The tests performed on the output voltage rails for this project were as follows:

1. Turn-On (No load)
2. Turn-Off (Output loaded with 1A load)
3. Output Voltage Ripple (Measured at full load)
4. Transient Response (30A to 50A loads)
5. Loop Response (Measured at full load)
6. Efficiency (Measured from 1A load to full load)
7. Load Regulation (Measured from no load to full load)
8. Switch Node (20MHz Bandwidth Limited with full Load)
1 Startup - (TPS40180 - 1.8V Rail)

The photo below shows the startup waveform. The input voltage is 12V, the output is not loaded. The time-base is set to 1ms/Division.

Channel 1: 1.8V Output – Yellow (1V/Division)

2 Shutdown - (TPS40180 - 1.8V Rail)

The photo below shows the shutdown waveform. The input voltage is 12V. The time-base is set to 5ms/Division. The output is loaded with a 1A load.

Channel 1: 1.8V Output – Yellow (1V/Division)
3 Output Ripple Voltage - (TPS40180 - 1.8V Rail)

The output voltage ripple is shown in the figure below. The input is 12V. The time-base is 10us/Division.

Channel 3 : 1.8V – Blue (20mV/Division; AC Coupled)

4 Transient Response - (TPS40180 - 1.8V Rail)

The transient response of the converter is shown in the figure below. The output current is pulsed from 30A to 50A. The input voltage is 12V.

Channel 3 : 1.8V – Blue (200mV/Division; AC Coupled)
Channel 4 : Output Current – Green (20A/Division)
5 Loop Response - (TPS40180 - 1.8V Rail)
The frequency response of the converter is shown in the figures below.

6 Load Regulation - (TPS40180 - 1.8V Rail)
The load regulation of the converter is shown in the figure below.
7 Efficiency - (TPS40180 - 1.8V Rail)

The efficiency of the converter is shown in the graph below.

```
\textbf{Efficiency vs. Load Current}

\begin{center}
\begin{tikzpicture}
\begin{axis}[
    title={Efficiency vs. Load Current},
    xlabel={Load Current (A)},
    ylabel={Efficiency},
    xmin=5, xmax=60,
    ymin=75, ymax=95,
    xtick={5,10,15,20,25,30,35,40,45,50,55,60},
    ytick={75,80,85,90,95},
    grid=both,
]
\addplot[blue] table {%
    x y
    5 75
    10 80
    15 85
    20 90
    25 95
    30 95
    35 95
    40 95
    45 95
    50 95
    55 95
    60 95
};
\end{axis}
\end{tikzpicture}
\end{center}
```

8 Switching Waveforms - (TPS40180 - 1.8V Rail)

The waveforms below shows the switch node of each phase. The output is loaded with 60A

```
\begin{center}
\textbf{3 Phases on separate axis}
\end{center}
```

```
\begin{center}
\textbf{3 Phases on the same axis}
\end{center}
```
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI does not warrant nor represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>RF/IoT and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated