSP430 devices (Except: x11x1, x12x, x13x, x14x)
- Always on, zero-power (included in LPMx data)
BOR Operation

- RESET when \(V_{CC} \) crosses \(V_{CC(Start)} \)
- BOR releases device after \(V_{CC} = V_{(B.IT-)} + V_{hys(B.IT-)} \) and \(t_{d(BOR)} = 2000\mu s \) max.
- \(V_{(B.IT-)} + V_{hys(B.IT-)} \) is \(\leq 1.8 \) V
- Again, always obey max. MCLK vs. \(V_{CC} \)!
Supply Voltage Supervisor (SVS)

- Can indicate & limit device operation to certain \(V_{CC} \) conditions
- MSP430s with built-in SVS:
 - ‘F15x, ‘F16x(x)
 - ‘F4xx (excl. ‘F42x0)
- Other MSP430 devices:
 - Nano-power SVS connected to RST/NMI pin, e.g.: TI part # TPS3836/7/8xx \(I_{DD} = 200nA \)
 - Voltage regulator with power good signal, e.g.: TI part # TPS797xx \(I_{Q} = 1.2\mu A \)
MSP430 Built-In SVS

- \(V_{CC} \) monitoring
- Selectable POR
 - Reset
 - Flag
- Output accessible by software
- Low-voltage condition latched and accessible by software
- 14 selectable levels
- External voltage monitor
- Output can be used externally
SVS Application Ideas

• Minimum V_{CC} for MLCK, Flash ISP, and analog peripherals

• Always see device-specific datasheet ($2xx = 2.2V$)
Safe High-Speed Operation Example

- Design goal: run ‘F155 CPU at 6MHz
- \(V_{\text{CCmin}}(f) = -0.142V + f \times 0.468 \text{ mV/MHz} \)
- \(V_{\text{CCmin}}(6\text{MHz}) = 2.67\text{V} \)
- System \(V_{\text{CC}} \) is 3.3V
- SVS threshold selection per device data sheet: \(V_{(SVS_{IT-})} = 2.7\text{V} \)
- SVS will keep device in reset while \(V_{\text{CC}} \) not met

Diagram:

1. POR
2. Delay to guarantee \(V_{\text{CCmin}} \)
3. Set SVS to 2.7V, PORON, Wait for SVSOP
4. Clear OFIFG
5. Delay
6. \(OFIFG = 1? \)
 - \(y \) \(V_{\text{CCmin}} \) guaranteed by SVS
 - \(n \) Safe to switch MCLK
7. Switch MCLK to XTAL
Safe Flash ISP Example

- **Requirement:**
 \[V_{CC_{min}} = 2.7V \] during Flash ISP for 'F155

- **System** \[V_{CC} \] **is 3.3V**

- **SVS threshold selection** per device data sheet:
 \[V_{(SVS_{IT-})} = 2.7V \]

- **SVS** will set SVSFG in case of low-voltage condition

- **Enable/disable SVS** to conserve power

```
Set SVS to 2.7V, Wait for SVSOP, Clear SVSFG

Do Flash ISP

SVSFG == 1?

Flash ISP OK

Flash ISP Error

Disable SVS
```

\[V_{CC} \] guarded by SVS
Power Supply Considerations

- AV_{CC} and DV_{CC} connected internally by diodes
- $DV_{CC} - AV_{CC} \ll 0.3V$
- DO NOT power down DV_{CC} and AV_{CC} separately
- AV_{CC} must not come up before DV_{CC}
- AV_{SS} and DV_{SS} connected internally - always connect them on your board
Agenda

• Startup and Power Supply
• ESD
• Board Design
• Crystal Considerations
• Built-in Protection
• Software Considerations
ESD Considerations

• MSP430s comply with standard TI ESD specs:
 - HBM = 1.5KV
 - CDM = 500V
 - MM = 200V

• System level spec – robust design is a must

• *TI testing does not substitute robust system design*
ESD Protection Design Ideas

- Use proper MSP430 supply decoupling, with caps placed closely
- Interface ICs with high level of built-in ESD protection
- Transient voltage suppressors (e.g.: SN75240)
- External series-Rs on I/O lines
- Additional clamping diodes
- Keep traces short, lead length is critical because of inductance:
 - $V = L \times \frac{di}{dt}$
 - L for leads and PCB = 20nH / inch
 - ESD hits can induce $\frac{di}{dt}$ of 10A / 500ps
 - $V = 400$ V/inch
ESD Effects Through Enclosures

- No influence, ideal
- Direct discharge
- Direct discharge to cables
- Influence through holes
- Secondary discharge from isolated metal
- Plastic enclosure

© 2006 Texas Instruments Inc, Slide 16
Enclosure Openings

- No direct openings or keep PCB away from openings
- Use gasket around LCD opening
- LEDs are particularly vulnerable - direct path to PC board
Enclosure Cables

- Properly ground cables entering the enclosure
- Added protection often required
ESD Device Protection

• Series R most basic
• Also helps reduce inductive Vcc ringing at power
• Can combine series R with diodes for added protection
• Suppression devices such as varistors, thyristors, TVS diodes, etc. should be used in extreme cases
Agenda

• Startup and Power Supply
• ESD

• Board Design
• Crystal Considerations
• Built-in Protection
• Software Considerations
PCB Layout Fundamentals

- Use ground plane where possible to lower current-path inductance
- Properly terminate unused MSP430 pins
- No floating copper islands on PCB - they can induce noise and arc in presence of ESD
- Avoid crossing breaks in GND plane with traces as this increases loop inductance and EMI radiation
- Keep loop areas of switching signals as small as possible
- Keep loop area of the oscillator signals as small as possible
- Always keep forward and return currents together!
What Are Current Loops?

• The distribution of the current going through two possible paths is dependant on the inductance of those paths.
Where Are Current Loops?

• Examples for closed current loops as a radiation source: Multi-layer PCB, Signal loop on a single layer PCB, Cable, Gnd loop closed by cables.
Minimize Current Loops In Layout

- Minimizing current loops minimizes inductive coupling
- Helps both EMI and ESD performance
How To Terminate Unused Pins?

- I/O: Open, switched to port function, output direction
- XIN: \(\text{DV}_{\text{CC}} \), XT2IN: \(\text{DV}_{\text{SS}} \)
- XOUT, XT2OUT: Open
- ADC \(V_{\text{REF}+} \): Open
- ADC \(V_{\text{eREF}+}, V_{\text{REF}-}/V_{\text{eREF}-} \): \(\text{DV}_{\text{SS}} \)
- R03: \(\text{DV}_{\text{SS}} \)
- LCD signals COMx, Sxx: Open
- JTAG signals TDO, TDI, TMS, TCK, Test: Open
- RST/NMI: 47k\(\Omega \) pullup + 10nF pulldown
- See *MSP430xxx Family User’s Guides*
System Design Best Practices

- Proper layout is important!
- No direct enclosure openings or keep PCB away from openings
- Ground the connector shrouds
- Ground the enclosure
- Provide ESD a path to ground
- Keep MSP430 out of path of ESD
- Use gasket around LCD opening
- LEDs are particularly vulnerable - direct path to PC board (use light conductors or lenses)
Agenda

• Startup and Power Supply
• ESD
• Board Design
• Crystal Considerations
• Built-in Protection
• Software Considerations
Crystal Layout

• Crystal as close the to MSP430 as possible
• Short and direct traces, no traces underneath
• Keep away switching signals
• Ground crystal can, use guard ring around leads
• Ground plane underneath crystal
Crystal Layout Examples

- XTAL signal / GND routing
- Component placement
Crystal Layout Example - 28 Pin

- Crystal as close as possible at XIN/XOUT terminals
- GND below the crystal and load capacitors connected to the Vss terminal
- Load capacitors grounded closely to each other
Crystal Layout Examples - F41x

- Same principles
- Use the NC pins beside XIN/XOUT for GND ring
32kHz Crystal Oscillator Start-Up
Crystal Dropout

- Switching signals near the crystal can cause dropout
Crystal Oscillator Jitter

- Poor design can cause jitter

Poor Layout

Good Layout
Crystal Oscillator Duty Cycle

- Unbalanced load caps can change duty cycle

Unbalanced

Balanced
Agenda

• Startup and Power Supply
• ESD
• Board Design
• Crystal Considerations
• Built-in Protection
• Software Considerations
XTAL Fault Detection Overview

<table>
<thead>
<tr>
<th></th>
<th>‘F1xx’</th>
<th>‘F2xx’</th>
<th>‘F4xx’</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT1 HF Mode</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>XT1 LF Mode</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>XT2 Mode</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>FLL</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
</tr>
</tbody>
</table>

What if…

- FLL? Flash ISP?
- RTC? WDT?
- LPMx wakeup?
XTAL Failsafe Operation

- XTAL Oscillator Faults are…
 - Set if respective OSC is turned on and failing
 - Set on POR
 - Reset if oscillator functions normally again

- DCOF set when DCO is on min/max boundary (‘F4xx)

- Individual Oscillator Faults will set OFIFG

- OFIFG can generate NMI
 - OFIFG switches MCLK to DCO

- OFIFG is latched on POR
NMI Handler Flow

- De-mux as shown
- Re-enable with very last ISR instruction
- Use C-compiler intrinsic: _BIS_NMI_IE1(...)
- IFG must be truly clear before re-enabling
XTAL Fault - Limp Mode Ideas

• How to maintain basic functionality?

• Constraints:
 ▪ Available clock sources
 ▪ System requirements

• ‘F1xx / ‘F2xx / ‘F4xx: Use DCO instead of HF-XTAL
• ‘F2xx: Use VLOCLK instead of LF-XTAL
• ‘F4xx: If LF-XTAL fails, disable FLL (SCG0 = 1) & control DCO manually. If LCD is used, A/C waveforms can be generated by manipulating BTCNT1 directly.

• Periodically clear, wait, & re-check OFIFG
• Use original clock-setup once OFIFG stays clear

© 2006 Texas Instruments Inc, Slide 40
Minimum Pulse Clock Filter

- All ’F2xx devices
- On all clock input(s)
- Prevents high-frequency components > max ratings from entering clock tree
- Glitches & high-frequency pulses can cause erroneous instruction fetching
- Always-on
- Increases system robustness
Watchdog Timer+ Clock Source

- All ‘F2xx devices and ‘F(E)42x(x)
- Active clock source can’t be disabled (WDT mode)
- May affect LPMx behavior & current consumption
- WDT(+) always powers up active on ALL MSP430’s
WDT+ Failsafe Operation

- If ACLK / SMCLK fail, clock source = MCLK (WDT+ fail safe feature)
- If MCLK is sourced from a crystal, and the crystal has failed, MCLK = DCO (XTAL fail safe feature)
PC Range Monitoring

- Additional protection against software errors
- On all MSP430F2xx devices, MSP430F(E)42x(x)
- An instruction fetch from the peripheral address range $0x0000 - 0x01FF$ resets the device

```c
#include <msp430x42x0.h>

void main(void)
{
    P1DIR |= 0x01;            // Set P1.0 to output direction
    for (; ;) {
        volatile unsigned int i = 50000;
        P1OUT ^= 0x01;          // Toggle P1.0 using XOR
        do i--; while (i != 0); // Delay
        ((void (*)())0x170)();  // Invalid fetch causes POR
    }
    // ("call #0170h")
}
```
Agenda

• Startup and Power Supply
• ESD
• Board Design
• Crystal Considerations
• Built-in Protection
• Software Considerations
Software Considerations – Flash

• Simple Flash Write Routine

• Improvements
 ▪ Variable generated keys
 ▪ Address range checking
 ▪ SVS usage during flash write
 ▪ Destruction of variable keys before exit
 ▪ Writing checksum of data
Software considerations - Startup

- Checksum of all program code is stored in flash
- On startup, code calculates a checksum against all program code, compares this to saved value
- Only ‘known good’ code gets executed.
- Can be accomplished as a Vcc rise / Crystal delay.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>Low Power</td>
<td>www.ti.com/lpw</td>
</tr>
<tr>
<td>Wireless</td>
<td>www.ti.com/wireless</td>
</tr>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Automotive</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Broadband</td>
<td>www.ti.com/broadband</td>
</tr>
<tr>
<td>Digital Control</td>
<td>www.ti.com/digitalcontrol</td>
</tr>
<tr>
<td>Military</td>
<td>www.ti.com/military</td>
</tr>
<tr>
<td>Optical Networking</td>
<td>www.ti.com/opticalnetwork</td>
</tr>
<tr>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Telephony</td>
<td>www.ti.com/telephony</td>
</tr>
<tr>
<td>Video & Imaging</td>
<td>www.ti.com/video</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated