Robust Motor Controller Design Implemented with TMS320F240 DSP

Dr. Yongpeng Zhang
Dr. Cajetan M. Akujuobi
Dr. Matthew Sadiku
Dr. Tokunbo Ogunfunmi

CECSTR
Prairie View A&M University
Outline

- Introduction
- Internal Model Control
- Disturbance Rejection
- Summary
Advantages of Direct Motor Drive

- Simpler in mechanical structure, more reliable, of high performance.
Challenge and Solution

- **Challenges:**
 - without mechanical transmissions
 - parameter uncertainties
 - disturbance variations

- **DSP Solutions:**
 - digital signal processors (DSP)
 - switch power devices
 - software (algorithm)
MATLAB/SIMULINK to Programs TI TMS320F240

- MATLAB/SIMULINK
- DSP programming (C / assembly)
Resulting Mixed-Signal System

- Hybrid system, or sampled-data system
- Analog system + digital controller
DSP-based Motor Drive System
Internal Model Control (IMC)

- More stable, on-line tuning, anti-windup, etc
- Transformation is needed: we can not rely on model uncertainty to construct the closed-loop structure.
Practical IMC model

- Input Saturation
- Modeling error
Physical Implementation

- dSPACE DSP
- power converter
- PMDC motor, 200W, 5A, 42V
- PMSM motor, 250W, 5A, 42V
Robust Performance

- Command tracking
- Input saturation
Disturbance Rejection

- **2DOF (2-degree-of-freedom)**
 - **Advantage:**
 - Satisfy the conflicted requirements of command tracking and disturbance rejection
 - **Disadvantages:**
 - Fast depression leads to too much variation in control signal
Due to load disturbance, observation error is inevitable.

\[
\dot{e}(t) = (A_1 - J_o C_1)e(t) + J_o d(t)
\]
Feedforward Compensation

- The observation error state feedback constructs a feedforward compensation for the load disturbance.
- The “residual disturbance” after compensation can be predicted as:

\[d_{re}(s) = [I - G_P(s)\hat{G}_o(s)] \cdot d(s) \]
Simulated Results

- Constant load disturbance
- Sinusoidal load disturbance
Experiment Results

- **1/8 of the simulated load torque applied**

Motor speed response (with observer)

Motor speed response (without observer)

Speed (rad/s)

Time (s)

Technology for Innovators™
Motor Control Method and Apparatus with Multi-Objective Observer for Disturbance Rejection, (Application No. 60666106).

Robust Motor Controller Design Implemented with TMS320F240 DSP

Dr. Yongpeng Zhang, Dr. Cajetan M. Akujuobi, Dr. Matthew Sadiku, Dr. Tokunbo Ogunfunmi

CECSTR
Prairie View A&M University