
Using Hybrid Programming in
DSP Lab Courses

N. Kehtarnavaz and V. Peddigari

Signal and Image Processing Lab
University of Texas at Dallas

TIDC, March 07

Outline
• Motivation
• What is Hybrid Programming
• What is Graphical Programming
• Pros & Cons of Textual and Graphical Programming
• Advantages of Hybrid Programming
• Examples of DSP Systems Coded in Hybrid Programming

– Digital Filtering on TI DSK Platform
– Cochlear Implant System
– Overexposure Correction System

• Summary
• Live Demo

Motivation
• Observation – Often, in DSP lab courses,

students (in particular undergraduates) spend a
fair amount of their time debugging text-based
codes. Leaving not much time for analyzing
designed DSP systems.

• To avoid this problem, the use of hybrid
programming in DSP lab courses is
recommended in order to achieve DSP system
building in a more time efficient manner.

What is Hybrid Programming?
• Hybrid programming means performing a

combination of textual (e.g., MATLAB®)
and graphical (e.g., LabVIEW®)
programming.

• Hybrid programming allows one to bring
together the preferred features of textual
and graphical programming.

Ways to Achieve
Hybrid Programming

• Hybrid programming can be achieved in a
number of different ways, e.g.:
– Using a C / MATLAB Dynamic Link Library (DLL)

node within the LabVIEW graphical programming
environment.

– Using MATLAB in the SIMULINK® programming
environment.

– Using MathScript feature of LabVIEW 8.0 or higher
within the LabVIEW programming environment.

What is Graphical Programming?
• Unlike text-based programming, it offers block-

based or more intuitive approach to code
development.

• LabVIEW and SIMULINK: Most widely used
graphical programming environments.

• A comparative study between LabVIEW and
SIMULINK was conducted by undergraduate
students in a DSP lab course at UTD. Outcome
reported at ICASSP06 Education Session.

Overview of Comparative Study
On average, students took 2 to 4 hours to finish
each lab (7 labs total), depending upon the
complexity of the design problem.
Level of prior exposure to the environments:
None – learned them in the course.
Students were asked to rate LabVIEW and
SIMULINK for each of the labs with respect to a
specified set of 8 criteria.
Students rated each criterion on a scale of 0 to
10 with 10 representing the highest rating.

Evaluation Criteria (1)
• Learning curve: Ease of getting familiar with

the programming environment.
• Ease of use: Environment offering easy to use

features for code development, reuse, and
expansion.

• Programming constructs: Having sufficient
programming constructs and data structures.

• Breadth of functionality: Rich set of “plug-n-
play” building blocks and components available
for DSP system design.

Evaluation Criteria (2)
• Graphical User Interface (GUI): GUI capabilities of the

programming environment; ease of interaction with the
system at run-time.

• Debugging features: Easy to debug programs;
availability of graphical debugging tools.

• DSP Test Integration tools: Ease of
interacting/integrating the environment with other
software (TI Code Composer Studio™ IDE) and
hardware platforms (TI TMS320C6416 and
TMS320C6713 DSK).

• Help resources: Richness of technical documentations
and online help; easy to understand documentations.

Comparative Study Outcome
• In general, students found LabVIEW and SIMULINK to

possess similar features. More or less, equally rated by
the students.

However, one place where students clearly preferred
using LabVIEW over SIMULINK was the GUI and
interactive capabilities of LabVIEW.

LabVIEW Overview (1)
• LabVIEW

– A graphical programming environment developed by
National Instruments (NI) which allows one to design
systems without needing to have any prior text-based
programming experience.

• Programs in LabVIEW
– Virtual Instruments (VI): Graphical modules that are

put together in an intuitive flowchart-like manner.
– A system design is achieved by integrating different

blocks or subsystems.

LabVIEW Overview (2)
• A VI consists of two parts:

– Front Panel
• The interactive graphical user interface

incorporating various controls and displays.
– Block Diagram

• The interconnected building blocks of a function or
system similar to a flowchart.

LabVIEW Overview (3)
• Sample LabVIEW program (signal generation and

amplification)

Block Diagram Front Panel

Pros of Graphical Programming
Notch Filtering Example (1)

• If done in textual code, the code will not be compact and
require the user to know about various parameters of the
functions.

Textual Code

Notch Filtering Example (2)
• Graphical code is preferred here since

– Reusable off-the-shelf functional blocks are available.
– Simple to set parameters in an interactive way.

Graphical Code

Notch Filtering Example (3)
• Interactive GUI capability.

Front Panel

Cons of Graphical Programming
Quadratic Roots Example (1)

• Textual code is preferred here since it provides compact
code size & is easier to make modifications.

Textual Code

Quadratic Roots Example (2)
• The use of graphical code here is cumbersome and

makes the code difficult to follow.

Graphical Code

Combine Textual and Graphical -
Hybrid Programming

• Hybrid programming blends the advantages of both
graphical and textual environments:
– Builds upon the prior text-based (C, MATLAB)

programming experience of students.
– Provides an intuitive or block-based approach

towards designing DSP systems.
– Allows a modular and hierarchical system design.
– Furnishes an interactive GUI.

Hybrid Programming Example -
DWT (1)

• Hybrid programming blends the advantages of
textual and graphical programming.

Hybrid (Textual + Graphical) Code

Graphical
programming
preferred here

Hybrid Programming Example -
DWT (2)

• Signal generation part using graphical programming is easier and more time efficient
to do due to availability of built-in functional blocks.

• DWT computation part using textual is easier and more time efficient to do.
• Hybrid code is modular by using blocks or sub-systems.

Textual Graphical

Hybrid Programming Example -
DWT (3)

• Provides an interactive display.

5-Level DWT Front Panel

Example DSP Systems Built
Using Hybrid Programming

• Sample DSP systems built in DSP lab
courses at UTD:
– Digital Filtering on TI DSK platform.
– Real-Time Simulation of Cochlear Implant

System on Personal Computer (PC) and
Personal Digital Assistant (PDA).

– Cell-phone Camera Overexposure Correction.

Digital Filtering on TI DSK Platform (1)

• Filtering system on PC side, actual filtering
operation written in C performed on TI
TMS320C6x™ DSK platform.
– Communication between LabVIEW and DSK

board done via RTDX™ (Real-Time Data
Exchange).

Digital Filtering on TI DSK Platform (2)
• The filtering operation part written in C runs on the TI

DSP processor via RTDX.

Hybrid Code for Digital Filtering on TI DSK Board

Digital Filtering on TI DSK Platform (3)

Digital Filtering Front Panel

Cochlear Implant System (1)
• Cochlear implants are used to restore partial

hearing in profoundly deaf people.

• A cochlear implant consists of three
components:
– A microphone that picks up the sound.
– A signal processor that converts the sound into

excitation signals.
– A transmission system that transmits the excitation

signals to the implanted electrodes.

Cochlear Implant System (2)
• Signal Processor

– Breaks the input acoustical signal into different
frequency bands or channels.

• Various signal processing strategies can be
used to convert acoustic signals into excitation
signals.
– Popular Strategy: Continuous Interleaved Sampling

(CIS)
• Different strategies can be used for signal

synthesis.
– Popular Strategy: Noise-band Vocoder

Cochlear Implant System (3)
• CIS signal processing

Real-Time Simulation (1)
• Hybrid Programming approach was chosen to achieve

real-time simulation on
– Personal Computer (PC)
– Personal Digital Assistant (PDA)

• PC Implementation
– Filtering stages such as Band Pass Filtering (BPF), Low Pass

Filtering (LPF) were written using off-the-shelf graphical blocks.
– Rectification, Pre-emphasis & Noise excitation were

implemented using textual LabVIEW MathScript or MATLAB®

Script Node.
– Acquiring sound and playback to speakers were done by utilizing

the built-in graphical subsystems.

Real-Time Simulation (2)
• PDA Implementation

– To achieve real-time throughput, optimized
DLLs written in C for both decomposition and
synthesis stages were used.

– Acquisition and playback were done using
optimized built-in functions of LabVIEW.

– Other optimization steps included efficient
memory allocation and performing fixed-point
arithmetic.

Real-Time PC Implementation (1)
• Block Diagram - Highlighted subsystems were implemented using

textual programming since they involved algebraic computations.

Real-Time PC Implementation (2)
• Front Panel

Band Pass Filtering Stage on PC
• Block Diagram of a sample subsystem done in hybrid programming.

Comparative Study (1)
• As a DSP lab class project at UTD, students

were asked to implement the CIS strategy on a
PC using the three programming approaches:
graphical, textual and hybrid.

• Students were asked to rate a specified set of 5
criteria on a scale of 0 to 10, with 10
representing the highest rating or score.

Comparative Study (2)
• The following criteria were used to compare the three

programming approaches:
– Coding Effort

• Amount of time spent to make codes operational
– Code Extensibility

• Ease of modifying or extending the existing code
– Code Reuse

• Ability to use off-the-shelf blocks such as DLLs for designing more
complex systems

– Graphical User Interface (GUI)
• Interactive user controls and displays

– Debugging Features
• Efficient debugging tools to reduce code development time

Comparative Study (3)

0

1

2

3

4

5

6

7

8

9

10

Coding Effort Code
Extensibility

Code Reuse Graphical
User Interface

(GUI)

Debugging
Features

A
ve

ra
ge

 ra
tin

gs
Graphical Textual Hybrid

Comparative Study Outcome
• Hybrid programming approach was ranked

higher when compared to textual programming
over all the criteria.

• Hybrid programming was ranked higher than
graphical programming for the coding effort and
code extensibility criteria and was preferred
equally with graphical programming for the other
criteria.

Hybrid Programming Features
• Hybrid programming benefits from useful GUI

graphical features, and achieves modularity
through its hierarchical approach to system
design.

• Hybrid programming builds upon the prior
student experience with textual programming to
perform algebraic computations within a
compact code size.

Real-Time PDA Implementation (1)
• Block Diagram - Highlighted subsystems denote the DLLs written

in C to achieve real-time throughput on the PDA platform.

Real-Time PDA Implementation (2)
• To be presented at ICASSP07 Biomedical Applications

Session.

Overexposure Correction for
Cell-Phone Cameras (1)

• Fusing dual-exposure images to correct
for overexposed areas in the auto-
exposure image captured by a cell-phone
camera.

• Hybrid programming utilized:
– SIMULINK and MATLAB were used to

implement three fusing algorithms and to
compare their complexity and performance.

Overexposure Correction (2)
AE Image LE Image Averaging Fusion

Rubenstein Fusion Goshtasby Fusion Our Fusion

Overexposure Correction (3) –
Algorithm 1

• Hybrid Programming in Simulink Environment

Overexposure Correction (4) –
Algorithm 2

• Hybrid Programming in Simulink Environment

Summary
• DSP lab courses can greatly benefit from hybrid programming, in

particular when students are asked to build complex DSP systems.

• Hybrid programming offers:
– Advantages of textual and graphical programming.
– Code flexibility and interactivity.
– Shorter code development (system building) time.

• Teaching Materials:
1) N. Kehtarnavaz and N. Kim, Digital Signal Processing System-Level Design

Using LabVIEW, Elsevier, 2005.
2) N. Kehtarnavaz, Real-Time Digital Signal Processing Based on the

TMS320C6000, Elsevier, 2004.
3) http://www.utdallas.edu/~kehtar/LabVIEW/

Live Demo
• Digital Filtering on TI DSK Platform

• Real-Time simulation of Cochlear
Implant System on
– Personal Computer (PC)
– Personal Digital Assistant (PDA)

Thank You

Questions?

