Switching Power Supply Control Loop Design

Lloyd Dixon

Summary:
This paper surveys many practical aspects of control circuit design. Topics include: different approaches for achieving Nyquist stability criteria, transient response vs. phase margin, low frequency accuracy vs. the shape of the Bode plot, why it is dangerous to depend on conditional stability, achieving the maximum crossover frequency of a switched loop., other factors which may limit loop bandwidth, sources of error, and where to place the gain needed for correction.

Other practical aspects include large signal behavior and how to minimize offset error delays of compensation capacitors in the feedback path.

Control Loop Basics
The control loop in a high performance switching power supply requires high gain, to achieve good regulation, and high bandwidth, to achieve rapid response to sudden changes of line or load.

Control loop gain inevitably declines at high frequency, limiting bandwidth. The frequency at which the loop gain crosses through 1 (0dB) is defined as the crossover frequency, fc. The declining loop gain at high frequency is accompanied by phase lag (in addition to the normal 180° phase shift associated with negative feedback). The amount of additional phase lag is a function of how rapidly the gain drops with frequency. According to Nyquist' stability criteria, the loop will be unstable if the additional phase lag exceeds 180° at the crossover frequency.

If the excess phase lag at fc is very close to the 180° limit, the loop will be stable but the transient response will exhibit under-damped oscillations (ringing). A clean transient response requires considerably less than 180° excess phase lag at fc. The amount less than 180° is referred to as phase margin. Thus a phase lag of 117° at fc corresponds to a 63° phase margin.

Fig. 1 shows the gain - phase plots of two average current mode control loops and their transient response to a step change in load current. Both loops cross over at 10 kHz.

Bode plots are simplified gain - phase plots that are convenient for depicting the frequency characteristics of a feedback loop.

The 1 POLE loop has one active pole from 10Hz to over 100kHz. Thus the phase lag at fc is 90° and the phase margin is also 90°. Note that with the -1 slope associated with a single pole, the gain does not rise rapidly at lower frequencies. The lower

Fig. 1 - Gain - Phase Plot and Transient Response
gain/bandwidth will hurt power supply characteristics such as regulation and audio susceptibility. Note also that the transient response is slower. The area between the ILOAD step change and the 1 POLE response curve represents a charge deficit in the output capacitor that is never made up, except by the output voltage ultimately sagging and calling for more current.

In the 2 POLE loop, if the two poles were active through and well above fc (10kHz), the phase lag at fc would approach 180°—almost zero phase margin. The transient response would exhibit severe ringing. But the 2 poles are not active above 5kHz. A zero in the control amplifier causes a -2 to -1 slope transition at fc/2. This results in 117° phase lag, or a phase margin of 63°. Below 5kHz (fc/2), the -2 slope causes the gain to rise rapidly at lower frequencies, optimizing gain-bandwidth. With the -1/2 zero transition at fc/2, transient response is critically damped—see Figure 1. The initial charge deficit is not only smaller, the slight overshoot compensates precisely for the initial deficit. This is characteristic of a critically damped system.

At frequencies well below the zero at fc/2, phase lag does approach 180°, and the phase margin vanishes. This is desirable because it is associated with the -2 slope which rises rapidly at lower frequencies, improving gain-bandwidth. 180° phase lag is also acceptable. Adequate phase margin is required only at fc. The circuit will not misbehave with 180° phase lag at frequencies below fc, as long as there is adequate phase margin at fc.

Two poles are shown occurring near 10Hz: the power circuit inductance with its series resistance, and the control circuit operational amplifier reaching its gain limit. Loop gain flattens out, and excess phase lag diminishes toward 0°.

Conditional Stability: The criteria for loop stability permits the phase shift to actually exceed 180° (negative phase margin) at frequencies below fc. This is called “conditional” stability because it depends upon the strict requirement that the phase shift be 180° (preferably much less) at the unity gain crossover frequency. Thus, the 180° limitation applies only at fc where the gain is 1, not at any lower frequency even though the gain may be high.

It is usually not wise to depend upon conditional stability. Under conditions such as startup or large rapid load changes, operational amplifiers in the loop may be driven “into the stops.” This is equivalent to a temporary reduction in loop gain and crossover frequency. If phase shift exceeds 180° at the temporarily lower fc, the circuit will likely commence a large signal oscillation from which it cannot recover.

In summary, the gain characteristic should have a -1 (1 pole) slope as it traverses the unity gain crossover frequency. A zero at fc/2 will result in a -2 (2 pole) slope at lower frequencies. This will provide optimum bandwidth and critically damped transient response. The phase lag approaches 180° at lower frequencies, but this is quite acceptable. However, it is unwise to go beyond 180° and depend on conditional stability.

With inadequate phase margin, the ringing frequency will be at or near fc.

Crossover Frequency: The unity gain crossover frequency, fc, is usually the best starting point for optimum control loop design, working back toward lower frequencies to obtain the best possible gain-bandwidth.

Theoretically, fc of a linear closed loop system could be at any frequency, provided the criteria for adequate phase margin are fulfilled. In practice, it becomes necessary to cross over the linear system when cumulative phase shifts of various loop components become too great to compensate. This problem is compounded when gain and phase shift of various loop elements change, sometimes unpredictably, due to tolerances and temperature effects.

Switching power supplies control loops have additional complications that can limit fc. The right half-plane zero encountered in the output of continuous mode boost and flyback topologies is not only near-impossible to compensate, it moves in frequency as a function of load. With voltage mode control, loop gain varies as a function of input voltage. With discontinuous operation or with current mode control, voltage loop gain varies with load. All of this can make it extremely difficult to achieve a high fc while adhering to Nyquist’ stability criteria under all conditions of operation.

One reason current mode control can provide better control loop performance is that the current
Control Loop Design Examples

Definitions:

- R_t: "transresistance"—the translation of inductor current to a voltage, v_i. In its simplest form, $R_t = \text{current sense resistor } R_s$. With a current transformer, $R_t = R_s N$.
- V_s: Sawtooth voltage, peak-peak
- f_s: Switching frequency
- f_{ci}: Current loop crossover frequency
- f_{cv}: Voltage loop crossover frequency

Average Current Mode Control Loop

Fig. 2 is the circuit diagram of a buck regulator with an average current mode control loop. Fig. 3 is the small signal equivalent circuit. Fig. 4 is the Bode gain plot of the PWM/power circuit, the current amplifier, and the overall current loop gain.

Conditions:

- $V_i = 7-14V$
- $V_o = 5V$
- $L = 10\mu\text{H}$
- $C = 5000\mu\text{F}$
- $R_c = 0.02$
- $I_o = 15 \rightarrow 20A$
- $R_t = 0.05\Omega$
- $V_s = 5V$
- $f_s = 100kHz$

Description: Referring to Fig. 2, Inductor current I_L is sensed and converted into equivalent voltage v_i by transresistance R_t. Current amplifier (CA) amplifies the differential between v_i and current programming voltage V_{SET}. The amplified error applied to the PWM comparator controls the duty cycle of the power switch. This in turn controls the average inductor input voltage, changing current until v_i equals V_{SET}. I_L then equals V_{SET}/R_t.

Goal: Obtain the highest crossover frequency, f_{ci}, consistent with equal slopes at the PWM comparator inputs during the OFF time, and with a single active pole (-1 slope) at crossover.

Strategy: The PWM/power section has a 1-pole slope above resonance (from the filter inductor). The loop gain must be very low at $2 \cdot f_{LINE}$ (120Hz) to minimize 2nd harmonic distortion feedback. The crossover frequency, although well below f_{LINE}, must be as high as possible to obtain reasonable loop dynamics. The optimum solution is to use a -2 slope above f_c up to $2 \cdot f_{LINE}$, with a pole slightly above f_c to transition to a -1 slope below f_c.

Control Loop Design
Implementation:

Sawtooth slope:

\[\frac{dv_S}{dt} = \frac{V_S}{T_s} = \frac{5V}{10\mu s} = 0.5V/\mu s \]

Inductor current downslope (during OFF time), converted into an equivalent voltage downslope by transimpedance \(R_t \):

\[\frac{di}{dt} = \frac{Vo}{L} = \frac{5V}{10\mu H} = 0.5A/\mu s \]

\[\frac{dv_j}{dt} = R_t \frac{di}{dt} = 0.5 \times 0.5 = 0.25V/\mu s \]

Current Amplifier gain for equal slopes at the PWM comparator input:

\[G_{CA} = \frac{v_{CA}}{v_i} = \frac{0.5}{0.025} = 20 \]

Back off gain by 25% to allow for additional downslope from ESR voltage waveform passed through voltage amplifier. Use \(G_{CA} = 15 \):

\[R_{ii} = 5k, \quad R_{ii} = 75k \]

Current loop PWM/power section gain (at frequencies above L-C series resonance at 712Hz):

\[i_L = \frac{Vin}{\omega L}; \quad v_i = \frac{Vin}{\omega L} \frac{R_t}{\omega L} = \frac{v_{CA}}{V_s} \]

\[G_p = \frac{v_i}{v_{CA}} = \frac{Vin}{V_s} \frac{R_t}{\omega L} = -\frac{j159Vin}{fs} \]

Overall current loop gain:

\[G_I = \frac{159Vin}{f} \cdot 15 = \frac{2385Vin}{f} \]

Set Gain = 1 and \(Vin=7V \) to find \(fci \) min.: \(fci = 2385Vin = 16.7kHz \) min at \(Vin=7V \)

Current Amp. compensation: Zero at \(fci/2 \) (8kHz)

\[C_{fi} = \frac{1}{2\pi f R_{fi}} = \frac{1}{6.28 \times 8kHz \times 75k} = 260pF \]

When the current loop is closed, its gain is a transconductance: \(i_L/VSET = 1/R_t \). The closed loop gain is flat until it rolls off at the open loop crossover frequency, \(fci \). This characteristic makes it easy to include in the outer voltage loop.
Demonstration: Fig. 5 shows the stability and transient response of the current loop with compensation as calculated above. The bottom two curves are the current programming voltage, \(V_{SET} \), and \(v_i \), which equals \(I_L \times R_t \). The top two curves are the two PWM comparator inputs: sawtooth voltage \(V_s \), and the current amplifier output, \(v_{CA} \).

At the beginning of the demonstration, \(I_L \) has been regulating at 15A (0.75V across \(R_t \)). At time 0, \(V_{SET} \) changes instantaneously from 0.75V to 1V. This new demand for 20A cannot possibly be fulfilled by any control circuit action. The CA output is driven to its 7V limit, calling for the power switch to be fully ON. But it takes 25\(\mu \)sec (several switching periods) for \(I_L \) to reach 20A at its max. slew rate of \((V_{in} - V_{o})/I_L = 0.2A/\mu \)sec. The control loop is temporarily open.

While \(I_L \) is slewing from 15A to 20A, the error input to the CA causes feedback capacitor \(C_fi \) to charge, developing a voltage offset. When \(I_L \) reaches 20A, the \(C_fi \) offset holds the CA output out of the normal PWM input range (see Fig. 5). Thus \(I_L \) rises above 20A until the \(C_fi \) offset is discharged back to normal. This is not an operational flaw—it is actually beneficial. During the initial 25\(\mu \)sec while \(I_L \) is low, the output filter capacitor has a charge deficit. The excess current after 25\(\mu \)sec rapidly restores this charge deficit. If this overshoot did not occur, Vout would sag. The charge deficit would then be restored over a longer time by action of the voltage loop in an actual power supply. The overshoot results in better performance. Note that this is not the same as the overshoot associated with critical damping of the current loop. The current loop is in fact open during this time—this is a large signal phenomenon.

Adding the Voltage Loop

Fig. 6 is the circuit diagram of a buck regulator with a voltage control loop added to the average current mode control loop previously discussed. Fig. 7 is the voltage loop small signal equivalent circuit. Fig. 8 is the Bode gain plot of the power circuit (including the closed current loop), the voltage amplifier, and the overall voltage loop gain.

Conditions:

\[
\begin{align*}
V_i &= 7 \rightarrow 14V & V_o &= 5V & L &= 10\mu H \\
C &= 5000\mu F & R_c &= .01-.02 & I_o &= 15 \rightarrow 20A \\
R_t &= .05\Omega & V_s &= 5V & f_s &= 100kHz
\end{align*}
\]

Description: Referring to Fig. 6, a voltage error amplifier (VA) replaces \(V_{SET} \) in Fig. 2. The VA amplifies the error between \(V_o \) and the 5V reference. The VA output, \(v_{VA} \), programs a constant inductor current according to the transconductance \(1/R_t \) of the closed current loop.

Goal: Obtain the highest crossover frequency, \(f_{cv} \), consistent with equal slopes at the PWM comparator inputs during the OFF time, and with a single active pole (-1 slope) at crossover.

Strategy: Referring to Fig. 8, the power circuit gain equals the current loop transconductance \(1/R_t \) times output impedance \(Z_o \) which varies with
frequency. Current loop transconductance is flat up to \(f_{ci} \) (16.7kHz), where it rolls off with a \(-1\) slope.

The biggest problem is with variation of \(R_C \), the output capacitor ESR, and the zero it places in the loop. In this example it is assumed that \(R_C \) varies within a 2:1 range (.01 to .02Ω). The zero, \(f_{ESR} \) ranges between 1.6 and 3.2kHz, which is below the desired crossover frequency, \(f_{cv} \). The power circuit gain is flat from \(f_{ESR} \) through \(f_{cv} \) up to min \(f_{ci} \), the current loop gain roll-off at 16.7kHz.

The VA gain is made flat at switching frequency \(f_s \). Inductor ripple current flowing through ESR \(R_C \) generates a sawtooth waveform which is amplified and inverted by the VA and applied to the CA non-inverting input. This sawtooth is in phase with the sawtooth across \(R_T \) at the other CA input. Thus the OFF-time slope at the PWM comparator input is worsened. An allowance was made for this in the CA gain, but the VA output slope must be limited to 1/2 the slope across \(R_T \), limiting VA gain at \(f_s \).

The VA gain has a zero at \(f_{ci} \) (16.7kHz), below which it has a \(-1\) slope. Thus the overall voltage loop gain has a \(-1\) slope from \(f_c \) down to \(f_{ESR} \). Crossover \(f_{cv} \) varies with \(R_C \) from 4 to 8kHz. Below \(f_{ESR} \), the overall voltage loop gain has a \(-2\) slope. This boosts the voltage loop gain at lower frequencies, but also makes it important that max \(f_{ESR} \) is below minimum \(f_{cv} \).

There are two other alternatives:

1. **Wide ESR zero range.** If max \(f_{ESR} \) is closer to min \(f_{ci} \) than the above example, it will be impossible to safely cross over anywhere above \(f_{ESR} \). VA gain must be very low and flat from well below \(f_{ESR} \) all the way up to \(f_s \). Overall gain rises only as the power circuit gain rises below min \(f_{ESR} \), resulting in \(f_{cv} \) way below min \(f_{ESR} \). This is a most undesirable situation.

2. **Min ESR zero above desired \(f_{cv} \).** (this might be the case with ceramic output filter capacitors.) The power circuit gain has a \(-1\) slope from the \(RL_C \) pole (127Hz) all the way up to \(f_{ci} \). The VA gain must be flat above \(f_{cv}/2 \), and is limited by slope considerations. A zero in the VA gain gives the overall gain a \(-2\) slope below \(f_{cv}/2 \). This desirable situation can be created with electrolytic output filter capacitors by using a much higher voltage rating than necessary. (For the same size and cost, the higher voltage capacitor has the same ESR but lower capacitance, thus higher ESR zero frequency.) The penalty is a lower output surge impedance less capable of standing up to a large signal incident such as a sudden large load change.

Implementation:

Inductor current downslope (during OFF time), converted into an equivalent voltage downslope by \(R_C \), the output capacitor ESR:

\[
\frac{di}{dt} = \frac{Vo}{L} = \frac{5V}{10\mu H} = 0.5A/\mu sec
\]

\[
\frac{dv}{dt} = \frac{ESR \cdot di}{dt} = 0.02 \times 0.5 = 0.01V/\mu sec
\]

Because of slope limitations at the PWM comparator, the sawtooth slope at the VA output must be limited to 1/2 the slope across \(R_T \) \((dv/dt)\). Thus the voltage amplifier gain at \(f_s \) is:

\[
G_{VA} = \frac{v_{VA}}{v_o} = \frac{2 dv/dt}{2 dv/dt} = \frac{0.05}{2 \times 0.02} = 1.2
\]

\(Riv = 10k, \ R_{fv} = 12k \)
A zero is put in the VA gain where current loop transconductance rolls off at min fc1 (16.7kHz):

\[
\frac{1}{2\pi f_{\text{ZERO}}}R_f = \frac{1}{6.28 \cdot 16.7kHz \cdot 12k} = 800pF
\]

The VA gain below this zero is:

\[
G_{VA} = \frac{v_{VA}}{v_o} = \frac{-j1.2f_{\text{ZERO}}}{f} = \frac{-j20,000}{f}
\]

The power circuit gain between the ESR zero frequency and fc1 (16.7kHz) is:

\[
\frac{v_o}{v_{VA}} = \frac{R_c}{R_f} = \frac{0.02}{0.05} = 0.4
\]

Overall voltage loop gain, and crossover freq., fc\text{v}:

\[
G_V = \frac{20,000 \cdot 0.4}{f} = \frac{8000}{f} ; \quad fc\text{v} = 8kHz
\]

Demonstration: Fig. 9 shows the stability and transient response of the voltage loop. The bottom two curves are the voltage error amplifier output, v_{VA}, and v_{i'}, which equals I_L \times R_t. The top two curves are the two PWM comparator inputs: sawtooth voltage Vs, and the current amplifier output, v_{CA}. The output voltage is not shown. (The charge deficit vs. time revealed in the current waveform causes a max Vout deviation of only 13mV.)

This demonstration is identical to the earlier current loop demonstration, except that the voltage at the CA input which programs the current is the output of the voltage error amplifier, v_{VA}. During the time the control circuit is “in the stops” while the inductor current slews to its new value, the feedback capacitor Cf_v around the VA also charges to a voltage offset. This further increases the I_L overshoot, which now almost exactly cancels the earlier charge deficit.

After the current transition from 15A to 20A load has been completed, a 2:1 line voltage change is demonstrated. At 100\mu sec, the input voltage is changed instantaneously from 7V to 14V. Note how the duty cycle is reduced in the very first switching cycle. The longer OFF time increases inductor ripple current and the V_{CA} ripple, but the slopes at the PWM input remain nearly coincident as seen in the upper waveforms.
Flyback with Average Current Mode Control

Fig. 10 is the circuit diagram of a flyback regulator operating in the continuous inductor current mode. Fig. 11 is the corresponding Bode gain plot.

Conditions:

\[V_i = 6 \rightarrow 12V \quad V_o = 5V \quad L = 1.375\mu H \]
\[C = 50,000\mu F \quad R_c = .002 \quad I_o = 20A \]
\[R_t = .05\Omega \quad V_s = 5V \quad f_s = 100kHz \]

Description: The flyback topology is popular because of its simplicity, having one magnetic device which is also capable of providing isolation. Discontinuous flyback operation is simple, but suffers from high peak secondary current—80A for a 20A output. When the power switch turns off, 80A peak is suddenly delivered to the output, putting a tremendous burden on the output filter capacitors. Continuous mode operation can almost halve this peak current, easing the burden on the output capacitors.

The big problem with continuous mode flyback circuits is the right half-plane (RHP) zero which appears in the loop gain characteristic. The crossover frequency, \(f_c \) must be well below the RHP zero frequency. This is more difficult because the RHP zero moves considerably with load and with \(V_i \). The designer’s dilemma is that if the inductor is made large to remain in continuous conduction at light loads, the RHP zero frequency is very low. If the inductor is made small, the circuit cannot be operated with light loads, because the loop gain drops too much when the mode boundary is crossed.

Average current mode control helps solve this problem in several ways: (1) It controls average output (diode) current, thus the RHP zero is dealt with and “buried” in the current loop. (Conventional current mode control controls the wrong current—inductor current—and does not deal with the RHP zero. (2) Because of the gain provided by the current error amplifier, the current loop can operate across the mode boundary and maintain acceptable regulation. This allows the inductor to be smaller (limited only by higher peak current considerations), which raises the RHP zero frequency permitting a higher crossover frequency.

There are two unique considerations in the design of the average current mode control loop for the flyback circuit. First, the diode current is being sensed, averaged and controlled, not the inductor current. The diode current is a large amplitude essentially rectangular waveshape. It is necessary to integrate this waveform to obtain its average current. The integrating capacitor, \(C_{pi} \), added to the CA feedback network must be small or it would hurt the loop bandwidth. The CA output has a sawtooth ripple component from the integration, analogous to the sawtooth inductor ripple current.

Second, the sawtooth waveform at the CA output
A pole at fc/2 (2500Hz) provides a -2 slope for low frequency gain boost:

\[Cfi = \frac{1}{2\pi f Rfi} = 1768 \text{ pf} \]

Some Practical Control Loop Problems

Compensation Capacitor Problems: It is usually essential to use capacitors in compensation networks around the error amplifiers in the control loop. Compensation capacitors which break the DC path between op-amp input and output operate with a DC bias voltage. This is not a problem under strictly small-signal operating conditions. But when line or load changes occur, or during startup, the amplifier output voltage must change. This requires a change in the DC bias across the series compensation capacitors. The charging current required can cause significant errors or delays in the transient response of the power supply.

Small capacitors with short time constants which provide high frequency compensation (such as adequate phase margin at crossover) don't usually cause problems. The problem is with larger capacitors (with long time constants) which are put in series with the feedback path around the amplifier for two reasons: (1) To break open a DC path around the amplifier which is causing a DC offset error, or (2) To boost the low frequency gain to obtain near-perfect regulation.

Transient behavior: What is the good of improving the DC regulation if the transient response is hurt? (The answer might be that your customer only looks at DC regulation.) Consider what happens with a significant and rapid load change. Without the series capacitor, there will be DC path around the amplifier which is causing a DC offset error. Assume that the output voltage changes from 5.1V with light load to 5.0 volts at full load. A series capacitor provides a low frequency zero which greatly improves regulation. Assume perfect regulation: 5.0V at light and at full load. But when the load suddenly decreases, Vout will swing momentarily to 5.1V, then return precisely to 5.0V. Later, when the load suddenly increases, Vout will swing...
momentarily to 4.9V, then return precisely to 5.0V. The output voltage envelope is twice as great with the capacitor as without it.

So think twice about adding a low frequency zero just for the sake of DC regulation. If the gain is too low without the boost capacitor, look for ways to optimize the loop gain by some other method, such as optimizing the compensation scheme.

If a series capacitor is essential, make sure the output voltage swing of the op-amp is restricted in some way. Otherwise, the series capacitor can charge to a large offset voltage during startup or other transient conditions, thus taking a longer time to recover. If the op-amp output is not internally clamped, apply an external clamp. A transconductance amplifier is easy to clamp directly across the output. Any amplifier can be clamped with a Zener diode from output to inverting input. Leave 1 or 2 Volts headroom for AC components riding on the control signal.

DC current offsets: When there is DC resistance between op-amp input and output, there will inevitably be DC error caused by current flow through this resistance. In exercising control throughout the full range of operating conditions, the op-amp output must swing over a range of voltages. The current offset error is minimized by biasing the op-amp inputs at a DC voltage exactly in the middle of this output voltage range. There will be no current offset error when the output is in the middle of this range, but there will be ± regulation error at the operating extremes.

For example, if the control IC permits, divide down the reference voltage applied to the non-inverting op-amp input so that its voltage is at the mid-range of the output swing. This is a good practice even when a series boost capacitor is used, because the capacitor bias voltage will be close to zero, requiring no time to charge at start-up.

If the op-amp voltage is fixed internally, consider canceling the mid-range DC offset current by providing a compensating current to the op-amp input.

Amplifier bandwidth limits: Needless to say, if the compensation scheme requires more gain at high frequency than the op-amp can provide, there’s a problem. One such problem area is the current amplifier in an average current mode control loop. In order to minimize power dissipation in the current sense resistor, it is desirable to use a very small resistance value. Although the op-amp input offset spec may be low enough to permit a very small sense voltage with reasonable accuracy, the small sense voltage will require more op-amp gain-bandwidth than may be available.

Noise filtering: High frequency poles are often added in a control loop to attenuate noise spikes that might otherwise propagate through the loop, causing spurious turn-on and unpredictable operation. In general the pole frequencies should be at least 2-3 times f_s, to avoid signal distortion and impaired response to sudden overloads, for example. This is especially important with conventional peak current mode control, which is very noise sensitive, but also sensitive to the effects of waveform distortion caused by over-filtering.

References:

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated