Using Multimedia, Wireless and Sensor Technology to Develop Novel Healthcare Solutions

Dr. B.S. Adiga, Arpan Pal
Tata Consultancy Services
India
Presentation Roadmap

Introduction

Use Case Scenarios

Components

Implementation and Demo
Vision and Mission

• To make Cardiac Health Care more patient centric than hospital centric
• To apply advances in the areas of Multimedia, Mobile Technology and microelectronics to bring expert cardiac health care to rural masses.
• To design and develop a prototype of TCS Cardionet as proof of concept
• To conduct field trials at various hospitals in the country and arrive at comprehensive product specifications
Motivation

• Lack of specialized cardiologists at primary health centers
• Need of a low cost solution for the rural masses
• Need for constant cardiac monitoring
The Solution

• A low cost secondary e-consultation service
 • Augmented by a centralized Decision Support System (DSS)
 • Assists medical practitioners to expedite interpretation and
 diagnosis of cardiac ailments
• Intended to provide life saving gadgets at low cost
• Aims at providing low cost telecardiology services
 • To the rural masses of the country at their door steps
 • To the ambulatory patients
Presentation Roadmap

Introduction

Use Case Scenarios

Components

Implementation and Demo
Intelligent Cardionet

There is need for collaboration with doctor

- In real-time
- In a cost-effective manner
- Using low-bandwidth
Patient @ Home

Patient at Home

Hospital

Minds in Motion

Technology for Innovators™
Patient @ Ambulance

Audio/Video and ECG data from ambulance

Audio data from doctor

Hospital

Doctor’s View at his laptop/desktop

Patient in Ambulance

Minds in Motion
Presentation Roadmap

Introduction
Use Case Scenarios
Components
Implementation and Demo
Components

1/3/12 Lead Wearable ECG Recorder

12 Lead, ECG Recorder

Remote Video Consultation System

ECG Decision Support System
1/3/12 Lead Wearable ECG Recorder

- MSP430F149: 16 bit Ultra low-power microcontroller from TI
- Sampling rate of 360 samples per second
- 12 bit A/D Converter
- 32 MB Flash for data storage
- 3.7V mobile battery
- Low Power
- Low-cost
- Lightweight
12 Lead Recorder

- 12 Lead ECG System
- Leads: I, II, III, aVR, aVL, aVF, V
- Standard Calibration pulse
- Gain adjustment in ½ and 1 gain modes
- Acquisition of ECG @ 256 samples per second
- Thermal Printer for printing ECG on graph (at std rates of 25mm/sec, 50mm/sec)
- Battery powered and Internal battery charging
- Portable
Remote Video Consultation System

- H.264 based video, AMR based audio
- Constant bit-rate (CBR) and Variable bit-rate (VBR) support
- Low-bandwidth/High-quality
- Proprietary error resilience algorithms for robust performance
- On-way or two-way video
- Instrumentation Signals / any other application data can be shared remotely
DSS - Cardiac Ailments

- Tachycardia (Supraventricular and Ventricular)
- Bradycardia
- Premature Ventricular Contraction (PVC)
- R-on-T
- Various types of blocks (SA block, AV block, LBBB, RBBB)
- ST segment changes (Ischemia, MI)
- Fibrillation
- Electrical Axis Deviations
DSS for PVC

- Premature Ventricular Contraction (PVC)
- This implies Ventricular Contraction takes place before Atrial finishes its function (Premature)
- The algorithm is based on single lead of information (Modified lead II information from MIT Arrhythmia data base)
 - Record Length 30 minutes
 - Sampling rate: 360/samples/sec
Features of PVCs

- Change in RR interval
- Absence of P wave
- Bizarre Wave shape
- Unifocal or Multifocal
- Can occur in groups of one’s or two’s
Occurrence of PVCs in groups of one’s
Occurrence of PVCs in groups of two’s
Detection Strategy

- Arrhythmia Detection (Tompkin’s Algorithm)
- Detection of Absence of P waves
- Detection of Bizarre Wave shape using Hermite transforms
- Similarity measurements using coherence function
Hermite Basis Functions
DSS Agents

The functions of various DSS agents

- Detection of QRS complex
- Measurement of RR interval and detection of Arrhythmia
- Detection of bizarre QRS complexes
- M-shape detection
- Negative peak detection
- Detection of bi-phase QRS complexes
- Detection of fibrillation related oscillations
- Computation of Hermite transform of QRS complexes
- ST segment measurements
- Computation of KL Transform

One or more agents facilitate detection of cardiac ailments
Presentation Roadmap

Introduction

Use Case Scenarios

Components

Implementation and Demo
Implementation

• Stand-alone DSS (PVC) on MATLAB, PC and 64x
• Remote Video Consultation System on PC and DM642

Patient @ Ambulance

• Ambulance side system on
 1. DSS on Laptop with Video Camera
 2. DSS on DM642 with Video Camera
• Doctor’s Viewer on PC
DSS on MATLAB/Simulink
Value-Add

- 90% to 95% sensitivity and specificity on MIT-BIH database
- Embedded DSS optimized to work with low resource requirements
- Analysis by Embedded DSS in real-time and meant to pre-warn catastrophic and premonitory arrhythmias
Future Work

Implementation
• Porting of other cardiac disease detection functionalities of DSS on DSP
• Porting of DSS on DA224 Ultra-low-power DSP

Research
• Application of wavelet transforms and Hermite functions in the detection of more cardiac ailments
• Application of Self Organizing Maps in the classification of cardiac ailments
• Agent based DSS
Future Work - Agent Based DSS

• A set of sensor nodes
 • Each element of the set executing the function of a specific agent
 • Will aid in the detection of cardiac ailment through collaborative processing

• Coordination through high level Petri Nets
 Supporting dynamic changes
Reference Database

- MIT Database – www.physionet.com
- European ST Database - www.physionet.com
Thank you!

Any questions, please?

Contact: arpan.pal@tcs.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>Low Power Wireless</td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated