To prepare your workstation for software development, power off the kit, remove the microSD card and insert it into your Ubuntu Linux workstation (adapter may be required). If your workstation does not include an SD slot, USB SD card adapters are readily available. Follow the instructions to the right.

For Linux, install the Processor SDK from the START HERE partition (the latest version of the SDK can be downloaded from TI’s website).

If you need help on setting up a Linux Host PC, please visit www.ti.com/startyourlinux.

Connect the supplied USB debug cable to your AM572x processor board (as shown in Step 2). Connect the other end to your PC. Connect an Ethernet cable (not included) to the top RJ-45 jack on the AM572x processor board. Connect the other end of the cable to an Internet-enabled router or Ethernet switch.

For TI-RTOS, refer to www.ti.com/processor_sdk_rtos.

Connect an Ethernet cable (not included) to the top RJ-45 jack on the AM572x processor board.

Connect the other end of the cable to an Internet-enabled router or Ethernet switch.

For more information:
www.ti.com/am572xevm

For more information on AM57x processors, including:
• User Guide • How Tos • Software • Design Files
Please visit www.ti.com/am57x and www.ti.com/am572xevm
For support questions, please contact: support@ti.com or www.ti.com/e2e.
Provide feedback: Take this survey and tell us about your experience using the AM572x EVM: www.ti.com/survey
Welcome to the AM572x General Purpose (GP) Evaluation Module (EVM) Quick Start Guide. This guide is designed to help you through the initial setup of the EVM. This EVM allows you to experience Linux®, TI-RTOS and other operating systems (OSs) that showcase the AM572x Cortex™-A15 and TI C66x cores, 3D graphics, high-definition video processing and more. The AM572x EVM contains the following:

- **Hardware**
 - Sitara™ AM572x Cortex-A15 processor
 - TPS659037 power management I/C
 - 7” capacitive touch LCD
 - 2GB DDR3L
 - On-board eMMC
 - Audio input and output
 - SATA, USB 3.0, Ethernet and HDMI connectors
 - Expansion capability

- **Printed documents**
 - AM572x GP EVM Quick Start Guide (this document)
 - Terms and conditions

- **Miscellaneous**
 - Power supply with international adapters
 - µSD card with Linux Processor SDK
 - USB-to-serial debug cable
 - HDMI cable for optional external display

Default setup (Linux OS boot from microSD card)

1. Plug in the camera board (not included) as shown.
2. Connect the supplied USB to serial cable to the processor board as shown (for simplicity only the processor board is shown).
3. Insert the microSD card into the AM572x EVM processor board.
4. Confirm the jumpers J3, J4, J6 are jumpered across positions 2 and 3 (closest to edge of board).
5. Connect the supplied power cable to the processor board as shown (for simplicity only the processor board is shown). Connect the 12-volt power supply cable to an AC power source.
 - **Note:** When powering this EVM, always use the supplied power supply (E-Star PA1060-120B500) or equivalent model having output voltage of +12VDC and output current of 5.0 Amp as well as the applicable regional product regulatory/safety certification requirements.
6. To turn on, press and release power button (S1) or auxiliary power button. To turn off, press and hold the same button for 15 sec. Do not unplug the power supply to turn off the board, as it may cause damage.
7. You are now ready to explore the Linux demos which include various example applications. Click on any icon to start the demo.

(Continued)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property right of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
<td>Copyright © 2016, Texas Instruments Incorporated</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td></td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
<td></td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td></td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td></td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td></td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td></td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TI E2E Community</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e2e.ti.com</td>
<td></td>
</tr>
</tbody>
</table>