
  

Texas Instruments Robotics System Learning Kit 



 
 
 
 
  Module 10 
Introduction: Debugging Real-time Systems 
 



Introduction: Debugging Real-time Systems   
 
 

 
 
2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition  

SEKP109 
 

Educational Objectives:  
 
REVIEW C programming arrays 
UNDERSTAND how flash memory operates 
EXPLORE debugging techniques for real-time systems  
LEARN how to generate periodic interrupts using SysTick  
INTERFACE bump switches to the robot  
DESIGN, BUILD & TEST A SYSTEM  

Stores input data into a black-box recorder 
 
Prerequisites (Modules 6, 8, and 9) 
• GPIO digital inputs (Module 6) 
• Switches and LEDs (Module 8) 
• SysTick timer (Module 9) 
 
Recommended reading materials for students: 

• Chapter 10, Embedded Systems: Introduction to Robotics,  
Jonathan W. Valvano, ISBN: 9781074544300, copyright © 2019 

 
System verification is an important task when developing embedded systems, 
especially if the system is to be deployed in safety critical situations. 
Furthermore, in a real-time system, it is not only important to get the correct 
answer, it is important to get the correct answer at the correct time. Latency is 
the time between when a service is requested and the time when service is 
initiated. Similarly, response time is the time between when a service is 
requested and the time when service is complete.  A real-time system is one that 
can guarantee a worst-case latency. Alternatively, we can categorize a system 
as real time if there is an upper bound on the response time. 

Some requests occur periodically, and in this module we will use SysTick 
interrupts to execute tasks on a regular basis.  
 
The second component to this module is to develop debugging techniques for 
real-time systems. Intrusiveness is defined as the degree to which the 
debugging code itself alters the performance of the system being tested. 
Breakpoints, single stepping, and printf output are high intrusive, and thus not 
appropriate for debugging real-time systems. Rather we will learn how to dump 
strategic information into arrays, providing similar observations as the classical 
printf statement, but in a minimally intrusive manner. For logging, debugging data 
for long periods of time, we can dump data into the flash ROM of the 
microcontroller. 

 
In the lab associated with this module, you will interface bump sensors with the 
microcontroller, see Figure 1. These switches will allow you to know if and where 
the robot has contacted an obstacle. Data from the line sensor and bump 
sensors will be collected periodically using SysTick interrupts. Using interrupts to 
handle the line sensor provides a processor-efficient solution. 
 

 
 
Figure 1. Bump sensors, positioned at the front of the robot. 
 
The basic approach to a system requiring multiple software tasks is to deploy 
multithreading. A thread is defined as the action caused by executing software. 
From an etymological point of view, consider the thread as the bond that stitches 
instructions together as software executes. One software thread is the traditional 
main program, which runs most of the time. Interrupts will be used to create 
additional threads. An interrupt is a hardware-triggered software execution. In 
this module, the SysTick interrupt will execute a software task periodically. In 
Module 13, we will use timers to create PWM outputs. In Module 14, we will use 
edge-triggered interrupts so a software task is executed immediately if any of the 
bump sensors are activated. 



 

ti.com/rslk 



IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	RSLK MAX_10_Debugging_Intro_NEW-Final
	TI-RSLKMax_Cover

