Tutorial: PREESM - Dataflow Programming of Multicore DSPs

Karol Desnos, Clément Guy, Maxime Pelcat

EDERG 2014 Conference, Milan, September 11th
http://preesm.sourceforge.net/website

- Eclipse-based Tool
- Written in Java and Xtend
- Using
 - Eclipse Modeling Framework,
 - Eclipse Graphiti,
 - Eclipse CDT
- Compatible and tested on Linux and Windows
- Release 2.0.0 on sept 2014
• Started in 2007
• In collaboration with Texas Instruments France
• 16 contributors
• Academic collaborations
 – LAAS
 – University of Maryland
 – ENIS
 – Abo Akademi
• Preesm offers Editors
 – Algorithm
 – Architecture
 – Scenario

• And can run a Workflow
 – Transformations of models
PREESEM Workflow
PREESM Workflow
PREESM Workflow
PREESM Workflow
• A workflow runs typically within a few tens of seconds
• Algorithm: typically 10-1500 actors
• Architecture: typically 1-20 cores
Examples for the tutorial

Algorithms

Sobel filter: edge detection
Stereo matching: disparity map

Architectures

Intel i7 quad-core
TI Shannon (C6678)
Rapid prototyping process

1. Architecture modeling
2. Algorithm modeling
3. Scenario selection
4. Workflow composition
5. Workflow execution
Algorithm modeling

PiSDF

Parameterized
Dynamism

Interfaced
Hierarchy & Composition

Synchronous Data-Flow

Actors & Fifos
Algorithm examples

Sobel filter
Stereo matching
S-LAM
System-Level Architecture Model

Processing elements
Communication nodes
Intel i7 quad-core
TI Shannon (C6678)
Scenario selection

Link between *algorithm* & *architecture*

- Execution times
- Execution constraints
- Simulation information

Enables separation of concerns
Sobel filter on Intel i7 quad-core

Read

1

190000 cycles

Size

= 101376

core1

Size

= 101376
Rapid prototyping tasks

Scheduling
Code generation
Memory optimization
Visualization tools

…
2 workflows

Scheduling

Scheduling + code generation

Algorithm

Hierarchy flattening

Single-rate transformation

Mapping & scheduling

Architecture
Let’s complicate things

Small application on CPU

What about more realistic cases?

Execution on DSP (C6678)
Stereo matching algorithm
Rapid prototyping for multicore DSPs

High-level modeling of **parallelism**

Automatic mapping

Automatic scheduling

Automatic code generation

Advanced memory optimization

Bridges to UML MARTE, SDF3 & Orcc
Research tool

New models & features
Regular enhancements

Incoming features

Parameter-dependent timings
Distributed memory management
Bridge to DIF from Univ. of Maryland
GUI enhancements (workflow scripts)
...

PREESM is constantly improving
Thank you for your attention

Hierarchical Algorithm Model → Scenario → Multi-Core Scheduling → Deployment

Multi-core Heterogeneous Model

Simulation

Static Code Generation

preesm.sourceforge.net/website/ Twitter: @PreesmProject
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated