

Texas Instruments Robotics System Learning Kit

 Module 16
Lab 16: Tachometer

 Lab: Tachometer

 2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP141

16.0 Objectives

The purpose of this lab is to develop the software needed to measure motor
speed. In this module,

1. You will learn more about the MSP432 Timer_A module.
2. You will configure Timer A3 for input capture measurements.
3. You will develop low-level software drivers to measure distance and

speed of the two motors on the robot.

Good to Know: A typical application for embedded systems is control. Sensors
measure the state of the system (motor speed), and software adjusts the
actuator (PWM to motors) in an attempt to control the system in a desired
manner (constant speed).

16.1 Getting Started
16.1.1 Software Starter Projects
Look at these two projects:
PeriodMeasure (uses a timer A0 to measure period on P7.3)
Lab16_Tach (starter project for this lab)

Note: You will not be able to run the PeriodMeasure project on the robot
because this project uses Timer A0, and you are using Timer A0 for the robot’s
PWM outputs. You will use Timer A3 for the tachometer. Timers A1 and A2 are
free to use as periodic interrupts.

16.1.2 Student Resources (in datasheet directory)
 MSP432P4xx Technical Reference Manual, Timer_A (SLAU356)
 MSP432P401R Datasheet, msp432p401m.pdf (SLAS826)
 Circuit diagram for TI-RSLK board

16.1.3 Reading Materials
Chapter 16, “Embedded Systems: Introduction to Robotics"

16.1.4 Components needed for this lab
All components needed for this lab are included in the TI-RSLK MAX robot kit
(TIRSLK-EVM). Batteries will be needed to power your robot.

Quantity Description Manufacturer Mfg P/N

1

TI-RSLK Max robot kit

TI

TIRSK-EVM

16.1.5 Lab equipment needed
Oscilloscope (one or two channels at least 10 kHz sampling)
Logic Analyzer (4 channels at least 10 kHz sampling

16.2 System Design Requirements

The first goal of this lab is to write Timer_A software that can measure period
from the two encoders. The counter of Timer_A is 16 bits wide, so the period
measurement will have a precision of 16 bits. This means you can measure
about 65536 different periods. The resolution is defined as the smallest change
in period that the measurement can distinguish. The resolution in input capture
mode is equal to the period of the selected clock. If you choose the SMCLK at 12
MHz and a prescale of 1, the period measurement resolution will be 83.33 ns.
The maximum period that can be measured is the precision in alternatives times
the resolution. At this clock and prescale, the maximum period that can be
measured is about 5.4 ms.

The second goal is the use the period to determine motor speed. Since there are
360 pulses per rotation, this 5.4-ms maximum means the slowest motor speed
that can be measured will be about 30 rpm. If Period is the period in 83.33-ns
units, then the Speed in rpm can be calculated as

Speed (rpm) = (rotation/360pulses)*(1,000,000,000ns/sec)
*(60sec/min)/(Period*83.33ns/pulse)

or

Speed = 2,000,000/Period

The third goal is to use the second input of the encoder to determine which
direction the motor is spinning. You will write software that counts the number of
pulses observed on each wheel as the robot moves. You will add to a counter as
the robot moves forward, and you will subtract from a counter as the robot moves
backward.

 Lab: Tachometer

 3 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP141

16.3 Experiment set-up
You have already built the robot in lab 5, where you attached the motors and
encoders and interfaced with the MSP432_LaunchPad,
Refer to the schematics of the TI-RSLK chassis board and encoder to see how to
connect the motors and encoders.

Figure 1. TI-RSLK chassis board connecting the encoders to the MSP432.

LaunchPad TI-RSLK
chassis board Encoder Description

P10.5/TA3CCP1 ELA OUT A Left Encoder A

P5.2/GPIO ELB OUT B Left Encoder B

P10.4/TA3CCP0 ERA OUT A Right Encoder A

P5.0/GPIO ERB OUT B Right Encoder B

16.4 System Development Plan

16.4.1 Study the existing input capture

An efficient mechanism for learning a new skill is to first study existing art. The
project PeriodMeasure will measure the period on P7.3 using Timer A0. You
can connect a 0 to 3.3V digital wave to P7.3 using a signal generator, or you can
use this main program to create a test wave. To use this program you will need
to connect P2.4 output to the P7.3 input.

void PeriodMeasure(uint16_t time){
 P2_0 = P2_0^0x01; // thread profile, P2.0
 Period = (time - First)&0xFFFF; // 16 bits, 83.3 ns
 First = time; // setup for next
 Done = 1;
}
#define PERIOD 1000 // must be even
// connect P2.4 output to P7.3
// creates a PERIOD (us) wave out P2.4
int main(void){
 Clock_Init48MHz(); // 48 MHz; 12 MHz Timer A clock
 First = 0; // first will be wrong
 Done = 0; // set on subsequent
 TimerA0Capture_Init(&PeriodMeasure);// capture mode
 P2->SEL0 &= ~0x11;
 P2->SEL1 &= ~0x11; // configure P2.0 and P2.4 as GPIO
 P2->DIR |= 0x11; // P2.0 and P2.4 outputs
 EnableInterrupts();
 while(1){
 P2_4 ^= 0x01; // create output
 Clock_Delay1us(PERIOD/2);
 }
}

 Lab: Tachometer

 4 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP141

The resolution of the measurement is 1/12MHz = 83.33 ns and the range is about
10 us to 5.44 ms. If the period is 1 ms, then the software will return a result of
12000. This example uses bit-banding to access Port 2 in order to eliminate the
critical section caused by the read-modify-write access to the shared global (P2-
>OUT).

 Note: You will not be able to complete this lab without reading the MSP432 data
sheet. Look at the chapter on Timer_A, and go line by line through the existing
TimerA1_Init and TA1_0_IRQHandler functions within the PeriodMeasure
project. This measurement works, but you need to understand each line, by
looking up each of the registers it accesses. Once you understand each line, you
will be able to convert it from measuring on P7.3 using Timer A0 to measuring
both P10.4 and P8.2 using Timer A3.

Warning: Please ensure the +5V jumper on the MSP432 LaunchPad is
disconnected or removed. Not removing this jumper will cause permanent
damage to the LaunchPad and the TI-RSLK chassis board.

16.4.2 Low-level software driver

Write the low-level driver to handle input capture on P10.4 and P10.5 using
Timer A3. The prototype for the low-level driver is:

void TimerA3Capture_Init(void(*task0)(uint16_t time),
 void(*task2)(uint16_t time));

This is an example of a vectored interrupt. The rising edge of P10.4 will cause an
interrupt on TA3_0_IRQHandler, and the rising edge of P8.2 will cause an
interrupt on TA3_N_IRQHandler. The TA3_0_IRQHandler ISR will call the user
function passed in via the task0 parameter, and the TA3_N_IRQHandler ISR will
call the user function passed in via the task2 parameter. The captured time of
the edge is passed from the ISR to the user function in a manner similar to the
PeriodMeasure project. You can use Program16_1 to test the low-level driver.
Place the robot on blocks so the wheels do not touch the ground while
performing initial testing.

uint16_t Period0; // (1/SMCLK) units = 83.3 ns units
uint16_t First0; // Timer A3 first edge, P10.4
int Done0; // set each rising
void PeriodMeasure0(uint16_t time){
 P2_0 = P2_0^0x01; // thread profile, P2.0
 Period0 = (time-First0)&0xFFFF; // 16 bits, 83.3 ns
 First0 = time; // setup for next
 Done0 = 1;
}
uint16_t Period1; // (1/SMCLK) units = 83.3 ns units
uint16_t First1; // Timer A3 first edge, P8.2
int Done1; // set each rising
void PeriodMeasure1(uint16_t time){
 P2_4 = P2_4^0x01; // thread profile, P2.4
 Period1 = (time-First1)&0xFFFF; // 16 bits, 83.3 ns
 First1 = time; // setup for next
 Done1 = 1;
}
int Program16_1(void){
 Clock_Init48MHz(); // 48 MHz; 12 MHz Timer A
 P2->SEL0 &= ~0x11;
 P2->SEL1 &= ~0x11; // P2.0 and P2.4 as GPIO
 P2->DIR |= 0x11; // P2.0 and P2.4 outputs
 First0 = First1 = 0; // first will be wrong
 Done0 = Done1 = 0; // set on subsequent
 Motor_Init(); // activate Lab 13 software
 TimerA3Capture_Init(&PeriodMeasure0,&PeriodMeasure1);
 Motor_Forward(7500,7500); // 50%
 EnableInterrupts();
 while(1){
 WaitForInterrupt();
 }
}

 Note: Feel free to modify any of the details of how it works, as long as the
overall system can measure motor speed for both wheels.

Adjust the period measurement resolution so that the system can measure
period for a range of motor duty cycles from 25 to 100%

 Lab: Tachometer

 5 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP141

16.4.3 Mid-level software driver

Write the software to convert the period measurements into motor speed in rpm.
Perform a static motor test while the robot is still on the blocks. For duty cycles
{25, 50, 75, and 100%}, measure the motor speed of each motor in RPM.

Write a test program that periodically collects motor speeds versus time using a
100 Hz periodic interrupt. Include the bumper driver from Lab 10 or Lab 14 so the
robot stops on a collision. Dump power (duty cycle) and speed data into buffers
similar to Lab 10. For very long tests, you can dump into flash ROM. For shorter
tests, you can dump into RAM. In the main program, perform these steps running
the robot for 10 seconds.

1. Run forward at 25% duty cycle for 2 seconds
2. Run forward at 50% duty cycle for 2 seconds
3. Run forward at 75% duty cycle for 2 seconds
4. Run forward at 100% duty cycle for 2 seconds
5. Run forward at 25% duty cycle for 2 seconds
6. Stop the motors and stop the recording

Run this motor test on blocks and on a flat surface. We define the time
constant, τ, of the motor as the time it takes to achieve (1-e-1) = 0.63 of the final
speed, given a step change in power to the motor. Fit the speed versus time data
to an exponential to estimate the time-constant of your motors.

y(t) = S0+ΔS e-t/τ

where S0, ΔS, and τ are least squares fit of the y(t) data verses time. Initial time
is defined at the point the duty cycle was changed.

16.4.4 High-level software driver

Extend the measurement to initialize the other two input pins. Create two global
signed 32-bit counters, one for each motor. In addition to measuring period and
motor speed, count the number of edges on each encoder. On each edge add
one if moving forward and subtract one if moving backward.

16.5 Troubleshooting

Input capture interrupts do not occur:

• Check to see if the edges are occurring on P10.5 and P10.4
• Check to see if the trigger flags are being set. Bit 0 of the register

TIMER_A3->CCTL[0] should be set by edge of P10.4, and bit 0 of the
register TIMER_A3->CCTL[1] should be set by edge of P10.5.

• Check to see if the arm bits are set in Timer A3. Bit 4 of the register
TIMER_A3->CCTL[0] arms P10.4, and bit 4 of the register TIMER_A3-
>CCTL[1] arms P10.5.

• Check to see if the enable bits are set in the NVIC for Timer A3. Bit 14
of the register NVIC->ISER[0] enables T3_0 (P10.4) and bit 15 enables
T3_N (P10.5).

• Check to see if the I-bit in the processor is clear.

Interrupts occur over and over:

• Check the hardware with a scope or logic analyzer to make sure the
sensor is operating properly

• Make sure you clear the trigger flag (acknowledge) in the ISR. Bit 0 of
the register TIMER_A3->CCTL[0] should be cleared by software in the
ISR of P10.4, and bit 0 of the register TIMER_A3->CCTL[1] should be
cleared by software in the ISR for P10.5

16.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to understand Timer_A and its use for
measuring period.

• What does the prescaler do for Timer_A? Why is the prescaler
important (i.e., what happens when you change the prescale?)

• What is the precision of the period measurement mean and how is it
determined?

• What happens if the motor spins too slowly, e.g., less than 30 RPM?
• What happens if the motor stops, e.g., does not spin at all?
• How do we debug this system if the robot is moving along the ground?
• Why is the time constant of the motor differ if the robot is on blocks

versus on the ground?

 Lab: Tachometer

 6 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP141

16.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• If you completed Lab 11, add LCD outputs for each of the test functions.
Remember to perform LCD output only in the main program and not
during an ISR.

• Add software to detect if the motor has stopped or moving less than 30
PRM. Deploy a periodic interrupt that counts the time with the
semaphore clear. If 10ms has elapsed and the semaphore is still clear,
you can assume the motor is moving slowly or has stopped.

• You could configure the measurement to interrupt on rising and falling
edges of all four encoder pins. For each encoder define period as the
time from one edge to the next edge, see Figure 1. This means there
will be 4*360 (1440) edges per one rotation. In this approach, there are
four times as many interrupts. This results in four times the resolution
and four times the rate at which measurements are obtained. With the
SMCLK at 12 MHz and prescale at 1, the maximum time that can be
measured is still 5.4 ms. Consequently, this means the slowest motor
speed that can be measured will be about 7.5 rpm.

• If you consider how the speed measurement will be used, you will find a
new speed measurement will be needed every 10 ms. During this 10-
ms time, there could be multiple input capture events. If the data is
needed only once every 10 ms, you can see some data is collected and
never used. We learned in previous modules that averaging can
improve SNR. Consider this period measurement algorithm that
averages all measurements in one 10-ms interval:

Initially, set count equal to zero. During an input capture interrupt

1. If count is 0, set first = time from TIMER_A3->CCTL[]
2. If count > 0, set last = time from TIMER_A3->CCTL[]
3. Increment count

During 10-ms periodic interrupt

1. If count < 2, set period = max value (too slow)
2. If count >= 2, set period = (last-first)/(count-1)
3. Set count equal to zero
4. Calculate speed from period

16.8 Which modules are next?

Module 17) Combine modules 12, 13, and 16 to create a control system that
does spin the motors at a desired speed.

16.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Understand the relationship between duty cycle and speed,
experiencing the effect of friction.

• Be able to use input capture to measure speed.
• Know how to use interrupts to build complex real-time systems.
• Know how to write and test a low-level software driver.

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	RSLL MAX_16_Tach_Lab_NEW
	16.0 Objectives
	16.1 Getting Started
	16.1.1 Software Starter Projects
	16.1.2 Student Resources (in datasheet directory)
	16.1.3 Reading Materials
	16.1.4 Components needed for this lab
	16.1.5 Lab equipment needed

	16.2 System Design Requirements
	16.3 Experiment set-up
	16.4 System Development Plan
	16.4.1 Study the existing input capture
	16.4.2 Low-level software driver
	16.4.3 Mid-level software driver
	16.4.4 High-level software driver

	16.5 Troubleshooting
	16.6 Things to think about
	16.7 Additional challenges
	16.8 Which modules are next?
	16.9 Things you should have learned

	TI-RSLKMax_Cover

