RF System Design

Low Power Wireless
Texas Instruments
• Agenda
 – Development
 – Testing
 – Debugging
• **Choose correct chip**
 – Operating frequency
 • Range
 • Market
 – Data rate
 – Standard or proprietary solution
 – Available board size
 • Radio+uC or SoC solution
 • Antenna solution

• **Use Low-Power RF Selection Guide:**
 – Available at: http://www.ti.com/lpw
<table>
<thead>
<tr>
<th>FEATURES/PRODUCT</th>
<th>CC2400</th>
<th>CC2420</th>
<th>CC2430</th>
<th>CC2431</th>
<th>CC2550</th>
<th>CC2560</th>
<th>CC2570</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product type</td>
<td>Transceiver</td>
<td>Transceiver</td>
<td>SoC</td>
<td>SoC</td>
<td>Transmitter</td>
<td>Transceiver</td>
<td>SoC</td>
</tr>
<tr>
<td>Frequency resolution</td>
<td>1 MHz</td>
<td>1 MHz</td>
<td>1 MHz</td>
<td>1 MHz</td>
<td>427 Hz</td>
<td>427 Hz</td>
<td>427 Hz</td>
</tr>
<tr>
<td>Operating supply voltage</td>
<td>1.8 – 3.6 V</td>
<td>2.1 – 3.6 V</td>
<td>2.0 – 3.6 V</td>
<td>2.0 – 3.6 V</td>
<td>1.8 – 3.6 V</td>
<td>1.8 – 3.6 V</td>
<td>2.0 – 3.6 V</td>
</tr>
<tr>
<td>Current consumption (RX) at 0 dBm (TX)</td>
<td>24.8 mA</td>
<td>17.4 mA</td>
<td>17.4 mA</td>
<td>17.4 mA</td>
<td>19.8 mA</td>
<td>22.8 mA</td>
<td>22.8 mA</td>
</tr>
<tr>
<td>Data rate (max)</td>
<td>1.0 Mbps</td>
<td>250 kbps</td>
<td>250 kbps</td>
<td>250 kbps</td>
<td>500 kbps</td>
<td>500 kbps</td>
<td>500 kbps</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>-101 dBm at 10 kbps and BER > 10-3</td>
<td>-94 dBm at PER > 1%</td>
<td>-94 dBm at PER > 1%</td>
<td>-94 dBm at PER > 1%</td>
<td>N/A</td>
<td>-89 dBm at 250 kbps BER > 10-3</td>
<td>-88 dBm at 100 kbps BER > 10-3</td>
</tr>
<tr>
<td>Programmable output power ranging from</td>
<td>25 to 0 dBm</td>
<td>25 to 0 dBm</td>
<td>24 to 0 dBm</td>
<td>24 to 0 dBm</td>
<td>20 to 1 dBm</td>
<td>20 to 1 dBm</td>
<td>30 to 1 dBm</td>
</tr>
<tr>
<td>Multi channel systems/FRSS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RSSI output</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
<td>N/A</td>
<td>Digital</td>
<td>Digital</td>
</tr>
<tr>
<td>Integrated bit synchronizer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Integrated packet handling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data buffering</td>
<td>32 bytes FIFO</td>
<td>128 bytes TX 128 bytes RX</td>
<td>128 bytes TX 128 bytes RX DMA</td>
<td>128 bytes TX 128 bytes RX DMA</td>
<td>64 bytes</td>
<td>64 bytes TX 64 bytes RX</td>
<td>128 bytes TX 128 bytes RX DMA</td>
</tr>
<tr>
<td>Internal RF switch/IF Filter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Package type</td>
<td>QFN-48, 7x7 mm</td>
<td>QLP-48, 7x7 mm</td>
<td>QLP-48, 7x7 mm</td>
<td>QLP-48, 7x7 mm</td>
<td>QLP-16, 4x4 mm</td>
<td>QLP-20, 4x4 mm</td>
<td>QLP-36, 6x6 mm</td>
</tr>
<tr>
<td>Complies with EN 300 220, FCC CFR 47, part 15 and ARIB STD-T66</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Integrated microcontroller</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Voltage regulator</td>
<td>-</td>
<td>2.1 – 3.6 V</td>
<td>2.0 – 3.6 V</td>
<td>2.0 – 3.6 V</td>
<td>1.8 – 3.6 V</td>
<td>1.8 – 3.6 V</td>
<td>2.0 – 3.6 V</td>
</tr>
<tr>
<td>IEEE 802.15.4 compliant</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hardware MAC encryption/</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>authentication</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Program memory</td>
<td>-</td>
<td>32 kB/64 kB</td>
<td>128 kB Flash</td>
<td>-</td>
<td>-</td>
<td>32 kB Flash</td>
<td></td>
</tr>
<tr>
<td>Data memory</td>
<td>-</td>
<td>4 kB + 4 kB SRAM</td>
<td>4 kB + 4 kB SRAM</td>
<td>-</td>
<td>-</td>
<td>4 kB SRAM</td>
<td></td>
</tr>
</tbody>
</table>
• Get an overview of available resources
 – Software libraries and example code
 – EM Reference design
 – Antenna reference designs
 – Application Notes
 – Design Notes
 – Development kit
 – Development software

• Read available documentation
 – Data sheet
 – User manuals
 – FAQ
• Software development

 – Use or port our software functions.

 – Plan how to test the software before writing it.

 – We recommend IAR as compiler and debugger for our SoCs.

 – Use SmartRF Studio to calculate register settings.

 – Texas Instruments offers free software that can be used to program the flash on SoC.
• Choice of protocol

 – Standard or proprietary solution

 – Mesh or star network

 – Battery or main powered devices

 – How to handle binding and addressing

 – Single channel, frequency agility or frequency hopping
• Copy the reference design

 – TI provides a reference design for all LPW products

 – Important to make an exact copy of both layout and schematics

 – The balun, matching and decoupling should be implemented exactly as on the reference design.
• Recommended layout for solder resist and solder paste

- CC2430
 - Solder resist
 - Paste

- CC2500/CC1100
 - Solder resist
 - Paste
• Choice of antenna
 – Big impact on the total system performance
 – Lower frequency requires larger antennas
 – Not straight forward to simulate PCB antennas
 – Cost and performance vs board size
 – Several reference designs available at: www.ti.com/lpw
• Agenda
 – Development phase
 – Testing
 – Debugging
• How and what to test

– Testing should be divided up in separate parts, independent on each other.

– Hardware and software should be tested separately.

– Hardware testing should be done with known working software, e.g. SmartRF Studio.

– Software testing should be performed with known working hardware, e.g. evaluation modules.
Software Testing

- Verify that the IO interface, typically SPI, is working, by ensuring that register access (writing and reading) functions are working correctly.

- Test RX and TX functionality before the whole protocol is tested.

- Use test signals when testing the software (GDO).
• **Hardware Testing**

 – **Output power**
 - Solder a semi rigid coax cable to the connection point of the antenna and disconnect the antenna.
 - Transmit a carrier, deviation = 0.
 - Measure with a spectrum analyzer or power meter.

 – **Sensitivity**
 - Solder a semi rigid coax cable to the connection point of the antenna and disconnect the antenna.
 - Use a RF generator or development kit as transmitter
 - Monitor the received data on an oscilloscope or a dedicated BER/PER tester.
• Antenna testing

 – Reflection
 • Measured with a network analyzer.
 • Should be less than -10dB or VSWR=2 across the desired frequency band.

 – Radiation pattern
 • Should be measured in an anechoic chamber.

 – Bandwidth
 • Use a test program that steps a carrier across the desired frequency band. Use max hold on spectrum analyzer to measure the variation in output power.
Testing

- Mounting of semi rigid coax cable

- Important to solder the shielding to ground as close as possible to the end of the cable.
• Agenda
 – Development phase
 – Testing
 – Debugging
Check if the problem is SW or HW related.
 – Test the SW with well known working HW, evaluation modules
 – Test the HW with well known working SW, SmartRF Studio

If it is hardware related:
 – Compare the design with our reference design.
 – Check mounting of the chip and other components.
 – Mount the radio on our EM to check if the chip is damaged.

If it is software related:
 – Compare the code with our software examples and libraries.
 – Test the functionality of each “module” to isolate the problem.
 – Compare register settings with values in SmartRF Studio.
Connecting a custom module to SmartRF04EB

- Transceivers: CSn, SCLK, SI, SO, VCC, GND.
- SoC: DD, DC Reset_n, VCC, GND.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Used to set correct voltage for the voltage level converter</td>
</tr>
<tr>
<td>3</td>
<td>Debug Clock (DC)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Debug Data (DD)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CSn</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SCLK</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reset_N</td>
<td>Delivers VDD from SmartRF04EB</td>
</tr>
<tr>
<td>8</td>
<td>MOSI</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.3V VDD, alt. NC</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MISO</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: P14 SoC debug connector pin-out
• Common problems with SmartRF04EB.

 – The jumper on the power terminal is not in place.
 – SoC EM is not removed when upgrading the SmartRF04EB firmware.
 – The SmartRF04EB boot loader has been erased.
 – CCXX50 is used instead of CCXX00.
 – Different voltage level on SmartRF04EB and prototype
Thank you for your attention.

Questions?
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third-party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise concerning the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI.

Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>Low Power Wireless</td>
<td>Video & Imaging</td>
</tr>
</tbody>
</table>

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

- amplifier.ti.com
- dataconverter.ti.com
- dsp.ti.com
- interface.ti.com
- logic.ti.com
- power.ti.com
- microcontroller.ti.com
- www.ti-rfid.com
- www.ti.com/lpw

- www.ti.com/audio
- www.ti.com/automotive
- www.ti.com/broadband
- www.ti.com/digitalcontrol
- www.ti.com/military
- www.ti.com/opticalnetwork
- www.ti.com/security
- www.ti.com/telephony
- www.ti.com/video
- www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated