DEVELOPING A FLEXIBLE PLC IMPLEMENTATION FOR WORLDWIDE DEPLOYMENT

By Olivier Monnier and Xiaolin Lu

Driven by the rise of Smart Grid applications, Power Line Communication (PLC) technology enables more intelligent management of systems across industries, including metering, solar and lighting control, home and building automation, and electrical vehicle charging to name just a few. These types of applications require only minimal bandwidth for data collection, and narrowband PLC with operating frequencies up to 500 kHz provides high reliability at the lowest cost (see Figure 1).

There are several challenges developers must address when introducing PLC technology to a design. Within the Smart Grid, for example, there are three major market sections – grid infrastructure (i.e., concentrators), utility meters, and home/building management – each with varying application requirements. Manufacturers must also be able to accommodate the different channel and noise characteristics of each region where they plan to deploy devices. Furthermore, while there are PLC standards in place, these standards are still evolving, making them a moving target to design for. To address all of these applications and considerations with the same PLC design, as well as be able to quickly enter new markets as they arise, developers need a flexible implementation approach.

Texas Instruments (TI) is a leading participant in the development of PLC technology, serving as a principal member on both the PRIME and G3-PLC consortiums and as a contributing member for the IEEE P1901.2 narrowband PLC specification. Offering a comprehensive PLC solution, complete with fully programmable C2000™ real-time control microcontrollers, industry-leading integrated analog front ends, the extensive plcSUITE™ application software library, and flexible protocol and modulation implementations, TI is the only company providing a single PLC platform that can be deployed world-wide.

OPTIMIZED FOR POWER EFFICIENCY AND SYSTEM COST

PLC is still an emerging technology. Many markets have not yet settled on a particular standard, and even those standards which do exist are still changing as market requirements continue to be refined. For a significant number of applications, especially those based on closed networks, developers have the freedom to select the most appropriate standard for their application, even one requiring a proprietary implementation. With a hardware-based PHY approach, systems are fixed in their implementation and must be redesigned if they are to support multiple standards.

With a software-based physical layer (PHY), a single device can serve in multiple markets. TI’s PLC solutions, for example, support PRIME, G3-PLC, IEC 61334, and IEEE P1901.2, as well as PLC-Lite™ library and FlexOFDM™ library, which provide an optimized implementation for proprietary and closed networks. In addition, TI supports multiple modulation schemes, including FSK, S-FSK, and OFDM. TI is the only PLC provider that addresses all of these technologies and standards with a common hardware configuration so that manufacturers can quickly target varied market segments in different regions worldwide.

TI has optimized the cost and power efficiency of its software-based approach to PLC by integrating its powerful VCU technology into its Piccolo™ F2806x-based microcontroller series. The Viterbi and Complex Math Unit (VCU) is an instruction-level dedicated coprocessor which substantially accelerates OFDM processing by performing compute-intensive calculations in hardware for Viterbi, CRC, and complex arithmetic operations. This enables F2806x microcontrollers to provide full PLC processing performance with significantly less MIPS. In this way, developers can leverage the flexibility of a software-based approach with hardware processing efficiency to create the optimal implementation for their application without compromising performance, power, or profit. In addition, the ability to support different standards and modulations schemes with the same design allows manufacturers to enter multiple market segments simultaneously.

In addition to improving cost, performance, and power with its VCU technology, TI has also reduced the bill of materials (BOM) cost of adding PLC to designs by introducing its AFE031 fully integrated PLC analog front end. Providing all of the functionality required to provide reliable, high-performance connectivity for each of the various PLC standards, the programmable AFE031 seamlessly connects to TI microcontrollers and reduces external component count by 10x compared to discrete implementations. With multiple power saving modes and integrated EOS protection, the AFE031 substantially reduces board space requirements and system cost, as well as lowers power consumption and provides greater system reliability. Together, the F2806x microcontroller series and AFE031 provide a robust and cost-effective approach to PLC that is compatible with the large deployments being discussed for Europe.

A WORLDWIDE FIELD TEST EXPERIENCE

A big challenge manufacturers face is that every country has a different grid infrastructure. In addition, the particular channel and noise characteristics of crossing the medium voltage (MV) to or from low voltage (LV) transformers have not been well-understood at frequencies from 20 to 500 kHz. As a result, a system that works in France may not work in Turkey. Over the past months, TI has performed extensive PLC field tests all over the world, testing for instance G3-PLC in the US, Europe, China and Japan. These provide invaluable field return data that contributes to improving
PLC software development and research. In addition, TI has made significant investments to simulate and make in-field measurements of channel and noise characteristics at sites around the world to develop its robust software PHY and networking layers. Through its extensive modeling and measuring of home infrastructure and interference sources coming into the home, TI has been able to divide noise into different categories so each can be addressed within the PHY or with assistance from the MAC. From a networking perspective, TI is able to simulate networks of 1000+ meters to test meter reading success performance and network topology stability for both single hop and mesh networks. TI has also made these field test results available to the ITU and IEEE standards committees to help guide standardization and is one of the major contributors to the channel models being developed by these organizations.

For applications which do not necessarily need to follow an industry standard like PRIME or G3-PLC, including solar inverter arrays and lighting control, TI has leveraged its in-field testing data to develop the FlexOFDM library. The FlexOFDM library combines the strengths of PRIME and G3-PLC with variable bandwidth capabilities, adaptive tone mask capabilities, advanced modulation schemes such as coherent modulation, and the ability to work with an application-specific stack to provide the highest performance and reliability under all operating conditions. For low-cost applications, TI also offers the PLC-Lite library, which provides many of the advantages of the FlexOFDM library but at a lower system cost by reducing the feature set such as lowering the data rate to meet the application need.

FAST TIME-TO-MARKET

To assist developers in quickly evaluating the different PLC standards and modulation schemes and bringing robust products to market quickly, TI offers a complete PLC development environment with its PLC Modem Development Kit (TMDSPLCKIT-V3) which enables developers to take a modular approach to design.

Offering 2 PLC modes, the development kit supports the PRIME, G3-PLC, G3-FCC (half-band), standards, as well as the FlexOFDM and PLC-Lite libraries with scalable data rates up to 128 kbps for single-phase applications. Support for G3-FCC full-band and P1901.2 is currently under development. TI also offers the PLC System on Module (SoM), a full PLC system on a single module that can be plugged into existing systems complete with schematics and gerber files to facilitate integration of module IP into a manufacturer's own designs.

With its plcSUITE software reference design package, developers have access to all the libraries they need to quickly develop and test robust PLC implementations (see Figure 2). Delivered as a powerful framework, developers are able to separate modulation implementation, protocol design, and application development from each other. Free of royalties and NREs, plcSUITE is scalable across the entire C2000 microcontroller platform and allows developers to select the ideal microcontroller with the right balance of processing performance and peripherals for their particular application.

For quicker time to market, plcSUITE also has a zero-configuration GUI which automatically detects nodes so that developers can plug the development kit into a PC and immediately begin communicating across power lines without having to first become familiar with any MAC or PHY configuration details. For more complex operations, such as sending a special signal across the entire grid to measure performance, the GUI supports advanced configuration modes, which allow developers to easily visualize and tune key PLC modem performance parameters.

A FULL SMART GRID EXPERTISE AND SUPPORT

With its extensive digital and analog portfolio, TI is able to provide design recommendations and provide solutions for every stage of the Smart Grid – from utility substations to the individual devices and appliances within the home – including communications technology throughout the rest of the network such as Wi-Fi, ZigBee, and proprietary RF.

TI’s complete PLC solution offers a modular approach to design, enabling manufacturers to quickly and easily introduce PLC to a wide range of new applications. With the flexibility to optimize by modulation scheme, protocol, and application, developers can not only maximize reliability while minimizing cost, they can ensure that systems will be able to adapt to evolving standards and varying grid operating conditions. With the combination of the powerful F2806x microcontroller with the VCU and integrated analog front end, external components can be eliminated to reduce system size and cost without compromising performance or reliability. TI also brought integration to the next level by delivering the C2000 Concerto™ dual-core microcontroller series, the first chip in the market to combine an ARM® Cortex™-M3 host processor and a C28x real-time processor, which is ideal for PLC processing and application firmware onto one single device.

With its extensive field experience and unique approach to PLC, TI offers the industry’s only PLC solution which can serve the world-wide market with a single hardware platform.

TI will be demonstrating its PLC Technology in booth #A68 at Metering Billing/CRM Europe in Amsterdam, The Netherlands on October 4 - 6.

Links:

Power Line Communications Solutions: www.ti.com/plc
Smart Grid solutions for grid infrastructure, utility metering, communications, and home/building automation: www.ti.com/smartgrid

ABOUT THE AUTHOR:

Olivier Monnier is the Worldwide Marketing and Business Manager for TI’s Smart Grid Business Unit. He is originally from France, and graduated in energy conversion and power electronics at the Ecole Nationale Superieure d’Electricite et de Mecanique (ENSIM, Nancy). He has more than 14 years experience in industrial energy related applications.

Xiaolin Lu is Distinguished Member of TI’s Technical Staff and Manager of the Embedded Processor Solutions Group in System and Application R&D Center. She is the holder of 50+ US awarded patents and 25 pending award patents in a variety of areas including DSP, networking and system architecture. She has published papers in multiple research areas. She is an IEEE member. She earned an MSCE (Indiana University) and MSEEE (National Zhejiang University, China) and two years in MBA program training (Drake University, Iowa), one year of Mentor training. She is the winner of 11th National Women of Color Award on Technical Innovation – Industry in 2006.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated