The New and Enhanced DaVinci VPSS Drivers

Xiangdong Fu
Catalog/EEE DSP Applications
Texas Instruments
Goal

• Provide a high-level overview of the newly developed DaVinci VPSS drivers

• Discuss design requirement, architecture and supported features

• Targeted audience are DaVinci Linux application developers responsible for video capture/display, pre- and post-processing
Agenda

• Introduction
• Overview of DaVinci VPSS Drivers
• Driver Requirement & Architecture
• HW & Driver Feature Comparison
• Programming Considerations
Agenda

- Introduction
- Overview of DaVinci VPSS Drivers
- Driver Requirement & Architecture
- HW & Driver Feature Comparison
- Programming Considerations
TI Video Expertise Enables Faster and Easier Product Innovation

TI has a long history covering the video market from end to end
R&D began on image processing in the early 80s

TI leverages video systems expertise and R&D across internal design teams to drive innovation and business development

Customers can leverage TI’s expertise in end-to-end video to quickly launch into multiple video markets
TI Expertise Covers
Full Digital Video Spectrum

Digital Still Camera
Personal Media Players
Cell Phones
Video Security

Automotive Entertainment & NAV
Automotive Vision

Machine Vision

Video Phones
Set-Top Box & Digital TV
Video Conferencing

Video Infrastructure
Medical Imaging

Technology for Innovators™

Texas Instruments®
Defining the Video Chain –
Working With Customers Throughout the Entire Video Chain

Capture
Acquisition of original video content including A/D and sampling

Process
Content is encoded, transcoded, transrated and/or analyzed

Deliver
Content is transported via private or public networks

Receive
Received content is stored, decoded and/or transcoded

View
Content is accessible through a viewing mechanism

Please contact TI before using content on this slide for print or online publication

Technology for Innovators™
DaVinci™ ... a Revolutionary Platform for Video Applications

Processors
- Tuned for any video application

Software
- Optimized and ready to go

Tools
- Speed time to market

Technology for Innovators™

Future Products
- IP Video
- Security
- IP Set-Top
- Box
- Automotive
- Infotainment

Future Innovations
- VC-1
- H.264
- AAC

Current Products
- Portable Media Player
- Digital Camera
- IP Video Phone
- Video Security
- IP Set-Top Box
- Automotive Infotainment

Platforms
- Windows Media
- MPEG2
- AAC+
- H.263
- H.264
- MP3

Formats
- JPEG
- WMV
- G.711
- G.728
- G.729ab
- G.723.1
- WMA
- AAC
- AAC+
- WMV
- DIVX
- VC-1
- MPEG2
- JPEG

Innovative Technologies
- Texas Instruments
Agenda

✓ Introduction
 • Overview of DaVinci VPSS Drivers
 • Driver Requirement & Architecture
 • HW & Driver Feature Comparison
 • Programming Considerations
VPSS Block Diagram

- VPFE
 - Resizer
 - Preview
 - H3A
 - Histogram
 - Control Bus I/F

- VPBE
 - Read Buffer
 - Write Buffer
 - OSD
 - Clk Gen
 - VENC

- EMIF -> DDRAM

- Video Port Interfaces (VPI)
- Analog data (DACS)
- Digital data (LCD)

- • CMOS/CCD
- • OR -
- • Video Dec

Technology for Innovators™
Texas Instruments
VPSS Drivers

CCDC (V4L2) → Resizer → Preview Engine → H3A → HISTOGRAM → DDR Memory

VPBE (FBDev)
VPSS Driver Support

<table>
<thead>
<tr>
<th>Modules</th>
<th>Driver Support</th>
<th>Driver Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC</td>
<td>Y, E</td>
<td>V4L2</td>
</tr>
<tr>
<td>Resizer</td>
<td>Y</td>
<td>CHAR</td>
</tr>
<tr>
<td>Preview Engine</td>
<td>Y</td>
<td>CHAR</td>
</tr>
<tr>
<td>H3A</td>
<td>Y</td>
<td>CHAR</td>
</tr>
<tr>
<td>Histogram</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OSD</td>
<td>Y, E</td>
<td>FBDEV</td>
</tr>
<tr>
<td>VENC</td>
<td>Y, E</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

✓ Introduction
✓ Overview of DaVinci VPSS Drivers
 • Driver Requirement & Architecture
 • HW & Driver Feature Comparison
 • Programming Considerations
Requirement

• Completeness
 – 100% or nearly 100% coverage of available HW features

• Application centric
 – Multiple channel support for Resizer driver
 – Flexible buffer allocation and management scheme

• Efficiency
 – In general, not support features that are not available in HW
Driver Architecture

• Two layer architecture for easy customization
• Bottom layer: hardware abstraction layer
 – OS agonistic
 – HW configuration
• Top layer:
 – Driver registration, initialization
 – Buffer allocation and management
 – Logical channel => HW mapping
 – ISR handling
Agenda

✓ Introduction
✓ Overview of DaVinci VPSS Drivers
✓ Driver Requirement
 • HW & Driver Feature Comparison
 • Programming Considerations
VPSS Driver architecture

- Application
 - Initialization
 - Channel Management
 - Configuration/Control
 - Buffer Management
 - ISR
 - Resizer HW

- Linux Character Driver API
- Logical Layer
- Hardware Abstraction Layer

Minds in Motion

Technology for Innovators™

Texas Instruments
CCDC Features

• Input format
 – 8 or 10-bit BT.656
 – 8 or 16-bit Y/Cb/Cr with external syncs.
 – RGB Bayer pattern

• Frame & field format
 – Interlaced
 – Progressive

• Timing mode
 – Master
 – Slave

• Output path
 – DDR
 – Resizer
 – Preview Engine

• Other
 – Cropping
 – 10-bit to 8-bit A-law compression
 – Fault pixel correction
 – Optical & digital black clamping and black level compensation
 – LPF & Culling
Previous V4L2 Driver

- **Input format**
 - 8 or 10-bit BT.656
 - 8 or 16-bit Y/Cb/Cr with external syncs.
 - RGB Bayer pattern
- **Frame & field format**
 - Interlaced
 - Progressive
- **Timing mode**
 - Master
 - Slave
- **Output path**
 - DDR
 - Resizer
 - Preview Engine
- **Other**
 - Cropping
 - 10-bit to 8-bit A-law compression
 - Fault pixel correction
 - Optical & digital black clamping and black level compensation
 - LPF & Culling
Enhanced V4L2 Driver

- **Input format**
 - 8 or 10-bit BT.656
 - 8 or 16-bit Y/Cb/Cr with external syncs.
 - RGB Bayer pattern

- **Frame & field format**
 - Interlaced
 - Progressive

- **Timing mode**
 - Master
 - Slave

- **Output path**
 - DDR
 - Resizer
 - Preview Engine

- **Other**
 - Cropping
 - 10-bit to 8-bit A-law compression
 - Fault pixel correction
 - Optical & digital black clamping and black level compensation
 - LPF & Culling
Resizer Features

- **Data format**
 - 8-bit Y/Cb/Cr 4:2:2
 - 8-bit color separated

- **Input path**
 - DDR
 - Preview Engine
 - CCDC

- **Scaling range and ratios**
 - ¼X–4X
 - 256/N with N=64-1024

- **Operations**
 - Horizontal
 - Vertical (with separate scaling factors)

- **Luminance processing**
 - 4-tap 8-phase for ½X–4X
 - 7-tap 4-phase for ¼X–½X

- **Chrominance processing**
 - Bi-linear interpolation
 - Filtered with luminance

- **Edge enhancement**
 - Luminance sharpening
Resizer Driver

- **Data format**
 - 8-bit Y/Cb/Cr 4:2:2
 - 8-bit color separated

- **Input path**
 - DDR
 - Preview Engine
 - CCDC

- **Scaling range and ratios**
 - ¼X–4X
 - 256/N with N=64-1024

- **Operations**
 - Horizontal
 - Vertical (with separate scaling factors)

- **Luminance processing**
 - 4-tap 8-phase for ½X–4X
 - 7-tap 4-phase for ¼X–½X

- **Chrominance processing**
 - Bi-linear interpolation
 - Filtered with luminance

- **Edge enhancement**
 - Luminance sharpening
Preview Engine Features

- **Input**
 - 8-10 bit RGB Bayer pattern

- **Output**
 - 8-bit Y/Cb/Cr 4:2:2 interleaved

- **Input path**
 - CCDC
 - DDR

- **Output path**
 - Resizer
 - DDR

- **Input down-sampling**
 - 1x, 2x, 4x & 8x

- **Core processing**
 - CFA interpolation
 - RGB to Y/Cb/Cr color space conversion

- **Other pre-processing features**
 - Invert A-law transform
 - Dark frame capture & subtraction
 - Noise filter
 - Digital gain and white balancing
 - Gamma correction
 - RGB-RGB blending
 - Luminance enhancement
 - Chrominance suppression
Preview Engine Drivers

• **Input**
 – 8-10 bit RGB Bayer pattern

• **Output**
 – 8-bit Y/Cb/Cr 4:2:2 interleaved

• **Input path**
 – CCDC
 – DDR

• **Output path**
 – Resizer
 – DDR

• **Input down-sampling**
 – 1x, 2x, 4x & 8x

• **Core processing**
 – CFA interpolation
 – RGB to Y/Cb/Cr color space conversion

• **Other features**
 – Invert A-law transform
 – Dark frame capture & subtraction
 – Length Shading Compensation
 – Noise Filter
 – Digital gain and white balancing
 – Gamma correction
 – RGB-RGB blending
 – Luminance enhancement
 – Chrominance suppression
Auto Focus Engine Features

• Paxel Mode
 – Peak mode
 – Accumulation/sum mode

• # of Paxels
 – Up to 36 Paxels in the horizontal direction
 – Up to 128 Paxels in the vertical direction.

• Paxel programmability
 – Width & Height
 – Horizontal start
 – Horizontal & vertical line increments

All features supported by driver
Auto Exposure/Auto White Balancing Engine Features

• # of Windows
 – Up to 36 horizontal windows
 – Up to 128 vertical windows
 – Additional row of window for black pixel data

• Windows Programmability
 – Programmable width and height
 – Separate vertical start and height for a black row of window
 – Horizontal Sampling Points
 – Vertical Sampling Points

All features supported by driver
Previous VPBE Driver Features

• **Windows**
 – Video window 0
 – Video window 1
 – OSD window 0
 – Attribute window

• **DAC outputs**
 – NTSC
 – PAL

• **Input**
 – Y/Cb/Cr 4:2:2 for video window
 – RGB565 for OSD window
Enhanced VPBE Driver Features

- **Windows**
 - Video window 0
 - Video window 1
 - OSD window 0
 - Attribute window

- **DAC outputs**
 - NTSC
 - PAL

- **Input**
 - Y/Cb/Cr 4:2:2 for video window
 - RGB565 for OSD window

- **Other**
 - RAM LUT
 - Hardware Ping-pong buffer
 - Component/Composite/S-Video

- **Windows**
 - OSD window 1 vs. Attribute window
 - Cursor window
 - Enable vs. disable
 - Progressive vs. Interlaced
 - Global vs. pixel level blending
 - Size/position/pitch configuration

- **DAC output**
 - 480p
 - 576p
 - Non standard

- **Digital output**
 - 8/16-bit Y/Cb/Cr
 - RGB 888 or 666
 - PRGB/SRGB
 - Digital LCD output

- **Input**
 - RGB888 input for video windows
 - Bit-map input (1/2/4/8 bit) for OSD windows.
Agenda

✓ Introduction
✓ Overview of DaVinci VPSS Drivers
✓ Driver Requirement
✓ HW & Driver Feature Comparison
 • Programming Considerations
Parallel Processing

- VPSS modules can work in parallel.
- Different VPSS drivers should reside in different application threads.
- These threads must be set to be FIFO real-time scheduled.
- Example: An application uses CCDC, Resizer & VPBE drivers.
Buffer Management

- CCDC and VPBE drivers allocate their buffers internally and memory map them to user space using `mmap()` system call.

- Resizer, Preview Engine drivers can also allocate buffers internally. Alternatively, they can use buffers allocated elsewhere, e.g., by CCDC or VPBE drivers.
Multi-Channel Operations

• The Resizer driver supports multi-channel operations such that the front-end and back-end processing can share the same Resizer HW
 – E.g., D1->CIF for capture & CIF->D1 for display
 – Each LOGICAL channel maintains its own file descriptor, parameters and buffers
 – Jobs submitted by each LOGICAL channel are prioritized and queued up by the driver

• Other VPSS drivers do not have multi-channel support
The Resizer Driver Utility

- This utility is used in conjunction with the driver to generate the filter coefficients and other parameters specific for the driver.
- Three methods for coefficients calculation:
 - Windowed sinc function (Hann, Blackman etc)
 - Bi-cubic
 - Bi-linear
- Calculation can be based on output size and either of the following:
 - Input size
 - rsz value
- Can generate only the filter coefficients or the complete driver parameter settings
 - The output of the utility is typically saved to a header file to be included in the application source code
- The function is separated from the driver because it involves mainly floating point arithmetic
The Utility Usage

Usage: ./calccoef [options]

Options:
-\h | -\-help print this message
-\i | -\-insize input image size(eg. 720x240, -1 for ignore)
-\o | -\-outsize output image size(eg. 352x288)
-\r | -\-rsz resizing factor: hrsz x vrsz(eg. 512x512, -1 for ignore)
-\j | -\-sph horizontal starting phase (0:7)[4]
-\k | -\-spv vertical starting phase (0:7)[4]
-\w | -\-window window type (HANN|BLACKMAN|TRIANGULAR|RECTANGULAR)
-\z | -\-horz_filter horizontal filter type (BICUBIC|BILINEAR|LOWPASS))
-\f | -\-vert_filter vertical filter type (BICUBIC|BILINEAR|LOWPASS))
-n | -\-filename file name for custom window coefficients
-p | -\-print_param print out the complete resizer driver parameter settings
-s | -\-in_pitch input image line pitch in bytes
-y | -\-out_pitch output image line pitch in bytes
-t | -\-hstart horizontal starting pixel #[0]
-v | -\-vstart vertical starting line #[0]
-c | -\-cbillin enable bi-linear interpolation for horizontal chroma processing
-g | -\-grayscale input image is 8-bit grayscale
-x | -\-pixel_format input pixel format([UYVY]|YUYV)
-a | -\-no_array output data without array headers, can be used to generate multiple sets of coefficients.
The Utility Usage Examples

• Example 1, ½D1->CIF
 - ./calccoeff -i720x240 -o352x288 > coefs_720x240_to_352x288.h

• Example 2, CIF->D1
 - ./calccoeff -i352x288 -o720x480 > coefs_352x288_to_720x480.h

• Example 3, VGA->QVGA with exact 2:1 down-scaling:
 - ./calccoeff -r 512x512 -o352x240 -s1312 > coefs_VGA_to_QVGA.h
Output of Example 3

/* input image pixels/line = 646 */
/* output image pixels/line = 320 */
/* horizontal starting phase = 4 */
/* horizontal filter type = LOWPASS */
/* window type = BLACKMAN */
/* hrsz = 512 */

/* horizontal resizing filter coefficients: */
const short horz_coefs[] =
{
 39,
 178,
 39,
 0,
 25,
 174,
 57,
 0,
 ...
};

/* input image # lines = 483 */
/* output image # lines = 240 */
/* vertical starting phase = 4 */
/* vertical filter type = LOWPASS */
/* window type = BLACKMAN */
/* vrsz = 512 */

/* vertical resizing filter coefficients: */
const short vert_coefs[] =
{
 39,
 178,
 39,
 0,
 25,
 174,
 57,
 0,
 ...
};
For More Information

• Peripheral Reference Guide for DM644x VPFE & VPBE
• TI DVEVM customer web site
• Montavista Zone