
1SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

Chapter 1
SLAU404F–August 2012–Revised March 2018

32-Bit Hardware Multiplier (MPY32)

NOTE: This chapter is an excerpt from the MSP430x5xx and MSP430x6xx Family User's Guide.
The latest version of the full user's guide is avilable from http://www.ti.com/lit/pdf/slau208.

This chapter describes the 32-bit hardware multiplier (MPY32). The MPY32 module is implemented in all
devices.

Topic ... Page

1.1 32-Bit Hardware Multiplier (MPY32) Introduction.. 2
1.2 MPY32 Operation ... 4
1.3 MPY32 Registers .. 16

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F
http://www.ti.com/lit/pdf/slau208

32-Bit Hardware Multiplier (MPY32) Introduction www.ti.com

2 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.1 32-Bit Hardware Multiplier (MPY32) Introduction
The MPY32 is a peripheral and is not part of the CPU. This means its activities do not interfere with the
CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU
instructions.

The MPY32 supports:
• Unsigned multiply
• Signed multiply
• Unsigned multiply accumulate
• Signed multiply accumulate
• 8-bit, 16-bit, 24-bit, and 32-bit operands
• Saturation
• Fractional numbers
• 8-bit and 16-bit operation compatible with 16-bit hardware multiplier
• 8-bit and 24-bit multiplications without requiring a "sign extend" instruction

The MPY32 block diagram is shown in Figure 1-1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

OP1 (high word)

16×16 Multiplier

Accessible
Register

32-bit Adder

RES0/RESLO

OP2 (high word)

15

OP2 (low word)

16

OP2

OP2LOP2HMACS32L

MAC32L

MPYS32L

MPY32L

MACS32H

MAC32H

MPYS32H

MPY32H

MACS

MAC

MPYS

MPY

RES1/RESHIRES2RES3SUMEXT

31 0151631 0

32-bit Demultiplexer

32-bit Multiplexer

16-bit Multiplexer 16-bit Multiplexer

OP1_32
OP2_32

MPYMx

MPYSAT
MPYFRAC

MPYC

2
Control
Logic

OP1 (low word)

www.ti.com 32-Bit Hardware Multiplier (MPY32) Introduction

3SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

Figure 1-1. MPY32 Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

MPY32 Operation www.ti.com

4 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.2 MPY32 Operation
The MPY32 supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed multiply,
unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the operands are
defined by the address the operand is written to and if it is written as word or byte. The type of operation is
selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers – operand one (OP1) and operand two (OP2),
and a 64-bit result register accessible through registers RES0 to RES3. For compatibility with the 16×16
hardware multiplier, the result of a 8-bit or 16-bit operation is accessible through RESLO, RESHI, and
SUMEXT, as well. RESLO stores the low word of the 16×16-bit result, RESHI stores the high word of the
result, and SUMEXT stores information about the result.

The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next
instruction after writing to OP2, except when using an indirect addressing mode to access the result.
When using indirect addressing for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or
OP2H starting with RES0, except when using an indirect addressing mode to access the result. When
using indirect addressing for the result, a NOP is required before the result is ready.

Table 1-1 summarizes when each word of the 64-bit result is available for the various combinations of
operand sizes. With a 32-bit-wide second operand, OP2L and OP2H must be written. Depending on when
the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries, one for
OP2L written and one for OP2H written. The worst case defines the actual result availability.

Table 1-1. Result Availability (MPYFRAC = 0, MPYSAT = 0)

Operation
(OP1 × OP2)

Result Ready in MCLK Cycles
After

RES0 RES1 RES2 RES3 MPYC Bit
8/16 × 8/16 3 3 4 4 3 OP2 written
24/32 × 8/16 3 5 6 7 7 OP2 written

8/16 × 24/32
3 5 6 7 7 OP2L written

N/A 3 4 4 4 OP2H written

24/32 × 24/32
3 8 10 11 11 OP2L written

N/A 3 5 6 6 OP2H written

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Operation

5SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.2.1 Operand Registers
Operand one (OP1) has 12 registers (see Table 1-2) used to load data into the multiplier and also select
the multiply mode. Writing the low word of the first operand to a given address selects the type of multiply
operation to be performed, but does not start any operation. When writing a second word to a high-word
register with suffix 32H, the multiplier assumes a 32-bit-wide OP1, otherwise, 16 bits are assumed. The
last address written prior to writing OP2 defines the width of the first operand. For example, if MPY32L is
written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32 bits. If
MPY32H is written first followed by MPY32L, the multiplication ignores MPY32H and assumes a 16-bit-
wide OP1 using the data written into MPY32L.

Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for
successive operations. It is not necessary to rewrite the OP1 value to perform the operations.

Table 1-2. OP1 Registers

OP1 Register Operation
MPY Unsigned multiply – operand bits 0 up to 15

MPYS Signed multiply – operand bits 0 up to 15
MAC Unsigned multiply accumulate –operand bits 0 up to 15

MACS Signed multiply accumulate – operand bits 0 up to 15
MPY32L Unsigned multiply – operand bits 0 up to 15
MPY32H Unsigned multiply – operand bits 16 up to 31
MPYS32L Signed multiply – operand bits 0 up to 15
MPYS32H Signed multiply – operand bits 16 up to 31
MAC32L Unsigned multiply accumulate – operand bits 0 up to 15
MAC32H Unsigned multiply accumulate – operand bits 16 up to 31
MACS32L Signed multiply accumulate – operand bits 0 up to 15
MACS32H Signed multiply accumulate – operand bits 16 up to 31

Writing the second operand to the OP2 initiates the multiply operation. Writing OP2 starts the selected
operation with a 16-bit-wide second operand together with the values stored in OP1. Writing OP2L starts
the selected operation with a 32-bit-wide second operand and the multiplier expects a the high word to be
written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored.

Table 1-3. OP2 Registers

OP2 Register Operation
OP2 Start multiplication with 16-bit-wide OP2 – operand bits 0 up to 15
OP2L Start multiplication with 32-bit-wide OP2 – operand bits 0 up to 15
OP2H Continue multiplication with 32-bit-wide OP2 – operand bits 16 up to 31

For 8-bit or 24-bit operands, the operand registers can be accessed with byte instructions. Accessing the
multiplier with a byte instruction during a signed operation automatically causes a sign extension of the
byte within the multiplier module. For 24-bit operands, only the high word should be written as byte. If the
24-bit operands are sign-extended as defined by the register, that is used to write the low word to,
because this register defines if the operation is unsigned or signed.

The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit,
either by modifying the operand size bits or by writing to the respective operand register. During the
execution of the 16-bit operation, the content of the high-word is ignored.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

MPY32 Operation www.ti.com

6 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

NOTE: Changing of first or second operand during multiplication

By default, changing OP1 or OP2 while the selected multiply operation is being calculated
renders any results invalid that are not ready at the time the new operands are changed.
Writing OP2 or OP2L aborts any ongoing calculation and starts a new operation. Results that
are not ready at that time are also invalid for following MAC or MACS operations.

To avoid this behavior, the MPYDLYWRTEN bit can be set to 1. Then, all writes to any
MPY32 registers are delayed with MPYDLY32 = 0 until the 64-bit result is ready or with
MPYDLY32 = 1 until the 32-bit result is ready. For MAC and MACS operations, the complete
64-bit result should always be ready.

See Table 1-1 for how many CPU cycles are needed until a certain result register is ready
and valid for each of the different modes.

1.2.2 Result Registers
The multiplication result is always 64 bits wide. It is accessible through registers RES0 to RES3. Used
with a signed operation, MPYS or MACS, the results are appropriately sign extended. If the result
registers are loaded with initial values before a MACS operation, the user software must take care that the
written value is properly sign extended to 64 bits.

NOTE: Changing of result registers during multiplication

The result registers must not be modified by the user software after writing the second
operand into OP2 or OP2L until the initiated operation is completed.

In addition to RES0 to RES3, for compatibility with the 16×16 hardware multiplier, the 32-bit result of a 8-
bit or 16-bit operation is accessible through RESLO, RESHI, and SUMEXT. In this case, the result low
register RESLO holds the lower 16 bits of the calculation result and the result high register RESHI holds
the upper 16 bits. RES0 and RES1 are identical to RESLO and RESHI, respectively, in usage and access
of calculated results.

The sum extension register SUMEXT contents depend on the multiply operation and are listed in Table 1-
4. If all operands are 16 bits wide or less, the 32-bit result is used to determine sign and carry. If one of
the operands is larger than 16 bits, the 64-bit result is used.

The MPYC bit reflects the multiplier's carry as listed in Table 1-4 and, thus, can be used as 33rd or 65th
bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC
bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.

Table 1-4. SUMEXT and MPYC Contents

Mode SUMEXT MPYC
MPY SUMEXT is always 0000h. MPYC is always 0.

MPYS
SUMEXT contains the extended sign of the result.
00000h = Result was positive or zero
0FFFFh = Result was negative

MPYC contains the sign of the result.
0 = Result was positive or zero
1 = Result was negative

MAC
SUMEXT contains the carry of the result.
0000h = No carry for result
0001h =

MPYC contains the carry of the result.
0 = No carry for result
1 = Result has a carry

MACS
SUMEXT contains the extended sign of the result.
00000h = Result was positive or zero
0FFFFh = Result was negative

MPYC contains the carry of the result.
0 = No carry for result
1 = Result has a carry

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Operation

7SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.2.2.1 MACS Underflow and Overflow
The multiplier does not automatically detect underflow or overflow in MACS mode. For example, working
with 16-bit input data and 32-bit results (that is, using only RESLO and RESHI), the available range for
positive numbers is 0 to 07FFF FFFFh and for negative numbers is 0FFFF FFFFh to 08000 0000h. An
underflow occurs when the sum of two negative numbers yields a result that is in the range for a positive
number. An overflow occurs when the sum of two positive numbers yields a result that is in the range for a
negative number.

The SUMEXT register contains the sign of the result in both cases described above, 0FFFFh for a 32-bit
overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTL0 can be used to detect the
overflow condition. If the carry is different from the sign reflected by the SUMEXT register, an overflow or
underflow occurred. User software must handle these conditions appropriately.

1.2.3 Software Examples
Examples for all multiplier modes follow. All 8×8 modes use the absolute address for the registers,
because the assembler does not allow .B access to word registers when using the labels from the
standard definitions file.

There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a
signed operation automatically causes a sign extension of the byte within the multiplier module.
; 32x32 Unsigned Multiply

MOV #01234h,&MPY32L ; Load low word of 1st operand
MOV #01234h,&MPY32H ; Load high word of 1st operand
MOV #05678h,&OP2L ; Load low word of 2nd operand
MOV #05678h,&OP2H ; Load high word of 2nd operand

; ... ; Process results

; 16x16 Unsigned Multiply
MOV #01234h,&MPY ; Load 1st operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B #012h,&MPY_B ; Load 1st operand
MOV.B #034h,&OP2_B ; Load 2nd operand

; ... ; Process results

; 32x32 Signed Multiply
MOV #01234h,&MPYS32L ; Load low word of 1st operand
MOV #01234h,&MPYS32H ; Load high word of 1st operand
MOV #05678h,&OP2L ; Load low word of 2nd operand
MOV #05678h,&OP2H ; Load high word of 2nd operand

; ... ; Process results

; 16x16 Signed Multiply
MOV #01234h,&MPYS ; Load 1st operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV.B #012h,&MPYS_B ; Load 1st operand
MOV.B #034h,&OP2_B ; Load 2nd operand

; ... ; Process results

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

S
1

2

1

4

1

8

1

16
...1

14 bits

S
1
2

1
4

1
8

1
16

...

Fractional part

Radix point

Sign bit

15 bits

MPY32 Operation www.ti.com

8 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.2.4 Fractional Numbers
The MPY32 provides support for fixed-point signal processing. In fixed-point signal processing, fractional
number are numbers that have a fixed number of digits after (and sometimes also before) the radix point.
To classify different ranges of binary fixed-point numbers, a Q-format is used. Different Q-formats
represent different locations of the radix point. Figure 1-2 shows the format of a signed Q15 number using
16 bits. Every bit after the radix point has a resolution of 1/2, and the most significant bit (MSB) is used as
the sign bit. The most negative number is 08000h and the maximum positive number is 07FFFh. This
gives a range from –1.0 to 0.999969482 ≈ 1.0 for the signed Q15 format with 16 bits.

Figure 1-2. Q15 Format Representation

The range can be increased by shifting the radix point to the right as shown in Figure 1-3. The signed Q14
format with 16 bits gives a range from –2.0 to 1.999938965 ≈ 2.0.

Figure 1-3. Q14 Format Representation

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product
of two number in the range from –1.0 to 1.0 is always in that same range.

1.2.4.1 Fractional Number Mode
Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and
MPYSAT = 0 gives a result with two sign bits. For example, if two 16-bit Q15 numbers are multiplied, a
32-bit result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing
bits and the extended sign bit must be removed. However, when the fractional mode of the multiplier is
used, the redundant sign bit is automatically removed, yielding a result in Q31 format for the multiplication
of two 16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The
32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and
RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTL0. The actual content of the
result registers is not modified when MPYFRAC = 1. When the result is accessed using software, the
value is left shifted one bit, resulting in the final Q formatted result. This allows user software to switch
between reading both the shifted (fractional) and the unshifted result. The fractional mode should only be
enabled when required and disabled after use.

In fractional mode, the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for
16×16-bit operations and bits 64 and 65 for 32×32-bit operations – not only bits 32 or 64, respectively.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Operation

9SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

The MPYC bit is not affected by the fractional mode. It always reads the carry of the nonfractional result.
; Example using
; Fractional 16x16 multiplication

BIS #MPYFRAC,&MPY32CTL0 ; Turn on fractional mode
MOV &FRACT1,&MPYS ; Load 1st operand as Q15
MOV &FRACT2,&OP2 ; Load 2nd operand as Q15
MOV &RES1,&PROD ; Save result as Q15
BIC #MPYFRAC,&MPY32CTL0 ; Back to normal mode

Table 1-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0)

Operation
(OP1 × OP2)

Result Ready in MCLK Cycles
After

RES0 RES1 RES2 RES3 MPYC Bit
8/16 × 8/16 3 3 4 4 3 OP2 written
24/32 × 8/16 3 5 6 7 7 OP2 written

8/16 × 24/32
3 5 6 7 7 OP2L written

N/A 3 4 4 4 OP2H written

24/32 × 24/32
3 8 10 11 11 OP2L written

N/A 3 5 6 6 OP2H written

1.2.4.2 Saturation Mode
The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation
mode is enabled with MPYSAT = 1 in register MPY32CTL0. If an overflow occurs, the result is set to the
most-positive value available. If an underflow occurs, the result is set to the most-negative value available.
This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions.
The saturation mode should only be enabled when required and disabled after use.

The actual content of the result registers is not modified when MPYSAT = 1. When the result is accessed
using software, the value is automatically adjusted to provide the most-positive or most-negative result
when an overflow or underflow has occurred. The adjusted result is also used for successive multiply-and-
accumulate operations. This allows user software to switch between reading the saturated and the
nonsaturated result.

With 16×16 operations, the saturation mode only applies to the least significant 32 bits; that is, the result
registers RES0 and RES1. Using the saturation mode in MAC or MACS operations that mix 16×16
operations with 32×32, 16×32, or 32×16 operations leads to unpredictable results.

With 32×32, 16×32, and 32×16 operations, the saturated result can only be calculated when RES3 is
ready.

Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the
MPYC bit.
; Example using
; Fractional 16x16 multiply accumulate with Saturation

; Turn on fractional and saturation mode:
BIS #MPYSAT+MPYFRAC,&MPY32CTL0
MOV &A1,&MPYS ; Load A1 for 1st term
MOV &K1,&OP2 ; Load K1 to get A1*K1
MOV &A2,&MACS ; Load A2 for 2nd term
MOV &K2,&OP2 ; Load K2 to get A2*K2
MOV &RES1,&PROD ; Save A1*K1+A2*K2 as result
BIC #MPYSAT+MPYFRAC,&MPY32CTL0 ; turn back to normal

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

64-bit Saturation

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Yes

No

No

Yes

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

Yes

No

32-bit Saturation
completed

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

64-bit Saturation
completed

32-bit Saturation

MPYC=0 and
unshifted RES3,

bit15=1

MPYC=1 and
unshifted RES3,

bit15=0

MPYFRAC=1

Unshifted RES3,
bit 15=0 and

bit 14=1

Unshifted RES3,
bit 15=1 and

bit 14=0

MPYC=0 and
unshifted RES1,

bit15=1

MPYC=1 and
unshifted RES1,

bit15=0

MPYFRAC=1

Unshifted RES1,
bit 15=0 and

bit 14=1

Unshifted RES1,
bit 15=1 and

bit 14=0

MPY32 Operation www.ti.com

10 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

Table 1-6. Result Availability in Saturation Mode (MPYSAT = 1)

Operation
(OP1 × OP2)

Result Ready in MCLK Cycles
After

RES0 RES1 RES2 RES3 MPYC Bit
8/16 × 8/16 3 3 N/A N/A 3 OP2 written
24/32 × 8/16 7 7 7 7 7 OP2 written

8/16 × 24/32
7 7 7 7 7 OP2L written
4 4 4 4 4 OP2H written

24/32 × 24/32
11 11 11 11 11 OP2L written
6 6 6 6 6 OP2H written

Figure 1-4 shows the flow for 32-bit saturation used for 16×16 bit multiplications and the flow for 64-bit
saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the
MSB of the result. Secondly, if the fractional mode is enabled, it depends also on the two MSBs of the
unshift result, that is, the result that is read with fractional mode disabled.

Figure 1-4. Saturation Flow Chart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Operation

11SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

NOTE: Saturation in fractional mode

In case of multiplying –1.0 × –1.0 in fractional mode, the result of +1.0 is out of range, thus,
the saturated result gives the most positive result.

When using multiply-and-accumulate operations, the accumulated values are saturated as if
MPYFRAC = 0; only during read accesses to the result registers the values are saturated
taking the fractional mode into account. This provides additional dynamic range during the
calculation and only the end result is then saturated if needed.

The following example illustrates a special case showing the saturation function in fractional mode. It also
uses the 8-bit functionality of the MPY32 module.

; Turn on fractional and saturation mode,
; clear all other bits in MPY32CTL0:
MOV #MPYSAT+MPYFRAC,&MPY32CTL0
;Pre-load result registers to demonstrate overflow
MOV #0,&RES3 ;
MOV #0,&RES2 ;
MOV #07FFFh,&RES1 ;
MOV #0FA60h,&RES0 ;
MOV.B #050h,&MACS_B ; 8-bit signed MAC operation
MOV.B #012h,&OP2_B ; Start 16x16 bit operation
MOV &RES0,R6 ; R6 = 0FFFFh
MOV &RES1,R7 ; R7 = 07FFFh

The result is saturated because already the result not converted into a fractional number shows an
overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added
to 07FFF FA60h results in 8000 059Fh, without MPYC being set. Because the MSB of the unmodified
result RES1 is 1 and MPYC = 0, the result is saturated according Figure 1-4.

NOTE: Validity of saturated result

The saturated result is valid only if the registers RES0 to RES3, the size of OP1 and OP2,
and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must ensure that MPYC
in the MPY32CTL0 register is loaded with the sign bit of the written result; otherwise, the
saturation mode erroneously saturates the result.

1.2.5 Putting It All Together
Figure 1-5 shows the complete multiplication flow, depending on the various selectable modes for the
MPY32 module.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

New Multiplication
Started

16×16
?

MAC or MACS
?

MPYSAT=1
?

Clear Result:
RES1 = 00000h
RES0 = 00000h

Perform 16×16
MPY or MPYS

Operation

Yes No

YesNo

Yes

No

MPYFRAC=1

?

non-fractional
32-bit Saturation

Shift 64-bit result.
Calculate SUMEXT based on

MPYC and bit 15 of
unshifted RES1.

MPYSAT=1

?

Yes

No

Yes

No

Multiplication
completed

MPYSAT=1
? Clear Result:

RES3 = 00000h

RES2 = 00000h

RES1 = 00000h

RES0 = 00000h

Yes No

Yes

No

MPYFRAC=1

?

non-fractional
64-bit Saturation

MPYSAT=1

?

Yes

No

Yes

No

Perform 16×16
MAC or MACS

Operation

Perform
MAC or MACS

Operation

Perform
MPY or MPYS

Operation

MAC or MACS
?

32-bit Saturation 64-bit Saturation

Shift 64-bit result.
Calculate SUMEXT based on

MPYC and bit 15 of
unshifted RES3.

MPY32 Operation www.ti.com

12 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

Figure 1-5. Multiplication Flow Chart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Operation

13SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit
results) by the module, it is important to understand the implications when using MAC/MACS operations
and mixing 16-bit operands or results with 32-bit operands or results. User software must address these
points during use when mixing these operations. The following code illustrates the issue.
; Mixing 32x24 multiplication with 16x16 MACS operation

MOV #MPYSAT,&MPY32CTL0 ; Saturation mode
MOV #052C5h,&MPY32L ; Load low word of 1st operand
MOV #06153h,&MPY32H ; Load high word of 1st operand
MOV #001ABh,&OP2L ; Load low word of 2nd operand
MOV.B #023h,&OP2H_B ; Load high word of 2nd operand

;... 5 NOPs required
MOV &RES0,R6 ; R6 = 00E97h
MOV &RES1,R7 ; R7 = 0A6EAh
MOV &RES2,R8 ; R8 = 04F06h
MOV &RES3,R9 ; R9 = 0000Dh

; Note that MPYC = 0!
MOV #0CCC3h,&MACS ; Signed MAC operation
MOV #0FFB6h,&OP2 ; 16x16 bit operation
MOV &RESLO,R6 ; R6 = 0FFFFh
MOV &RESHI,R7 ; R7 = 07FFFh

The second operation gives a saturated result because the 32-bit value used for the 16×16-bit MACS
operation was already saturated when the operation was started; the carry bit MPYC was 0 from the
previous operation, but the MSB in result register RES1 is set. As one can see in the flow chart, the
content of the result registers are saturated for multiply-and-accumulate operations after starting a new
operation based on the previous results, but depending on the size of the result (32 bit or 64 bit) of the
newly initiated operation.

The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the
following code shows.

;Pre-load result registers to demonstrate overflow
MOV #0,&RES3 ;
MOV #0,&RES2 ;
MOV #0,&RES1 ;
MOV #0,&RES0 ;
; Saturation mode and set MPYC:
MOV #MPYSAT+MPYC,&MPY32CTL0
MOV.B #082h,&MACS_B ; 8-bit signed MAC operation
MOV.B #04Fh,&OP2_B ; Start 16x16 bit operation
MOV &RES0,R6 ; R6 = 00000h
MOV &RES1,R7 ; R7 = 08000h

Even though the result registers were loaded with all zeros, the final result is saturated. This is because
the MPYC bit was set, causing the result used for the multiply-and-accumulate to be saturated to
08000 0000h. Adding a negative number to it would again cause an underflow, thus, the final result is also
saturated to 08000 0000h.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

MPY32 Operation www.ti.com

14 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.2.6 Indirect Addressing of Result Registers
When using indirect or indirect autoincrement addressing mode to access the result registers and the
multiplier requires three cycles until result availability according to Table 1-1, at least one instruction is
needed between loading the second operand and accessing the result registers:
; Access multiplier 16x16 results with indirect addressing

MOV #RES0,R5 ; RES0 address in R5 for indirect
MOV &OPER1,&MPY ; Load 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RES0
MOV @R5,&xxx ; Move RES1

In case of a 32×16 multiplication, there is also one instruction required between reading the first result
register RES0 and the second result register RES1:
; Access multiplier 32x16 results with indirect addressing

MOV #RES0,R5 ; RES0 address in R5 for indirect
MOV &OPER1L,&MPY32L ; Load low word of 1st operand
MOV &OPER1H,&MPY32H ; Load high word of 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand (16 bits)
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RES0
NOP ; Need one additional cycle
MOV @R5,&xxx ; Move RES1

; No additional cycles required!
MOV @R5,&xxx ; Move RES2

1.2.7 Using Interrupts
If an interrupt occurs after writing OP, but before writing OP2, and the multiplier is used in servicing that
interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this,
disable interrupts before using the MPY32, do not use the MPY32 in interrupt service routines, or use the
save and restore functionality of the MPY32.
; Disable interrupts before using the hardware multiplier

DINT ; Disable interrupts
NOP ; Required for DINT
MOV #xxh,&MPY ; Load 1st operand
MOV #xxh,&OP2 ; Load 2nd operand
EINT ; Interrupts may be enabled before

; processing results if result
; registers are stored and restored in
; interrupt service routines

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Operation

15SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.2.7.1 Save and Restore
If the multiplier is used in interrupt service routines, its state can be saved and restored using the
MPY32CTL0 register. The following code example shows how the complete multiplier status can be saved
and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt
service routines. Because the state of the MPYSAT and MPYFRAC bits are unknown, they should be
cleared before the registers are saved as shown in the code example.
; Interrupt service routine using multiplier
MPY_USING_ISR

PUSH &MPY32CTL0 ; Save multiplier mode, etc.
BIC #MPYSAT+MPYFRAC,&MPY32CTL0

; Clear MPYSAT+MPYFRAC
PUSH &RES3 ; Save result 3
PUSH &RES2 ; Save result 2
PUSH &RES1 ; Save result 1
PUSH &RES0 ; Save result 0
PUSH &MPY32H ; Save operand 1, high word
PUSH &MPY32L ; Save operand 1, low word
PUSH &OP2H ; Save operand 2, high word
PUSH &OP2L ; Save operand 2, low word

;
... ; Main part of ISR

; Using standard MPY routines
;

POP &OP2L ; Restore operand 2, low word
POP &OP2H ; Restore operand 2, high word

; Starts dummy multiplication but
; result is overwritten by
; following restore operations:

POP &MPY32L ; Restore operand 1, low word
POP &MPY32H ; Restore operand 1, high word
POP &RES0 ; Restore result 0
POP &RES1 ; Restore result 1
POP &RES2 ; Restore result 2
POP &RES3 ; Restore result 3
POP &MPY32CTL0 ; Restore multiplier mode, etc.
reti ; End of interrupt service routine

1.2.8 Using DMA
In devices with a DMA controller, the multiplier can trigger a transfer when the complete result is available.
The DMA controller needs to start reading the result with MPY32RES0 successively up to MPY32RES3.
Not all registers need to be read. The trigger timing is such that the DMA controller starts reading
MPY32RES0 when its ready, and that the MPY32RES3 can be read exactly in the clock cycle when it is
available to allow the fastest access through the DMA. The signal into the DMA controller is 'Multiplier
ready' (see the DMA Controller chapter for details).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

MPY32 Registers www.ti.com

16 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.3 MPY32 Registers
MPY32 registers are listed in Table 1-7. The base address can be found in the device-specific data sheet.
The address offsets are listed in Table 1-7.

NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 1-7. MPY32 Registers

Offset Acronym Register Name Type Access Reset
00h MPY 16-bit operand one – multiply Read/write Word Undefined
00h MPY_L Read/write Byte Undefined
01h MPY_H Read/write Byte Undefined
00h MPY_B 8-bit operand one – multiply Read/write Byte Undefined
02h MPYS 16-bit operand one – signed multiply Read/write Word Undefined
02h MPYS_L Read/write Byte Undefined
03h MPYS_H Read/write Byte Undefined
02h MPYS_B 8-bit operand one – signed multiply Read/write Byte Undefined
04h MAC 16-bit operand one – multiply accumulate Read/write Word Undefined
04h MAC_L Read/write Byte Undefined
05h MAC_H Read/write Byte Undefined
04h MAC_B 8-bit operand one – multiply accumulate Read/write Byte Undefined
06h MACS 16-bit operand one – signed multiply accumulate Read/write Word Undefined
06h MACS_L Read/write Byte Undefined
07h MACS_H Read/write Byte Undefined
06h MACS_B 8-bit operand one – signed multiply accumulate Read/write Byte Undefined
08h OP2 16-bit operand two Read/write Word Undefined
08h OP2_L Read/write Byte Undefined
09h OP2_H Read/write Byte Undefined
08h OP2_B 8-bit operand two Read/write Byte Undefined
0Ah RESLO 16x16-bit result low word Read/write Word Undefined
0Ah RESLO_L Read/write Byte Undefined
0Ch RESHI 16x16-bit result high word Read/write Word Undefined
0Eh SUMEXT 16x16-bit sum extension register Read Word Undefined
10h MPY32L 32-bit operand 1 – multiply – low word Read/write Word Undefined
10h MPY32L_L Read/write Byte Undefined
11h MPY32L_H Read/write Byte Undefined
12h MPY32H 32-bit operand 1 – multiply – high word Read/write Word Undefined
12h MPY32H_L Read/write Byte Undefined
13h MPY32H_H Read/write Byte Undefined
12h MPY32H_B 24-bit operand 1 – multiply – high byte Read/write Byte Undefined
14h MPYS32L 32-bit operand 1 – signed multiply – low word Read/write Word Undefined
14h MPYS32L_L Read/write Byte Undefined
15h MPYS32L_H Read/write Byte Undefined
16h MPYS32H 32-bit operand 1 – signed multiply – high word Read/write Word Undefined
16h MPYS32H_L Read/write Byte Undefined
17h MPYS32H_H Read/write Byte Undefined
16h MPYS32H_B 24-bit operand 1 – signed multiply – high byte Read/write Byte Undefined
18h MAC32L 32-bit operand 1 – multiply accumulate – low word Read/write Word Undefined

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

www.ti.com MPY32 Registers

17SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

Table 1-7. MPY32 Registers (continued)
Offset Acronym Register Name Type Access Reset
18h MAC32L_L Read/write Byte Undefined
19h MAC32L_H Read/write Byte Undefined
1Ah MAC32H 32-bit operand 1 – multiply accumulate – high word Read/write Word Undefined
1Ah MAC32H_L Read/write Byte Undefined
1Bh MAC32H_H Read/write Byte Undefined
1Ah MAC32H_B 24-bit operand 1 – multiply accumulate – high byte Read/write Byte Undefined
1Ch MACS32L 32-bit operand 1 – signed multiply accumulate – low word Read/write Word Undefined
1Ch MACS32L_L Read/write Byte Undefined
1Dh MACS32L_H Read/write Byte Undefined
1Eh MACS32H 32-bit operand 1 – signed multiply accumulate – high word Read/write Word Undefined
1Eh MACS32H_L Read/write Byte Undefined
1Fh MACS32H_H Read/write Byte Undefined
1Eh MACS32H_B 24-bit operand 1 – signed multiply accumulate – high byte Read/write Byte Undefined
20h OP2L 32-bit operand 2 – low word Read/write Word Undefined
20h OP2L_L Read/write Byte Undefined
21h OP2L_H Read/write Byte Undefined
22h OP2H 32-bit operand 2 – high word Read/write Word Undefined
22h OP2H_L Read/write Byte Undefined
23h OP2H_H Read/write Byte Undefined
22h OP2H_B 24-bit operand 2 – high byte Read/write Byte Undefined
24h RES0 32x32-bit result 0 – least significant word Read/write Word Undefined
24h RES0_L Read/write Byte Undefined
26h RES1 32x32-bit result 1 Read/write Word Undefined
28h RES2 32x32-bit result 2 Read/write Word Undefined
2Ah RES3 32x32-bit result 3 – most significant word Read/write Word Undefined
2Ch MPY32CTL0 MPY32 control register 0 Read/write Word Undefined
2Ch MPY32CTL0_L Read/write Byte Undefined
2Dh MPY32CTL0_H Read/write Byte 00h

The registers listed in Table 1-8 are treated equally.

Table 1-8. Alternative Registers

Register Alternative 1 Alternative 2
16-bit operand one – multiply MPY MPY32L
8-bit operand one – multiply MPY_B or MPY_L MPY32L_B or MPY32L_L
16-bit operand one – signed multiply MPYS MPYS32L
8-bit operand one – signed multiply MPYS_B or MPYS_L MPYS32L_B or MPYS32L_L
16-bit operand one – multiply accumulate MAC MAC32L
8-bit operand one – multiply accumulate MAC_B or MAC_L MAC32L_B or MAC32L_L
16-bit operand one – signed multiply accumulate MACS MACS32L
8-bit operand one – signed multiply accumulate MACS_B or MACS_L MACS32L_B or MACS32L_L
16x16-bit result low word RESLO RES0
16x16-bit result high word RESHI RES1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

MPY32 Registers www.ti.com

18 SLAU404F–August 2012–Revised March 2018
Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

Chapter Excerpt from SLAU208

1.3.1 MPY32CTL0 Register
32-Bit Hardware Multiplier Control 0 Register

Figure 1-6. MPY32CTL0 Register
15 14 13 12 11 10 9 8

Reserved MPYDLY32 MPYDLYWRTEN
r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0

7 6 5 4 3 2 1 0
MPYOP2_32 MPYOP1_32 MPYMx MPYSAT MPYFRAC Reserved MPYC

rw rw rw rw rw-0 rw-0 rw-0 rw

Table 1-9. MPY32CTL0 Register Description

Bit Field Type Reset Description
15-10 Reserved R 0h Reserved. Always reads as 0.
9 MPYDLY32 RW 0h Delayed write mode

0b = Writes are delayed until 64-bit result (RES0 to RES3) is available.
1b = Writes are delayed until 32-bit result (RES0 to RES1) is available.

8 MPYDLYWRTEN RW 0h Delayed write enable
All writes to any MPY32 register are delayed until the 64-bit (MPYDLY32 = 0) or
32-bit (MPYDLY32 = 1) result is ready.
0b = Writes are not delayed.
1b = Writes are delayed.

7 MPYOP2_32 RW 0h Multiplier bit width of operand 2
0b = 16 bits
1b = 32 bits

6 MPYOP1_32 RW 0h Multiplier bit width of operand 1
0b = 16 bits
1b = 32 bits

5-4 MPYMx RW 0h Multiplier mode
00b = MPY – Multiply
01b = MPYS – Signed multiply
10b = MAC – Multiply accumulate
11b = MACS – Signed multiply accumulate

3 MPYSAT RW 0h Saturation mode
0b = Saturation mode disabled
1b = Saturation mode enabled

2 MPYFRAC RW 0h Fractional mode
0b = Fractional mode disabled
1b = Fractional mode enabled

1 Reserved RW 0h Reserved. Always reads as 0.
0 MPYC RW 0h Carry of the multiplier. It can be considered as 33rd or 65th bit of the result if

fractional or saturation mode is not selected, because the MPYC bit does not
change when switching to saturation or fractional mode.
It is used to restore the SUMEXT content in MAC mode.
0b = No carry for result
1b = Result has a carry

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU404F

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	1 32-Bit Hardware Multiplier (MPY32)
	1.1 32-Bit Hardware Multiplier (MPY32) Introduction
	1.2 MPY32 Operation
	1.2.1 Operand Registers
	1.2.2 Result Registers
	1.2.2.1 MACS Underflow and Overflow

	1.2.3 Software Examples
	1.2.4 Fractional Numbers
	1.2.4.1 Fractional Number Mode
	1.2.4.2 Saturation Mode

	1.2.5 Putting It All Together
	1.2.6 Indirect Addressing of Result Registers
	1.2.7 Using Interrupts
	1.2.7.1 Save and Restore

	1.2.8 Using DMA

	1.3 MPY32 Registers
	1.3.1 MPY32CTL0 Register

	Important Notice

