Chapter Excerpt from SLAU208



Chapter 1 SLAU402F-August 2012-Revised March 2018

# Real-Time Clock (RTC\_A)

**NOTE:** This chapter is an excerpt from the *MSP430x5xx and MSP430x6xx Family User's Guide*. The latest version of the full user's guide is available from http://www.ti.com/lit/pdf/slau208.

The Real-Time Clock (RTC\_A) module provides clock counters with a calendar, a flexible programmable alarm, and calibration. This chapter describes the RTC\_A module.

#### Topic

Page

| 1.1 | RTC_A Introduction | 2  |
|-----|--------------------|----|
| 1.2 | RTC_A Operation    | 4  |
| 1.3 | RTC_A Registers    | 10 |



#### RTC\_A Introduction

www.ti.com

### 1.1 RTC\_A Introduction

The RTC\_A module provides a real-time clock and calendar function that can also be configured as a general-purpose counter.

RTC\_A features include:

- Configurable for real-time clock with calendar function or general-purpose counter
- Provides seconds, minutes, hours, day of week, day of month, month, and year in real-time clock with calendar function
- Interrupt capability
- Selectable BCD or binary format in real-time clock mode
- Programmable alarms in real-time clock mode
- Calibration logic for time offset correction in real-time clock mode

The RTC\_A block diagram is shown in Figure 1-1.

#### NOTE: Real-time clock initialization

Most RTC\_A module registers have no initial condition. These registers must be configured by user software before use.



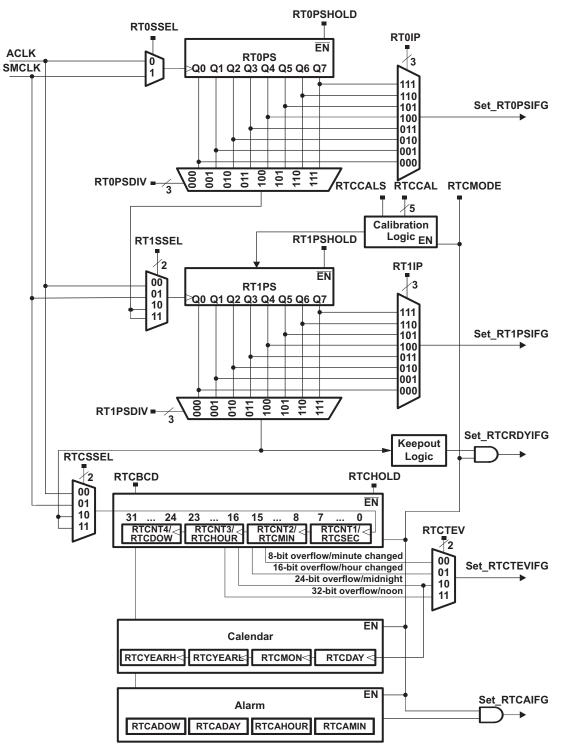



Figure 1-1. RTC\_A



### 1.2 RTC\_A Operation

The RTC\_A module can be configured as a real-time clock with calendar function (calendar mode) or as a 32-bit general purpose counter (counter mode) with the RTCMODE bit.

#### 1.2.1 Counter Mode

Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is directly accessible by software. Switching from calendar mode to counter mode resets the count value (RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as the prescale counters (RT0PS, RT1PS).

The clock to increment the counter can be sourced from ACLK, SMCLK, or prescaled versions of ACLK or SMCLK. Prescaled versions of ACLK or SMCLK are sourced from the prescale dividers (RT0PS and RT1PS). RT0PS and RT1PS output /2, /4, /8, 16, /32, /64, /128, and /256 versions of ACLK and SMCLK, respectively. The output of RT0PS can be cascaded with RT1PS. The cascaded output can be used as a clock source input to the 32-bit counter.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit, or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter, RTCNT1 through RTCNT4, is individually accessible and may be written to.

RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter. RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD causes both RT0PS and RT1PS to be halted. The 32-bit counter can be halted several ways depending on the configuration. If the 32-bit counter is sourced directly from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD, RT1PSHOLD, or RTCHOLD.

#### NOTE: Accessing the RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, RT1PS registers

When the counter clock is asynchronous to the CPU clock, any read from any RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, or RT1PS register should occur while the counter is not operating. Otherwise, the results may be unpredictable. Alternatively, the counter may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to these registers takes effect immediately.

### 1.2.2 Calendar Mode

Calendar mode is selected when RTCMODE is set. In calendar mode, the RTC\_A module provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal format. The calendar includes a leap-year algorithm that considers all years evenly divisible by four as leap years. This algorithm is accurate from the year 1901 through 2099.

#### 1.2.2.1 Real-Time Clock and Prescale Dividers

The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-s clock interval for the RTC\_A. RT0PS is sourced from ACLK. ACLK must be set to 32768 Hz (nominal) for proper RTC\_A calendar operation. RT1PS is cascaded with the output ACLK/256 of RT0PS. The RTC\_A is sourced with the /128 output of RT1PS, thereby providing the required 1-s interval. Switching from counter to calendar mode clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be selected before the time is set. Changing the state of RTCBCD clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are cleared.



In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD, RT1PSHOLD, and RTCSSEL bits are don't care. Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS and RT1PS.

### 1.2.2.2 Real-Time Clock Alarm Function

The RTC\_A module provides for a flexible alarm system. There is a single user-programmable alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours, day of week, and day of month. The user-programmable alarm function is only available in the calendar mode of operation.

Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.

- Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour; that is, at 00:15:00, 01:15:00, 02:15:00, and so on. This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the AF is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00, etc.
- Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled, the AF is set when the count transitions from 03:59:59 to 04:00:00.
- Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00. In this case, the alarm event occurs every day at 06:30:00.
- Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW, RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.
- Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be set to 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADAY, RTCAHOUR and RTCAMIN, the alarm is enabled. Once enabled, the AF is set when the the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.

#### NOTE: Invalid alarm settings

Invalid alarm settings are not checked via hardware. It is the user's responsibility to ensure that valid alarm settings are entered.

#### NOTE: Invalid time and date values

Writing of invalid date and/or time information or data values outside the legal ranges specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH, RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable behavior.

#### NOTE: Setting the alarm

To prevent potential erroneous alarm conditions from occurring, the alarms should be disabled by clearing the RTCAIE, RTCAIFG, and AE bits prior to writing new time values to the RTC time registers.

### 1.2.2.3 Reading or Writing Real-Time Clock Registers in Calendar Mode

Because the system clock may be asynchronous to the RTC\_A clock source, special care must be taken when accessing the real-time clock registers.



#### RTC\_A Operation

In calendar mode, the real-time clock registers are updated once per second. To prevent reading any realtime clock register at the time of an update, which could result in an invalid time being read, a keepout window is provided. The keepout window is centered approximately -128/32768 s around the update transition. The read-only RTCRDY bit is reset during the keepout window period and set outside the keepout the window period. Any read of the clock registers while RTCRDY is reset is considered to be potentially invalid, and the time read should be ignored.

An easy way to safely read the real-time clock registers is to use the RTCRDYIFG interrupt flag. Setting RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt is generated based on the rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has nearly a complete second to safely read any or all of the real-time clock registers. This synchronization process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically when the interrupt is serviced, or can be reset with software.

In counter mode, the RTCRDY bit remains reset. RTCRDYIE is a don't care and RTCRDYIFG remains reset.

#### NOTE: Reading or writing real-time clock registers

When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC, RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, or RTCYEARH register while the RTCRDY is reset may result in invalid data being read. To safely read the counting registers, either polling of the RTCRDY bit or the synchronization procedure previously described can be used. Alternatively, the counter register can be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Reading the RTOPS and RT1PS can only be handled by reading the registers multiple times and a majority vote taken in software to determine the correct reading.

Any write to any counting register takes effect immediately. However, the clock is stopped during the write. In addition, RT0PS and RT1PS registers are reset. This could result in losing up to 1 s during a write. Writing of data outside the legal ranges or invalid time stamp combinations results in unpredictable behavior.

### 1.2.3 Real-Time Clock Interrupts

The RTC\_A module has five interrupt sources available, each with independent enables and flags.

### 1.2.3.1 Real-Time Clock Interrupts in Calendar Mode

In calendar mode, five sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG, RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to source a single interrupt vector. The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt.

The highest-priority enabled interrupt generates a number in the RTCIV register (see register description). This number can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value.

Any access, read or write, of the RTCIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. In addition, all flags can be cleared via software.

The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE enables the interrupt. In addition to the user-programmable alarm, the RTC\_A module provides for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00) or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt.

The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.



RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In calendar mode, RT0PS is sourced with ACLK at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz, 1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt.

RT1PSIFG can generate interrupt intervals selectable by the RT1IP bits. In calendar mode, RT1PS is sourced with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt.

### 1.2.3.2 Real-Time Clock Interrupts in Counter Mode

In counter mode, three interrupt sources are available: RT0PSIFG, RT1PSIFG, and RTCTEVIFG. RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are don't care.

RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode, RT0PS is sourced with ACLK or SMCLK, so divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the respective clock source are possible. Setting the RT0PSIE bit enables the interrupt.

RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode, RT1PS is sourced with ACLK, SMCLK, or the output of RT0PS, so divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt.

The RTC\_A module provides for an interval timer that sources real-time clock interrupt, RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit, or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit enables the interrupt.

### 1.2.3.2.1 RTCIV Software Example

The following software example shows the recommended use of RTCIV and the handling overhead. The RTCIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself.

| ; Interrupt ha | ndler for RTC in | nterrupt flags.            | Cycles |
|----------------|------------------|----------------------------|--------|
| RTC_HND        |                  | ; Interrupt latency        | 6      |
| ADD            | &RTCIV,PC        | ; Add offset to Jump table | 3      |
| RETI           |                  | ; Vector 0: No interrupt   | 5      |
| JMP            | RTCRDYIFG_HND    | ; Vector 2: RTCRDYIFG      | 2      |
| JMP            | RTCTEVIFG_HND    | ; Vector 4: RTCTEVIFG      | 2      |
| JMP            | RTCAIFG          | ; Vector 6: RTCAIFG        | 5      |
| JMP            | RTOPSIFG         | ; Vector 8: RTOPSIFG       | 5      |
| JMP            | RT1PSIFG         | ; Vector A: RT1PSIFG       | 5      |
| RETI           |                  | ; Vector C: Reserved       | 5      |
| RTCRDYIFG_HND  |                  | ; Vector 2: RTCRDYIFG Flag |        |
| to             |                  | ; Task starts here         |        |
| RETI           |                  |                            | 5      |
| RTCTEVIFG_HND  |                  | ; Vector 4: RTCTEVIFG      |        |
| to             |                  | ; Task starts here         |        |
| RETI           |                  | ; Back to main program     | 5      |
| RTCAIFG_HND    |                  | ; Vector 6: RTCAIFG        |        |
| to             |                  | ; Task starts here         |        |
| RT0PSIFG_HND   |                  | ; Vector 8: RTOPSIFG       |        |
| to             |                  | ; Task starts here         |        |
| RT1PSIFG_HND   |                  | ; Vector A: RT1PSIFG       |        |
| to             |                  | ; Task starts here         |        |



#### RTC\_A Operation

### 1.2.4 Real-Time Clock Calibration

The RTC\_A module has calibration logic that allows for adjusting the crystal frequency in approximately +4-ppm or –2-ppm steps, allowing for higher time keeping accuracy from standard crystals. The RTCCAL bits are used to adjust the frequency. When RTCCALS is set, each RTCCAL LSB causes a  $\approx$  +4-ppm adjustment. When RTCCALS is cleared, each RTCCAL LSB causes a  $\approx$  –2-ppm adjustment. Calibration is available only in calendar mode. In counter mode (RTCMODE = 0), the calibration logic is disabled.

Calibration is accomplished by periodically adjusting the RT1PS counter based on the RTCCALS and RTCCALx settings. In calendar mode, the RT0PS divides the nominial 37268-Hz low-frequency (LF) crystal clock input by 256. A 64-minute period has 32768 cycles/sec × 60 sec/min × 64 min = 125829120 cycles. Therefore a –2-ppm reduction in frequency (down calibration) approximately equates to adding an additional 256 cycles every 125829120 cycles (256/125829120 = 2.035 ppm). This is accomplished by holding the RT1PS counter for one additional clock of the RT0PS output within a 64-minute period. Similary, a +4-ppm increase in frequency (up calibration) approximately equates to removing 512 cycles every 125829120 cycle (512/125829120 = 4.069 ppm). This is accomplished by incrementing the RT1PS counter for two additional clocks of the RT0PS output within a 64-minute period. Each RTCCALx calibration bit causes either 256 LF crystal clock cycles to be added every 64 minutes or 512 LF crystal clock cycles to be subtracted every 64 minutes, giving a frequency adjustment of approximately –2 ppm or +4 ppm, respectively.

To calibrate the frequency, the RTCCLK output signal is available at a pin. The RTCCALF bits can be used to select the frequency rate of the RTCCLK output signal, either no signal, 512 Hz, 256 Hz, or 1 Hz.

The basic flow to calibrate the frequency is as follows:

- 1. Configure the RTCCLK pin.
- 2. Measure the RTCCLK output signal with an appropriate resolution frequency counter; that is, within the resolution required.
- 3. Compute the absolute error in ppm: Absolute Error (ppm) =  $|10^6 \times (f_{\text{MEASURED}} f_{\text{RTCCLK}}) / f_{\text{RTCCLK}}|$ , where  $f_{\text{RTCCLK}}$  is the expected frequency of 512 Hz, 256 Hz, or 1 Hz.
- 4. Adjust the frequency, by performing the following:
  - 1. If the frequency is too low, set RTCALS = 1 and apply the appropriate RTCCALx bits, where RTCCALx = (Absolute Error) / 4.069, rounded to the nearest integer.
  - 2. If the frequency is too high, clear RTCALS = 0 and apply the appropriate RTCCALx bits, where RTCCALx = (Absolute Error) / 2.035, rounded to the nearest integer.

For example, assume that RTCCLK is output at a frequency of 512 Hz. The measured RTCCLK is 511.9658 Hz. The frequency error is approximately 66.8 ppm low. To increase the frequency by 66.8 ppm, RTCCALS would be set, and RTCCAL would be set to 16 (66.8/4.069). Similarly, assume that the measured RTCCLK is 512.0125 Hz. The frequency error is approximately 24.4 ppm high. To decrease the frequency by 24.4 ppm, RTCCALS would be cleared, and RTCCAL would be set to 12 (24.4 / 2.035).

The calibration corrects only initial offsets and does not adjust for temperature and aging effects. This can be handled by periodically measuring temperature and using the crystal's charateristic curve to adjust the ppm based on temperature as required. In counter mode (RTCMODE = 0), the calibration logic is disabled.

#### NOTE: Minimum Possible Calibration

The minimial calibration possible is -4 ppm or +8 ppm. For example, setting RTCCALS = 0 and RTCCAL = 0h would result in a -4 ppm decrease in frequency. Similarly, setting RTCCALS = 1 and RTCCAL = 0h would result in a +8 ppm increase in frequency.



### NOTE: Calibration output frequency

The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not affected by changes in the calibration settings since these output frequencies are generated prior to the calibration logic. The 1-Hz output frequency is affected by changes in the calibration settings. Because the frequency change is small and infrequent over a very long time interval, it can be difficult to observe.



# 1.3 RTC\_A Registers

The RTC\_A module registers are listed in and Table 1-1. The base register for the RTC\_A module registers can be found in the device-specific data sheet. The address offsets are given in Table 1-1.

**NOTE:** All registers have word or byte register access. For a generic register *ANYREG*, the suffix "\_L" (*ANYREG\_L*) refers to the lower byte of the register (bits 0 through 7). The suffix "\_H" (*ANYREG\_H*) refers to the upper byte of the register (bits 8 through 15).

| Offset | Acronym             | Register Name                                             |                    | Access | Reset         |
|--------|---------------------|-----------------------------------------------------------|--------------------|--------|---------------|
| 00h    | RTCCTL01            | Real-Time Clock Control 0, 1                              | Type<br>Read/write | Word   | 4000h         |
| 00h    | RTCCTL0             | Real-Time Clock Control 0                                 | Read/write         | Byte   | 400011<br>00h |
| 0011   | or RTCCTL01 L       |                                                           | itead/write        | Dyte   | 0011          |
| 01h    | RTCCTL1             | Real-Time Clock Control 1                                 | Read/write         | Byte   | 40h           |
| 0111   | or RTCCTL01_H       |                                                           | Read/white         | Dyte   | 4011          |
| 0.0 h  | _                   | Real Time Cleak Control 2, 2                              | Read/write         | Word   | 0000          |
| 02h    | RTCCTL23<br>RTCCTL2 | Real-Time Clock Control 2, 3<br>Real-Time Clock Control 2 |                    |        | 0000h         |
| 02h    |                     | Real-Time Clock Control 2                                 | Read/write         | Byte   | 00h           |
| 0.01   | or RTCCTL23_L       | Deal Time Clask Control 2                                 | Deed/wite          | Dute   | 001           |
| 03h    | RTCCTL3             | Real-Time Clock Control 3                                 | Read/write         | Byte   | 00h           |
|        | or RTCCTL23_H       |                                                           |                    |        |               |
| 08h    | RTCPS0CTL           | Real-Time Prescale Timer 0 Control                        | Read/write         | Word   | 0100h         |
| 08h    | RTCPS0CTLL          |                                                           | Read/write         | Byte   | 00h           |
|        | or RTCPS0CTL_L      |                                                           |                    | _      |               |
| 09h    | RTCPS0CTLH          |                                                           | Read/write         | Byte   | 01h           |
|        | or RTCPS0CTL_H      |                                                           |                    |        |               |
| 0Ah    | RTCPS1CTL           | Real-Time Prescale Timer 1 Control                        | Read/write         | Word   | 0100h         |
| 0Ah    | RTCPS1CTLL          |                                                           | Read/write         | Byte   | 00h           |
|        | or RTCPS1CTL_L      |                                                           |                    |        |               |
| 0Bh    | RTCPS0CTLH          |                                                           | Read/write         | Byte   | 01h           |
|        | or RTCPS0CTL_H      |                                                           |                    |        |               |
| 0Ch    | RTCPS               | Real-Time Prescale Timer 0, 1 Counter                     | Read/write         | Word   | undefined     |
| 0Ch    | RT0PS               | Real-Time Prescale Timer 0 Counter                        | Read/write         | Byte   | undefined     |
|        | or RTCPS_L          |                                                           |                    |        |               |
| 0Dh    | RT1PS               | Real-Time Prescale Timer 1 Counter                        | Read/write         | Byte   | undefined     |
|        | or RTCPS_H          |                                                           |                    |        |               |
| 0Eh    | RTCIV               | Real Time Clock Interrupt Vector                          | Read               | Word   | 0000h         |
| 0Eh    | RTCIV_L             |                                                           | Read               | Byte   | 00h           |
| 0Fh    | RTCIV_H             |                                                           | Read               | Byte   | 00h           |
| 10h    | RTCTIM0             | Real-Time Clock Seconds, Minutes                          | Read/write         | Word   | undefined     |
|        | or RTCNT12          | Real-Time Counter 1, 2                                    |                    |        |               |
| 10h    | RTCSEC              | Real-Time Clock Seconds                                   | Read/write         | Byte   | undefined     |
|        | RTCNT1              | Real-Time Counter 1                                       |                    |        |               |
|        | or RTCTIM0_L        |                                                           |                    |        |               |
| 11h    | RTCMIN              | Real-Time Clock Minutes                                   | Read/write         | Byte   | undefined     |
|        | RTCNT2              | Real-Time Counter 2                                       |                    |        |               |
|        | or RTCTIM0_H        |                                                           |                    |        |               |
| 12h    | RTCTIM1             | Real-Time Clock Hour, Day of Week                         | Read/write         | Word   | undefined     |
|        | or RTCNT34          | Real-Time Counter 3, 4                                    |                    |        |               |
| 12h    | RTCHOUR             | Real-Time Clock Hour                                      | Read/write         | Byte   | undefined     |

| Table     | 1-1. | RTC | Α | Red | jisters |
|-----------|------|-----|---|-----|---------|
| 1 4 5 1 5 |      |     |   |     | 100000  |



|        | Table 1-1. KTC_A Registers (continued) |                                                    |            |        |           |  |  |  |
|--------|----------------------------------------|----------------------------------------------------|------------|--------|-----------|--|--|--|
| Offset | Acronym                                | Register Name                                      | Туре       | Access | Reset     |  |  |  |
|        | RTCNT3                                 | Real-Time Counter 3                                |            |        |           |  |  |  |
|        | or RTCTIM1_L                           |                                                    |            |        |           |  |  |  |
| 13h    | RTCDOW                                 | Real-Time Clock Day of Week                        | Read/write | Byte   | undefined |  |  |  |
|        | RTCNT4                                 | Real-Time Counter 4                                |            |        |           |  |  |  |
|        | or RTCTIM1_H                           |                                                    |            |        |           |  |  |  |
| 14h    | RTCDATE                                | Real-Time Clock Date                               | Read/write | Word   | undefined |  |  |  |
| 14h    | RTCDAY                                 | Real-Time Clock Day of Month                       | Read/write | Byte   | undefined |  |  |  |
|        | or RTCDATE_L                           |                                                    |            |        |           |  |  |  |
| 15h    | RTCMON                                 | Real-Time Clock Month                              | Read/write | Byte   | undefined |  |  |  |
|        | or RTCDATE_H                           |                                                    |            |        |           |  |  |  |
| 16h    | RTCYEAR                                | Real-Time Clock Year                               | Read/write | Word   | undefined |  |  |  |
| 16h    | RTCYEARL                               |                                                    | Read/write | Byte   | undefined |  |  |  |
|        | or RTCYEAR_L                           |                                                    |            |        |           |  |  |  |
| 17h    | RTCYEARH                               |                                                    | Read/write | Byte   | undefined |  |  |  |
|        | or RTCYEAR_H                           |                                                    |            |        |           |  |  |  |
| 18h    | RTCAMINHR                              | Real-Time Clock Minutes, Hour Alarm                | Read/write | Word   | undefined |  |  |  |
| 18h    | RTCAMIN                                | Real-Time Clock Minutes Alarm                      | Read/write | Byte   | undefined |  |  |  |
|        | or RTCAMINHR_L                         |                                                    |            |        |           |  |  |  |
| 19h    | RTCAHOUR                               | Real-Time Clock Hours Alarm                        | Read/write | Byte   | undefined |  |  |  |
|        | or RTCAMINHR_H                         |                                                    |            |        |           |  |  |  |
| 1Ah    | RTCADOWDAY                             | Real-Time Clock Day of Week, Day of Month<br>Alarm | Read/write | Word   | undefined |  |  |  |
| 1Ah    | RTCADOW                                | Real-Time Clock Day of Week Alarm                  | Read/write | Byte   | undefined |  |  |  |
|        | or RTCADOWDAY_L                        |                                                    |            |        |           |  |  |  |
| 1Bh    | RTCADAY                                | Real-Time Clock Day of Month Alarm                 | Read/write | Byte   | undefined |  |  |  |
|        | or RTCADOWDAY_H                        |                                                    |            |        |           |  |  |  |

Table 1-1. RTC\_A Registers (continued)



RTC\_A Registers

www.ti.com

# 1.3.1 RTCCTL0 Register

Real-Time Clock Control 0 Register

| Figure | 1-2. | RTCCTL | 0 Register |
|--------|------|--------|------------|
|--------|------|--------|------------|

| 7        | 6        | 5      | 4        | 3        | 2         | 1       | 0         |
|----------|----------|--------|----------|----------|-----------|---------|-----------|
| Reserved | RTCTEVIE | RTCAIE | RTCRDYIE | Reserved | RTCTEVIFG | RTCAIFG | RTCRDYIFG |
| rO       | rw-0     | rw-0   | rw-0     | rO       | rw-(0)    | rw-(0)  | rw-(0)    |

# Table 1-2. RTCCTL0 Register Description

| Bit | Field     | Туре | Reset | Description                                                                                                                                                     |
|-----|-----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                    |
| 6   | RTCTEVIE  | RW   | Oh    | Real-time clock time event interrupt enable<br>0b = Interrupt not enabled<br>1b = Interrupt enabled                                                             |
| 5   | RTCAIE    | RW   | Oh    | Real-time clock alarm interrupt enable. This bit remains cleared when in counter<br>mode (RTCMODE = 0).<br>0b = Interrupt not enabled<br>1b = Interrupt enabled |
| 4   | RTCRDYIE  | RW   | Oh    | Real-time clock read ready interrupt enable<br>0b = Interrupt not enabled<br>1b = Interrupt enabled                                                             |
| 3   | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                    |
| 2   | RTCTEVIFG | RW   | Oh    | Real-time clock time event flag<br>0b = No time event occurred.<br>1b = Time event occurred.                                                                    |
| 1   | RTCAIFG   | RW   | Oh    | Real-time clock alarm flag. This bit remains cleared when in counter mode (RTCMODE = 0).<br>0b = No time event occurred.<br>1b = Time event occurred.           |
| 0   | RTCRDYIFG | RW   | Oh    | Real-time clock read ready flag<br>0b = RTC cannot be read safely.<br>1b = RTC can be read safely.                                                              |

# 1.3.2 RTCCTL1 Register

Real-Time Clock Control Register 1

| 7      | 6       | 5       | 4      | 3      | 2      | 1      | 0      |
|--------|---------|---------|--------|--------|--------|--------|--------|
| RTCBCD | RTCHOLD | RTCMODE | RTCRDY | RTC    | SSEL   | RTC    | TEV    |
| rw-(0) | rw-(1)  | rw-(0)  | r-(0)  | rw-(0) | rw-(0) | rw-(0) | rw-(0) |

# Table 1-3. RTCCTL1 Register Description

| Bit | Field   | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|---------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RTCBCD  | RW   | Oh    | <ul> <li>Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode (RTCMODE = 1) only; setting is ignored in counter mode.</li> <li>Changing this bit clears seconds, minutes, hours, day of week, and year to 0 and sets day of month and month to 1. The real-time clock registers must be set by software afterwards.</li> <li>0b = Binary (hexadecimal) code selected</li> </ul> |
|     |         |      |       | 1b = Binary coded decimal (BCD) code selected                                                                                                                                                                                                                                                                                                                                                                             |
| 6   | RTCHOLD | RW   | 1h    | Real-time clock hold                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |         |      |       | 0b = Real-time clock (32-bit counter or calendar mode) is operational.                                                                                                                                                                                                                                                                                                                                                    |
|     |         |      |       | 1b = In counter mode (RTCMODE = 0), only the 32-bit counter is stopped. In calendar mode (RTCMODE = 1), the calendar is stopped as well as the prescale counters, RT0PS and RT1PS. RT0PSHOLD and RT1PSHOLD are don't care.                                                                                                                                                                                                |
| 5   | RTCMODE | RW   | 0h    | Real-time clock mode                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |         |      |       | 0b = 32-bit counter mode                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |         |      |       | 1b = Calendar mode. Switching between counter and calendar mode resets the real-time clock counter registers. Switching to calendar mode clears seconds, minutes, hours, day of week, and year to 0 and sets day of month and month to 1. The real-time clock registers must be set by software afterwards. RT0PS and RT1PS are also cleared.                                                                             |
| 4   | RTCRDY  | RW   | 0h    | Real-time clock ready                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |         |      |       | 0b = RTC time values in transition (calendar mode only)                                                                                                                                                                                                                                                                                                                                                                   |
|     |         |      |       | 1b = RTC time values safe for reading (calendar mode only). This bit indicates when the real-time clock time values are safe for reading (calendar mode only). In counter mode, RTCRDY signal remains cleared.                                                                                                                                                                                                            |
| 3-2 | RTCSSEL | RW   | Oh    | Real-time clock source select. Selects clock input source to the RTC/32-bit counter. In calendar mode, these bits are don't care. The clock input is automatically set to the output of RT1PS.<br>00b = ACLK                                                                                                                                                                                                              |
|     |         |      |       | 01b = SMCLK                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |         |      |       | 10b = Output from RT1PS                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |         |      |       | 11b = Output from RT1PS                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1-0 | RTCTEV  | RW   | 0h    | Real-time clock time event                                                                                                                                                                                                                                                                                                                                                                                                |
|     |         |      |       | Counter mode (RTCMODE = 0)                                                                                                                                                                                                                                                                                                                                                                                                |
|     |         |      |       | 00b = 8-bit overflow                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |         |      |       | 01b = 16-bit overflow                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |         |      |       | 10b = 24-bit overflow                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |         |      |       | 11b = 32-bit overflow<br>Calendar mode (RTCMODE = 1)                                                                                                                                                                                                                                                                                                                                                                      |
|     |         |      |       | 00b = Minute changed                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |         |      |       | 01b = Hour changed                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |         |      |       | 10b = Every day at midnight (00:00)                                                                                                                                                                                                                                                                                                                                                                                       |
|     |         |      |       | 11b = Every day at noon (12:00)                                                                                                                                                                                                                                                                                                                                                                                           |



RTC\_A Registers

# 1.3.3 RTCCTL2 Register

Real-Time Clock Control 2 Register

| Figure | 1-4. | RTCCTL2 | Register |
|--------|------|---------|----------|
|--------|------|---------|----------|

| 7       | 6        | 5      | 4      | 3      | 2      | 1      | 0      |
|---------|----------|--------|--------|--------|--------|--------|--------|
| RTCCALS | Reserved |        |        | RTC    | CAL    |        |        |
| rw-(0)  | rO       | rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) | rw-(0) |

### Table 1-4. RTCCTL2 Register Description

| Bit | Field    | Туре | Reset | Description                                                                                                                            |
|-----|----------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RTCCALS  | RW   | 0h    | Real-time clock calibration sign<br>0b = Frequency adjusted down<br>1b = Frequency adjusted up                                         |
| 6   | Reserved | R    | 0h    | Reserved. Always reads as 0.                                                                                                           |
| 5-0 | RTCCAL   | RW   | 0h    | Real-time clock calibration. Each LSB represents approximately +4ppm (RTCCALS = 1) or a $-2ppm$ (RTCCALS = 0) adjustment in frequency. |

# 1.3.4 RTCCTL3 Register

Real-Time Clock Control 3 Register

# Figure 1-5. RTCCTL3 Register

| 7  | 6        | 5  | 4  | 3  | 2  | 1      | 0      |
|----|----------|----|----|----|----|--------|--------|
|    | Reserved |    |    |    |    |        | CALF   |
| rO | rO       | rO | rO | rO | rO | rw-(0) | rw-(0) |

### Table 1-5. RTCCTL3 Register Description

| Bit | Field    | Туре | Reset | Description                                                                                                                                                                                                                                                                                         |
|-----|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-2 | Reserved | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                                                                                                                                                        |
| 1-0 | RTCCALF  | RW   | Oh    | Real-time clock calibration frequency. Selects frequency output to RTCCLK pin<br>for calibration measurement. The corresponding port must be configured for the<br>peripheral module function. The RTCCLK is not available in counter mode and<br>remains low, and the RTCCALF bits are don't care. |
|     |          |      |       | 00b = No frequency output to RTCCLK pin                                                                                                                                                                                                                                                             |
|     |          |      |       | 01b = 512 Hz<br>10b = 256 Hz                                                                                                                                                                                                                                                                        |
|     |          |      |       | 11b = 1  Hz                                                                                                                                                                                                                                                                                         |

# 1.3.5 RTCNT1 Register

Real-Time Clock Counter 1 Register – Counter Mode

|    | Figure 1-6. RTCNT1 Register |    |    |    |    |    |    |  |
|----|-----------------------------|----|----|----|----|----|----|--|
| 7  | 6                           | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | RTCNT1                      |    |    |    |    |    |    |  |
| rw | rw                          | rw | rw | rw | rw | rw | rw |  |

### Table 1-6. RTCNT1 Register Description

| Bit | Field  | Туре | Reset     | Description                                |
|-----|--------|------|-----------|--------------------------------------------|
| 7-0 | RTCNT1 | RW   | undefined | The RTCNT1 register is the count of RTCNT1 |

# 1.3.6 RTCNT2 Register

Real-Time Clock Counter 2 Register - Counter Mode

| 7  | 6  | 5  | 4   | 3   | 2  | 1  | 0  |
|----|----|----|-----|-----|----|----|----|
|    |    |    | RTC | NT2 |    |    |    |
| rw | rw | rw | rw  | rw  | rw | rw | rw |

### Table 1-7. RTCNT2 Register Description

| Bit | Field  | Туре | Reset     | Description                                |
|-----|--------|------|-----------|--------------------------------------------|
| 7-0 | RTCNT2 | RW   | undefined | The RTCNT2 register is the count of RTCNT2 |

# 1.3.7 RTCNT3 Register

Real-Time Clock Counter 3 Register - Counter Mode

#### Figure 1-8. RTCNT3 Register

| 7  | 6  | 5  | 4   | 3    | 2  | 1  | 0  |
|----|----|----|-----|------|----|----|----|
|    |    |    | RTC | CNT3 |    |    |    |
| rw | rw | rw | rw  | rw   | rw | rw | rw |

### Table 1-8. RTCNT3 Register Description

| Bit | Field  | Туре | Reset     | Description                                |
|-----|--------|------|-----------|--------------------------------------------|
| 7-0 | RTCNT3 | RW   | undefined | The RTCNT3 register is the count of RTCNT3 |

### 1.3.8 RTCNT4 Register

Real-Time Clock Counter 4 Register - Counter Mode

| 7  | 6  | 5  | 4   | 3    | 2  | 1  | 0  |
|----|----|----|-----|------|----|----|----|
|    |    |    | RTC | CNT4 |    |    |    |
| rw | rw | rw | rw  | rw   | rw | rw | rw |

### Table 1-9. RTCNT4 Register Description

| Bit | Field  | Туре | Reset     | Description                                 |
|-----|--------|------|-----------|---------------------------------------------|
| 7-0 | RTCNT4 | RW   | undefined | The RTCNT4 register is the count of RTCNT4. |



# 1.3.9 RTCSEC Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Seconds Register – Calendar Mode With Hexadecimal Format

#### Figure 1-10. RTCSEC Register

|     |     |    | -  |      |      |    |    |
|-----|-----|----|----|------|------|----|----|
| 7   | 6   | 5  | 4  | 3    | 2    | 1  | 0  |
|     | 0   |    |    | Seco | onds |    |    |
| r-0 | r-0 | rw | rw | rw   | rw   | rw | rw |

### Table 1-10. RTCSEC Register Description

| Bit | Field   | Туре | Reset     | Description       |
|-----|---------|------|-----------|-------------------|
| 7-6 | 0       | R    | 0h        | Always 0          |
| 5-0 | Seconds | RW   | undefined | Seconds (0 to 59) |

# 1.3.10 RTCSEC Register – Calendar Mode With BCD Format

Real-Time Clock Seconds Register – Calendar Mode With BCD Format

#### Figure 1-11. RTCSEC Register

| 7   | 6  | 5                  | 4  | 3  | 2         | 1           | 0  |
|-----|----|--------------------|----|----|-----------|-------------|----|
| 0   | S  | Seconds – high dig | it |    | Seconds - | – low digit |    |
| r-0 | rw | rw                 | rw | rw | rw        | rw          | rw |

### Table 1-11. RTCSEC Register Description

| Bit | Field                | Туре | Reset     | Description                   |
|-----|----------------------|------|-----------|-------------------------------|
| 7   | 0                    | R    | 0h        | Always 0                      |
| 6-4 | Seconds – high digit | RW   | undefined | Seconds – high digit (0 to 5) |
| 3-0 | Seconds – low digit  | RW   | undefined | Seconds – low digit (0 to 9)  |

# 1.3.11 RTCMIN Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Minutes Register – Calendar Mode With Hexadecimal Format

#### Figure 1-12. RTCMIN Register

|     |     |    | 0  |      | ,    |    |    |
|-----|-----|----|----|------|------|----|----|
| 7   | 6   | 5  | 4  | 3    | 2    | 1  | 0  |
|     | 0   |    |    | Minu | utes |    |    |
| r-0 | r-0 | rw | rw | rw   | rw   | rw | rw |

### Table 1-12. RTCMIN Register Description

| Bit | Field   | Туре | Reset     | Description       |
|-----|---------|------|-----------|-------------------|
| 7-6 | 0       | R    | 0h        | Always 0          |
| 5-0 | Minutes | RW   | undefined | Minutes (0 to 59) |

# 1.3.12 RTCMIN Register – Calendar Mode With BCD Format

Real-Time Clock Minutes Register – Calendar Mode With BCD Format

### Figure 1-13. RTCMIN Register

| 7   | 6  | 5                   | 4  | 3  | 2         | 1           | 0  |
|-----|----|---------------------|----|----|-----------|-------------|----|
| 0   | 1  | Minutes – high digi | t  |    | Minutes - | - low digit |    |
| r-0 | rw | rw                  | rw | rw | rw        | rw          | rw |

#### Table 1-13. RTCMIN Register Description

| Bit | Field                | Туре | Reset     | Description                   |
|-----|----------------------|------|-----------|-------------------------------|
| 7   | 0                    | R    | 0h        | Always 0                      |
| 6-4 | Minutes – high digit | RW   | undefined | Minutes – high digit (0 to 5) |
| 3-0 | Minutes – low digit  | RW   | undefined | Minutes – low digit (0 to 9)  |



# 1.3.13 RTCHOUR Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Hours Register – Calendar Mode With Hexadecimal Format

#### Figure 1-14. RTCHOUR Register

|     |     |     | •  |    | •     |    |    |
|-----|-----|-----|----|----|-------|----|----|
| 7   | 6   | 5   | 4  | 3  | 2     | 1  | 0  |
|     | 0   |     |    |    | Hours |    |    |
| r-0 | r-0 | r-0 | rw | rw | rw    | rw | rw |

#### Table 1-14. RTCHOUR Register Description

| Bit | Field | Туре | Reset     | Description     |
|-----|-------|------|-----------|-----------------|
| 7-5 | 0     | R    | 0h        | Always 0        |
| 4-0 | Hours | RW   | undefined | Hours (0 to 23) |

### 1.3.14 RTCHOUR Register – Calendar Mode With BCD Format

Real-Time Clock Hours Register – Calendar Mode With BCD Format

#### Figure 1-15. RTCHOUR Register

| 7   | 6   | 5                  | 4  | 3                 | 2  | 1  | 0  |
|-----|-----|--------------------|----|-------------------|----|----|----|
|     | 0   | Hours – high digit |    | Hours – Iow digit |    |    |    |
| r-0 | r-0 | rw                 | rw | rw                | rw | rw | rw |

#### Table 1-15. RTCHOUR Register Description

| Bit | Field              | Туре | Reset     | Description                 |
|-----|--------------------|------|-----------|-----------------------------|
| 7-6 | 0                  | R    | 0h        | Always 0                    |
| 5-4 | Hours – high digit | RW   | undefined | Hours – high digit (0 to 2) |
| 3-0 | Hours – low digit  | RW   | undefined | Hours – low digit (0 to 9)  |

# 1.3.15 RTCDOW Register – Calendar Mode

Real-Time Clock Day of Week Register - Calendar Mode

|     |     |     | Figure 1-16. | RTCDOW Reg | ister |             |    |
|-----|-----|-----|--------------|------------|-------|-------------|----|
| 7   | 6   | 5   | 4            | 3          | 2     | 1           | 0  |
|     |     | 0   |              |            |       | Day of week |    |
| r-0 | r-0 | r-0 | r-0          | r-0        | rw    | rw          | rw |

### Table 1-16. RTCDOW Register Description

| Bit | Field       | Туре | Reset     | Description          |
|-----|-------------|------|-----------|----------------------|
| 7-3 | 0           | R    | 0h        | Always 0             |
| 2-0 | Day of week | RW   | undefined | Day of week (0 to 6) |

# 1.3.16 RTCDAY Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Day of Month Register – Calendar Mode With Hexadecimal Format

#### Figure 1-17. RTCDAY Register

| 7   | 6   | 5   | 4  | 3  | 2            | 1  | 0  |
|-----|-----|-----|----|----|--------------|----|----|
|     | 0   |     |    |    | Day of month |    |    |
| r-0 | r-0 | r-0 | rw | rw | rw           | rw | rw |

#### Table 1-17. RTCDAY Register Description

| Bit | Field        | Туре | Reset     | Description                        |
|-----|--------------|------|-----------|------------------------------------|
| 7-5 | 0            | R    | 0h        | Always 0                           |
| 4-0 | Day of month | RW   | undefined | Day of month (1 to 28, 29, 30, 31) |

# 1.3.17 RTCDAY Register – Calendar Mode With BCD Format

Real-Time Clock Day of Month Register – Calendar Mode With BCD Format

#### Figure 1-18. RTCDAY Register

| 7   | 6   | 5           | 4                         | 3  | 2           | 1             | 0  |
|-----|-----|-------------|---------------------------|----|-------------|---------------|----|
|     | 0   | Day of mont | Day of month – high digit |    | Day of mont | h – Iow digit |    |
| r-0 | r-0 | rw          | rw                        | rw | rw          | rw            | rw |

# Table 1-18. RTCDAY Register Description

| Bit | Field                        | Туре | Reset     | Description                        |
|-----|------------------------------|------|-----------|------------------------------------|
| 7-6 | 0                            | R    | 0h        |                                    |
| 5-4 | Day of month – high<br>digit | RW   | undefined | Day of month – high digit (0 to 3) |
| 3-0 | Day of month – low<br>digit  | RW   | undefined | Day of month – low digit (0 to 9)  |



# 1.3.18 RTCMON Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Month Register - Calendar Mode With Hexadecimal Format

#### Figure 1-19. RTCMON Register

| 7   | 6   | 5   | 4   | 3  | 2  | 1   | 0  |
|-----|-----|-----|-----|----|----|-----|----|
|     | (   | )   |     |    | Мо | nth |    |
| r-0 | r-0 | r-0 | r-0 | rw | rw | rw  | rw |

### Table 1-19. RTCMON Register Description

| Bit | Field | Туре | Reset     | Description     |
|-----|-------|------|-----------|-----------------|
| 7-4 | 0     | R    | 0h        | Always 0        |
| 3-0 | Month | RW   | undefined | Month (1 to 12) |

### 1.3.19 RTCMON Register – Calendar Mode With BCD Format

Real-Time Clock Month Register - Calendar Mode With BCD Format

#### Figure 1-20. RTCMON Register

|     |     |     |                       |    | 0         |          |    |
|-----|-----|-----|-----------------------|----|-----------|----------|----|
| 7   | 6   | 5   | 4                     | 3  | 2         | 1        | 0  |
|     | 0   |     | Month – high<br>digit |    | Month – I | ow digit |    |
| r-0 | r-0 | r-0 | rw                    | rw | rw        | rw       | rw |

### Table 1-20. RTCMON Register Description

| Bit | Field              | Туре | Reset     | Description                 |
|-----|--------------------|------|-----------|-----------------------------|
| 7-5 | 0                  | R    | 0h        | Always 0                    |
| 4   | Month – high digit | RW   | undefined | Month – high digit (0 or 1) |
| 3-0 | Month – Iow digit  | RW   | undefined | Month – low digit (0 to 9)  |

# 1.3.20 RTCYEARL Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Year Low-Byte Register – Calendar Mode With Hexadecimal Format

#### Figure 1-21. RTCYEARL Register

|    |    |    | <u> </u> |     | 0  |    |    |
|----|----|----|----------|-----|----|----|----|
| 7  | 6  | 5  | 4        | 3   | 2  | 1  | 0  |
|    |    |    | Ye       | ear |    |    |    |
| rw | rw | rw | rw       | rw  | rw | rw | rw |

### Table 1-21. RTCYEARL Register Description

| Bit | Field | Туре | Reset     | Description                  |
|-----|-------|------|-----------|------------------------------|
| 7-0 | Year  | RW   | undefined | Year – low byte of 0 to 4095 |

# 1.3.21 RTCYEARL Register – Calendar Mode With BCD Format

Real-Time Clock Year Low-Byte Register – Calendar Mode With BCD Format

#### Figure 1-22. RTCYEARL Register

|    |        |    |    |    | <u> </u>  |            |    |
|----|--------|----|----|----|-----------|------------|----|
| 7  | 6      | 5  | 4  | 3  | 2         | 1          | 0  |
|    | Decade |    |    |    | Year – Io | west digit |    |
| rw | rw     | rw | rw | rw | rw        | rw         | rw |

### Table 1-22. RTCYEARL Register Description

| Bit | Field               | Туре | Reset     | Description                  |
|-----|---------------------|------|-----------|------------------------------|
| 7-4 | Decade              | RW   | undefined | Decade (0 to 9)              |
| 3-0 | Year – lowest digit | RW   | undefined | Year – lowest digit (0 to 9) |



# 1.3.22 RTCYEARH Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Year High-Byte Register – Calendar Mode With Hexadecimal Format

#### Figure 1-23. RTCYEARH Register

| 7   | 6   | 5   | 4   | 3  | 2                             | 1  | 0  |  |  |
|-----|-----|-----|-----|----|-------------------------------|----|----|--|--|
|     | 0   |     |     |    | Year – high byte of 0 to 4095 |    |    |  |  |
| r-0 | r-0 | r-0 | r-0 | rw | rw                            | rw | rw |  |  |

### Table 1-23. RTCYEARH Register Description

| Bit | Field | Туре | Reset     | Description                   |
|-----|-------|------|-----------|-------------------------------|
| 7-4 | 0     | R    | 0h        | Always 0                      |
| 3-0 | Year  | RW   | undefined | Year – high byte of 0 to 4095 |

# 1.3.23 RTCYEARH Register – Calendar Mode With BCD Format

Real-Time Clock Year High-Byte Register – Calendar Mode With BCD Format

#### Figure 1-24. RTCYEARH Register

| 7   | 6  | 5                   | 4  | 3  | 2         | 1           | 0  |
|-----|----|---------------------|----|----|-----------|-------------|----|
| 0   | (  | Century – high digi | t  |    | Century - | - low digit |    |
| r-0 | rw | rw                  | rw | rw | rw        | rw          | rw |

#### Table 1-24. RTCYEARH Register Description

| Bit | Field                | Туре | Reset     | Description                   |
|-----|----------------------|------|-----------|-------------------------------|
| 7   | 0                    | R    | 0h        | Always 0                      |
| 6-4 | Century – high digit | RW   | undefined | Century – high digit (0 to 4) |
| 3-0 | Century – low digit  | RW   | undefined | Century – low digit (0 to 9)  |

# 1.3.24 RTCAMIN Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Minutes Alarm Register – Calendar Mode With Hexadecimal Format

#### Figure 1-25. RTCAMIN Register

|    |     |    | 3  |     | 5    |    |    |
|----|-----|----|----|-----|------|----|----|
| 7  | 6   | 5  | 4  | 3   | 2    | 1  | 0  |
| AE | 0   |    |    | Min | utes |    |    |
| rw | r-0 | rw | rw | rw  | rw   | rw | rw |

### Table 1-25. RTCAMIN Register Description

| Bit | Field   | Туре | Reset     | Description                                                                                 |
|-----|---------|------|-----------|---------------------------------------------------------------------------------------------|
| 7   | AE      | RW   | undefined | Alarm enable<br>0b = This alarm register is disabled<br>1b = This alarm register is enabled |
| 6   | 0       | R    | 0h        | Always 0                                                                                    |
| 5-0 | Minutes | RW   | undefined | Minutes (0 to 59)                                                                           |

# 1.3.25 RTCAMIN Register – Calendar Mode With BCD Format

Real-Time Clock Minutes Alarm Register – Calendar Mode With BCD Format

### Figure 1-26. RTCAMIN Register

| 7  | 6  | 5                   | 4  | 3  | 2         | 1           | 0  |
|----|----|---------------------|----|----|-----------|-------------|----|
| AE | 1  | Vinutes – high digi | t  |    | Minutes - | - low digit |    |
| rw | rw | rw                  | rw | rw | rw        | rw          | rw |

### Table 1-26. RTCAMIN Register Description

| Bit | Field                | Туре | Reset     | Description                          |
|-----|----------------------|------|-----------|--------------------------------------|
| 7   | AE                   | RW   | undefined | Alarm enable                         |
|     |                      |      |           | 0b = This alarm register is disabled |
|     |                      |      |           | 1b = This alarm register is enabled  |
| 6-4 | Minutes – high digit | RW   | undefined | Minutes – high digit (0 to 5)        |
| 3-0 | Minutes – low digit  | RW   | undefined | Minutes – Iow digit (0 to 9)         |



# 1.3.26 RTCAHOUR Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Hours Alarm Register - Calendar Mode With Hexadecimal Format

#### Figure 1-27. RTCAHOUR Register

|    |     |     | 0  |    | 0     |    |    |
|----|-----|-----|----|----|-------|----|----|
| 7  | 6   | 5   | 4  | 3  | 2     | 1  | 0  |
| AE |     | 0   |    |    | Hours |    |    |
| rw | r-0 | r-0 | rw | rw | rw    | rw | rw |

### Table 1-27. RTCAHOUR Register Description

| Bit | Field | Туре | Reset     | Description                                                                                 |
|-----|-------|------|-----------|---------------------------------------------------------------------------------------------|
| 7   | AE    | RW   | undefined | Alarm enable<br>0b = This alarm register is disabled<br>1b = This alarm register is enabled |
| 6-5 | 0     | R    | 0h        | Always 0                                                                                    |
| 4-0 | Hours | RW   | undefined | Hours (0 to 23)                                                                             |

# 1.3.27 RTCAHOUR Register – Calendar Mode With BCD Format

Real-Time Clock Hours Alarm Register – Calendar Mode With BCD Format

#### Figure 1-28. RTCAHOUR Register

| 7  | 6   | 5       | 4          | 3  | 2       | 1         | 0  |
|----|-----|---------|------------|----|---------|-----------|----|
| AE | 0   | Hours – | high digit |    | Hours – | low digit |    |
| rw | r-0 | rw      | rw         | rw | rw      | rw        | rw |

### Table 1-28. RTCAHOUR Register Description

| Bit | Field              | Туре | Reset     | Description                          |
|-----|--------------------|------|-----------|--------------------------------------|
| 7   | AE                 | RW   | undefined | Alarm enable                         |
|     |                    |      |           | 0b = This alarm register is disabled |
|     |                    |      |           | 1b = This alarm register is enabled  |
| 6   | 0                  | R    | 0h        | Always 0                             |
| 5-4 | Hours – high digit | RW   | undefined | Hours – high digit (0 to 2)          |
| 3-0 | Hours – low digit  | RW   | undefined | Hours – low digit (0 to 9)           |

# 1.3.28 RTCADOW Register

RTC\_A Registers

Real-Time Clock Day of Week Alarm Register - Calendar Mode

|    |     | Figure 1-29. RTCADOW Register |     |     |    |             |    |  |
|----|-----|-------------------------------|-----|-----|----|-------------|----|--|
| 7  | 6   | 5                             | 4   | 3   | 2  | 1           | 0  |  |
| AE |     | (                             | )   |     |    | Day of week |    |  |
| rw | r-0 | r-0                           | r-0 | r-0 | rw | rw          | rw |  |

# Table 1-29. RTCADOW Register Description

| Bit | Field       | Туре | Reset     | Description                                                                                 |
|-----|-------------|------|-----------|---------------------------------------------------------------------------------------------|
| 7   | AE          | RW   | undefined | Alarm enable<br>0b = This alarm register is disabled<br>1b = This alarm register is enabled |
| 6-3 | 0           | R    | 0h        | Always 0                                                                                    |
| 2-0 | Day of week | RW   | undefined | Day of week (0 to 6)                                                                        |

# 1.3.29 RTCADAY Register – Calendar Mode With Hexadecimal Format

Real-Time Clock Day of Month Alarm Register - Calendar Mode With Hexadecimal Format

### Figure 1-30. RTCADAY Register

| 7  | 6   | 5   | 4  | 3  | 2            | 1  | 0  |
|----|-----|-----|----|----|--------------|----|----|
| AE | (   | 0   |    |    | Day of month |    |    |
| rw | r-0 | r-0 | rw | rw | rw           | rw | rw |

# Table 1-30. RTCADAY Register Description

| Bit | Field        | Туре | Reset     | Description                                                                                 |
|-----|--------------|------|-----------|---------------------------------------------------------------------------------------------|
| 7   | AE           | RW   | undefined | Alarm enable<br>0b = This alarm register is disabled<br>1b = This alarm register is enabled |
| 6-5 | 0            | R    | 0h        | Always 0                                                                                    |
| 4-0 | Day of month | RW   | undefined | Day of month (1 to 28, 29, 30, 31)                                                          |



# 1.3.30 RTCADAY Register – Calendar Mode With BCD Format

Real-Time Clock Day of Month Alarm Register - Calendar Mode With BCD Format

#### Figure 1-31. RTCADAY Register

| 7  | 6   | 5           | 4              | 3  | 2          | 1              | 0  |
|----|-----|-------------|----------------|----|------------|----------------|----|
| AE | 0   | Day of mont | h – high digit |    | Day of mon | th – low digit |    |
| rw | r-0 | rw          | rw             | rw | rw         | rw             | rw |

# Table 1-31. RTCADAY Register Description

| Bit | Field                     | Туре | Reset     | Description                                                                                 |
|-----|---------------------------|------|-----------|---------------------------------------------------------------------------------------------|
| 7   | AE                        | RW   | undefined | Alarm enable<br>0b = This alarm register is disabled<br>1b = This alarm register is enabled |
| 6   | 0                         | R    | 0h        | Always 0                                                                                    |
| 5-4 | Day of month – high digit | RW   | undefined | Day of month – high digit (0 to 3)                                                          |
| 3-0 | Day of month – low digit  | RW   | undefined | Day of month – low digit (0 to 9)                                                           |

# 1.3.31 RTCPS0CTL Register

Real-Time Clock Prescale Timer 0 Control Register

|          |          |      | Figure 1-32. R | CPS0CTL R | egister |         |           |
|----------|----------|------|----------------|-----------|---------|---------|-----------|
| 15       | 14       | 13   | 12             | 11        | 10      | 9       | 8         |
| Reserved | RT0SSEL  |      | RT0PSDIV       |           |         | erved   | RT0PSHOLD |
| rw-0     | rw-0     | rw-0 | rw-0           | rw-0      | rO      | rO      | rw-1      |
| 7        | 6        | 5    | 4              | 3         | 2       | 1       | 0         |
|          | Reserved |      |                | RT0IP     |         | RT0PSIE | RT0PSIFG  |
| rO       | rO       | rO   | rw-0           | rw-0      | rw-0    | rw-0    | rw-(0)    |

| Bit   | Field     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14    | RTOSSEL   | RW   | Oh    | Prescale timer 0 clock source select. Selects clock input source to the RT0PS counter. In real-time clock calendar mode, these bits are do not care. RT0PS clock input is automatically set to the output of RT0PS.<br>0b = ACLK<br>1b = SMCLK                                                                                                                                                                                                                      |
| 13-11 | RTOPSDIV  | RW   | Oh    | Prescale timer 0 clock divide. These bits control the divide ratio of the RT0PS<br>counter. In real-time clock calendar mode, these bits are don't care for RT0PS<br>and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock<br>output is automatically set to /128.<br>00b = Divide by 2<br>01b = Divide by 4<br>10b = Divide by 8<br>11b = Divide by 16<br>00b = Divide by 32<br>01b = Divide by 64<br>10b = Divide by 128<br>11b = Divide by 256 |
| 10-9  | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8     | RTOPSHOLD | RW   | 1h    | Prescale timer 0 hold. In real-time clock calendar mode, this bit is don't care.<br>RT0PS is stopped via the RTCHOLD bit.<br>0b = RT0PS operational<br>1b = RT0PS held                                                                                                                                                                                                                                                                                              |
| 7-5   | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-2   | RTOIP     | RW   | Oh    | Prescale timer 0 interrupt interval<br>00b = Divide by 2<br>01b = Divide by 4<br>10b = Divide by 8<br>11b = Divide by 16<br>00b = Divide by 32<br>01b = Divide by 64<br>10b = Divide by 128<br>11b = Divide by 256                                                                                                                                                                                                                                                  |
| 1     | RTOPSIE   | RW   | Oh    | Prescale timer 0 interrupt enable<br>0b = Interrupt not enabled<br>1b = Interrupt enabled                                                                                                                                                                                                                                                                                                                                                                           |
| 0     | RTOPSIFG  | RW   | Oh    | Prescale timer 0 interrupt flag<br>0b = No time event occurred<br>1b = Time event occurred                                                                                                                                                                                                                                                                                                                                                                          |

# Table 1-32. RTCPS0CTL Register Description



# 1.3.32 RTCPS1CTL Register

Real-Time Clock Prescale Timer 1 Control Register

| Figure 1-33. RTCPS1CTL Register |          |          |      |       |      |           |          |  |
|---------------------------------|----------|----------|------|-------|------|-----------|----------|--|
| 15                              | 14       | 13       | 12   | 11    | 10   | 9         | 8        |  |
| RT1                             | SSEL     | RT1PSDIV |      |       | Rese | RT1PSHOLD |          |  |
| rw-0                            | rw-0     | rw-0     | rw-0 | rw-0  | rO   | rO        | rw-1     |  |
| 7                               | 6        | 5        | 4    | 3     | 2    | 1         | 0        |  |
|                                 | Reserved |          |      | RT1IP |      | RT1PSIE   | RT1PSIFG |  |
| rO                              | rO       | rO       | rw-0 | rw-0  | rw-0 | rw-0      | rw-(0)   |  |

| Bit   | Field     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-14 | RT1SSEL   | RW   | Oh    | Prescale timer 1 clock source select. Selects clock input source to the RT1PS counter. In real-time clock calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of RT0PS.<br>00b = ACLK<br>01b = SMCLK<br>10b = Output from RT0PS<br>11b = Output from RT0PS                                                                                                                                                              |
| 13-11 | RT1PSDIV  | RW   | Oh    | Prescale timer 1 clock divide. These bits control the divide ratio of the RT0PS<br>counter. In real-time clock calendar mode, these bits are don't care for RT0PS<br>and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock<br>output is automatically set to /128.<br>00b = Divide by 2<br>01b = Divide by 4<br>10b = Divide by 8<br>11b = Divide by 16<br>00b = Divide by 32<br>01b = Divide by 64<br>10b = Divide by 128<br>11b = Divide by 256 |
| 10-9  | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8     | RT1PSHOLD | RW   | 1h    | Prescale timer 1 hold. In real-time clock calendar mode, this bit is don't care.<br>RT1PS is stopped via the RTCHOLD bit.<br>0b = RT1PS operational<br>1b = RT1PS held                                                                                                                                                                                                                                                                                              |
| 7-5   | Reserved  | R    | 0h    | Reserved. Always reads as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-2   | RT1IP     | RW   | Oh    | Prescale timer 1 interrupt interval<br>00b = Divide by 2<br>01b = Divide by 4<br>10b = Divide by 8<br>11b = Divide by 16<br>00b = Divide by 32<br>01b = Divide by 64<br>10b = Divide by 128<br>11b = Divide by 256                                                                                                                                                                                                                                                  |
| 1     | RT1PSIE   | RW   | Oh    | Prescale timer 1 interrupt enable<br>0b = Interrupt not enabled<br>1b = Interrupt enabled                                                                                                                                                                                                                                                                                                                                                                           |
| 0     | RT1PSIFG  | RW   | Oh    | Prescale timer 1 interrupt flag<br>0b = No time event occurred<br>1b = Time event occurred                                                                                                                                                                                                                                                                                                                                                                          |

# Table 1-33. RTCPS1CTL Register Description

# 1.3.33 RT0PS Register

Real-Time Clock Prescale Timer 0 Counter Register

| Figure 1-34. RT0PS Register |       |    |    |    |    |    |    |
|-----------------------------|-------|----|----|----|----|----|----|
| 7                           | 6     | 5  | 4  | 3  | 2  | 1  | 0  |
|                             | RTOPS |    |    |    |    |    |    |
| rw                          | rw    | rw | rw | rw | rw | rw | rw |

### Table 1-34. RT0PS Register Description

| Bit | Field | Туре | Reset     | Description                    |
|-----|-------|------|-----------|--------------------------------|
| 7-0 | RTOPS | RW   | Undefined | Prescale timer 0 counter value |

# 1.3.34 RT1PS Register

Real-Time Clock Prescale Timer 1 Counter Register

| Figure 1-35. RTPS1 Register |    |    |    |    |    |    |    |
|-----------------------------|----|----|----|----|----|----|----|
| 7                           | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| RT1PS                       |    |    |    |    |    |    |    |
| rw                          | rw | rw | rw | rw | rw | rw | rw |

### Table 1-35. RT1PS Register Description

| Bit | Field | Туре | Reset     | Description                    |
|-----|-------|------|-----------|--------------------------------|
| 7-0 | RT1PS | RW   | Undefined | Prescale timer 1 counter value |

# 1.3.35 RTCIV Register

Real-Time Clock Interrupt Vector Register

|    |    |    | Figure 1-36 | 6. RTCIV Regi | ster  |       |    |
|----|----|----|-------------|---------------|-------|-------|----|
| 15 | 14 | 13 | 12          | 11            | 10    | 9     | 8  |
|    |    |    | RT          | CIV           |       |       |    |
| rO | rO | rO | rO          | rO            | rO    | rO    | rO |
| 7  | 6  | 5  | 4           | 3             | 2     | 1     | 0  |
|    |    |    | RT          | CIV           |       |       |    |
| rO | rO | rO | r-(0)       | r-(0)         | r-(0) | r-(0) | rO |

### Table 1-36. RTCIV Register Description

| Bit  | Field | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                    |
|------|-------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-0 | RTCIV | R    | Oh    | Real-time clock interrupt vector value         00h = No interrupt pending         02h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG         04h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG         06h = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG         08h = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG |
|      |       |      |       | 0Ah = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG<br>0Ch = Reserved<br>0Eh = Reserved<br>10h = Reserved ; Interrupt Priority: Lowest                                                                                                                                                                                                                           |

#### IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products <a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation modules, and samples (<a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated