

Chapter 1

SLAU425F-August 2012-Revised March 2018

Enhanced Universal Serial Communication Interface (eUSCI) – I²C Mode

NOTE: This chapter is an excerpt from the *MSP430x5xx* and *MSP430x6xx* Family User's Guide. The latest version of the full user's guide is available from http://www.ti.com/lit/pdf/slau208.

The enhanced universal serial communication interface B (eUSCI_B) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the I²C mode.

Topic Page

1.1	Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview 2
1.2	eUSCI_B Introduction – I ² C Mode
1.3	eUSCI_B Operation – I ² C Mode
	eUSCI_B I2C Registers

www.ti.com

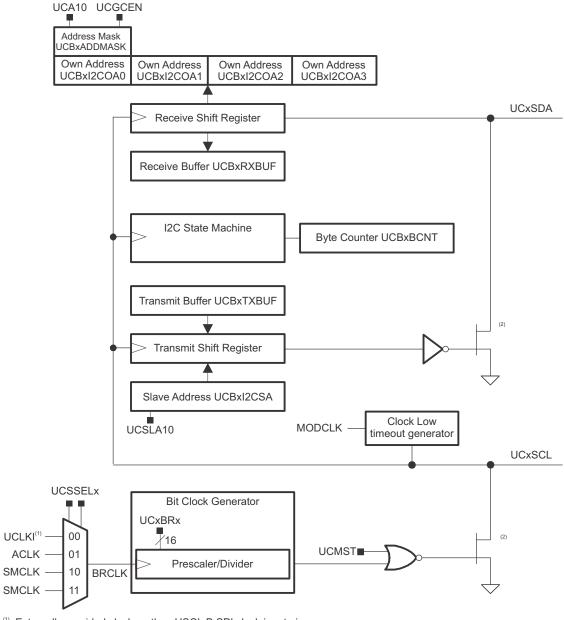
1.1 Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview

The eUSCI_B module supports two serial communication modes:

- I²C mode
- SPI mode

If more than one eUSCI_B module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two eUSCI_B modules, they are named eUSCI0_B and eUSCI1_B.

1.2 eUSCI_B Introduction – I²C Mode


In I²C mode, the eUSCI_B module provides an interface between the device and I²C-compatible devices connected by the two-wire I²C serial bus. External components attached to the I²C bus serially transmit or receive serial data to or from the eUSCI_B module through the 2-wire I²C interface.

The eUSCI B I2C mode features include:

- 7-bit and 10-bit device addressing modes
- General call
- START, RESTART, STOP
- · Multi-master transmitter or receiver mode
- Slave receiver or transmitter mode
- Standard mode up to 100 kbps and fast mode up to 400 kbps support
- Programmable UCxCLK frequency in master mode
- Designed for low power
- 8-bit byte counter with interrupt capability and automatic STOP assertion
- Up to four hardware slave addresses, each having its own interrupt and DMA trigger
- Mask register for slave address and address received interrupt
- Clock low time-out interrupt to avoid bus stalls
- Slave operation in LPM4
- Slave receiver START detection for auto wake-up from LPMx modes (not LPM3.5 and LPM4.5)

Figure 1-1 shows the eUSCI_B when configured in I²C mode.

⁽¹⁾ Externally provided clock on the eUSCI_B SPI clock input pin

Figure 1-1. eUSCI B Block Diagram – I²C Mode

1.3 eUSCI_B Operation – I²C Mode

The I²C mode supports any slave or master I²C-compatible device. Figure 1-2 shows an example of an I²C bus. Each I²C device is recognized by a unique address and can operate as either a transmitter or a receiver. A device connected to the I²C bus can be considered as the master or the slave when performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any device addressed by a master is considered a slave.

I²C data is communicated using the serial data (SDA) pin and the serial clock (SCL) pin. Both SDA and SCL are bidirectional and must be connected to a positive supply voltage using a pullup resistor.

Not the actual implementation (transistor not located in eUSCI_B module)

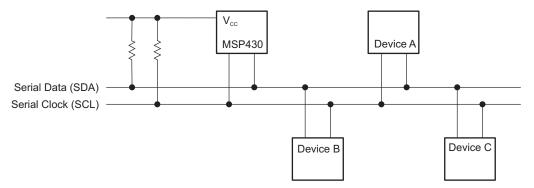


Figure 1-2. I²C Bus Connection Diagram

NOTE: SDA and SCL levels

The SDA and SCL pins must not be pulled up above the device $\ensuremath{V_{\text{CC}}}$ level.

1.3.1 eUSCI B Initialization and Reset

The eUSCI_B is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the eUSCI_B in a reset condition. To select I²C operation, the UCMODEx bits must be set to 11b. After module initialization, it is ready for transmit or receive operation. Clear UCSWRST to release the eUSCI_B for operation.

To avoid unpredictable behavior, configure or reconfigure the eUSCI_B module only when UCSWRST is set. Setting UCSWRST in I²C mode has the following effects:

- I²C communication stops.
- SDA and SCL are high impedance.
- UCBxSTAT, bits 15-8 and 6-4 are cleared.
- Registers UCBxIE and UCBxIFG are cleared.
- All other bits and registers remain unchanged.

NOTE: Initializing or reconfiguring the eUSCI_B module

The recommended eUSCI_B initialization/reconfiguration process is:

- Set UCSWRST (BIS.B #UCSWRST, &UCxCTL1).
- 2. Initialize all eUSCI_B registers with UCSWRST = 1 (including UCxCTL1).
- 3. Configure ports.
- Clear UCSWRST through software (BIC.B #UCSWRST,&UCxCTL1).
- 5. Enable interrupts (optional).

1.3.2 fC Serial Data

One clock pulse is generated by the master device for each data bit transferred. The I²C mode operates with byte data. Data is transferred MSB first as shown in Figure 1-3.

The first byte after a START condition consists of a 7-bit slave address and the R/\overline{W} bit. When $R/\overline{W} = 0$, the master transmits data to a slave. When $R/\overline{W} = 1$, the master receives data from a slave. The ACK bit is sent from the receiver after each byte on the ninth SCL clock.

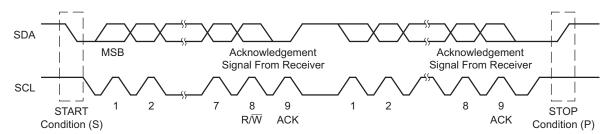


Figure 1-3. I²C Module Data Transfer

START and STOP conditions are generated by the master and are shown in Figure 1-3. A START condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and cleared after a STOP.

Data on SDA must be stable during the high period of SCL (see Figure 1-4). The high and low state of SDA can change only when SCL is low, otherwise START or STOP conditions are generated.

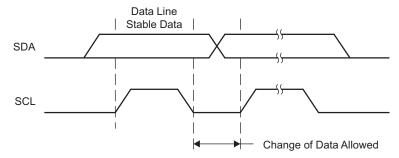


Figure 1-4. Bit Transfer on I²C Bus

1.3.3 fC Addressing Modes

The I²C mode supports 7-bit and 10-bit addressing modes.

1.3.3.1 7-Bit Addressing

In the 7-bit addressing format (see Figure 1-5), the first byte is the 7-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte.

Figure 1-5. I²C Module 7-Bit Addressing Format

1.3.3.2 10-Bit Addressing

In the 10-bit addressing format (see Figure 1-6), the first byte is made up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. The next byte is the remaining eight bits of the 10-bit slave address, followed by the ACK bit and the 8-bit data. See I2C Slave 10-bit Addressing Mode and I2C Master 10-bit Addressing Mode for details how to use the 10-bit addressing mode with the eUSCI_B module.

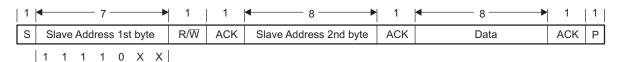


Figure 1-6. I²C Module 10-Bit Addressing Format

1.3.3.3 Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is shown in Figure 1-7.

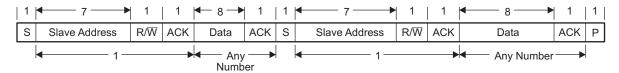


Figure 1-7. I²C Module Addressing Format With Repeated START Condition

1.3.4 fC Quick Setup

This section gives a quick introduction into the operation of the eUSCI_B in I2C mode. The basic steps to start communication are described and shown as a software example. More detailed information about the possible configurations and details can be found in Section 1.3.5.

The latest code examples can be found on the MSP430 web under "Code Examples".

To set up the eUSCI_B as a master transmitter that transmits to a slave with the address 0x12h, only a few steps are needed (see Example 1-1).

Example 1-1. Master TX With 7-Bit Address

```
UCBxCTL1 |= UCSWRST;
                               // put eUSCI_B in reset state
UCBxCTLW0 |= UCMODE_3 + UCMST; // I2C master mode
                               // baud rate = SMCLK / 8
UCBxBRW = 0x0008;
UCBxCTLW1 = UCASTP_2;
                               // automatic STOP assertion
UCBxTBCNT = 0x07;
                               // TX 7 bytes of data
UCBxI2CSA = 0x0012;
                               // address slave is 12hex
P2SEL = 0 \times 03;
                               // configure I2C pins (device specific)
UCBxCTL1 &= ^UCSWRST;
                               // eUSCI_B in operational state
UCBxIE |= UCTXIE;
                               // enable TX-interrupt
GIE;
                               // general interrupt enable
// inside the eUSCI_B TX interrupt service routine
IJCBxTXBIJF = 0x77;
                               // fill TX buffer
```

As shown in the code example, all configurations must be done while UCSWRST is set. To select the I²C operation of the eUSCI_B, UCMODE must be set accordingly. The baud rate of the transmission is set by writing the correct divider in the UCBxBRW register. The default clock selected is SMCLK. How many bytes are transmitted in one frame is controlled by the byte counter threshold register UCBxTBCNT together with the UCASTPx bits.

The slave address to send to is specified in the UCBxl2CSA register. Finally, the ports must be configured. This step is device dependent; see the data sheet for the pins that must be used.

Each byte that is to be transmitted must be written to the UCBxTXBUF inside the interrupt service routine. The recommended structure of the interrupt service routine can be found in Example 1-3.

Example 1-2 shows the steps needed to set up the eUSCI_B as a slave with the address 0x12h that is able to receive and transmit data to the master.

Example 1-2. Slave RX With 7-Bit Address

As shown in Example 1-2, all configurations must be done while UCSWRST is set. For the slave, I²C operation is selected by setting UCMODE. The slave address is specified in the UCBxI2COA0 register. To enable the interrupts for receive and transmit requests, the according bits in UCBxIE and, at the end, GIE need to be set. Finally the ports must be configured. This step is device dependent; see the data sheet for the pins that are used.

The RX interrupt service routine is called for every byte received by a master device. The TX interrupt service routine is executed each time the master requests a byte. The recommended structure of the interrupt service routine can be found in Example 1-3.

1.3.5 °FC Module Operating Modes

In I^2C mode, the eUSCI_B module can operate in master transmitter, master receiver, slave transmitter, or slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate the modes.

Figure 1-8 shows how to interpret the time-line figures. Data transmitted by the master is represented by grey rectangles; data transmitted by the slave is represented by white rectangles. Data transmitted by the eUSCI_B module, either as master or slave, is shown by rectangles that are taller than the others.

Actions taken by the eUSCI_B module are shown in grey rectangles with an arrow indicating where in the data stream the action occurs. Actions that must be handled with software are indicated with white rectangles with an arrow pointing to where in the data stream the action must take place.

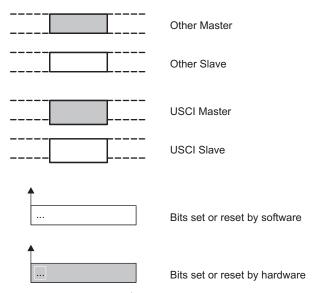


Figure 1-8. I²C Time-Line Legend

1.3.5.1 Slave Mode

The eUSCI_B module is configured as an I^2C slave by selecting the I^2C mode with UCMODEx = 11 and UCSYNC = 1 and clearing the UCMST bit.

Initially, the eUSCI_B module must be configured in receiver mode by clearing the UCTR bit to receive the I^2C address. Afterwards, transmit and receive operations are controlled automatically, depending on the R/\overline{W} bit received together with the slave address.

The eUSCI_B slave address is programmed with the UCBxI2COA0 register. Support for multiple slave addresses is explained in Section 1.3.9. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave responds to a general call.

When a START condition is detected on the bus, the eUSCI_B module receives the transmitted address and compares it against its own address stored in UCBxI2COA0. The UCSTTIFG flag is set when address received matches the eUSCI_B slave address.

1.3.5.1.1 fC Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own address with a set R/\overline{W} bit. The slave transmitter shifts the serial data out on SDA with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it does hold SCL low while intervention of the CPU is required after a byte has been transmitted.

If the master requests data from the slave, the eUSCI_B module is automatically configured as a transmitter and UCTR and UCTXIFG0 become set. The SCL line is held low until the first data to be sent is written into the transmit buffer UCBxTXBUF. Then the address is acknowledged and the data is transmitted. As soon as the data is transferred into the shift register, the UCTXIFG0 is set again. After the data is acknowledged by the master, the next data byte written into UCBxTXBUF is transmitted or, if the buffer is empty, the bus is stalled during the acknowledge cycle by holding SCL low until new data is written into UCBxTXBUF. If the master sends a NACK followed by a STOP condition, the UCSTPIFG flag is set. If the NACK is followed by a repeated START condition, the eUSCI_B I²C state machine returns to its address-reception state.

Figure 1-9 shows the slave transmitter operation.

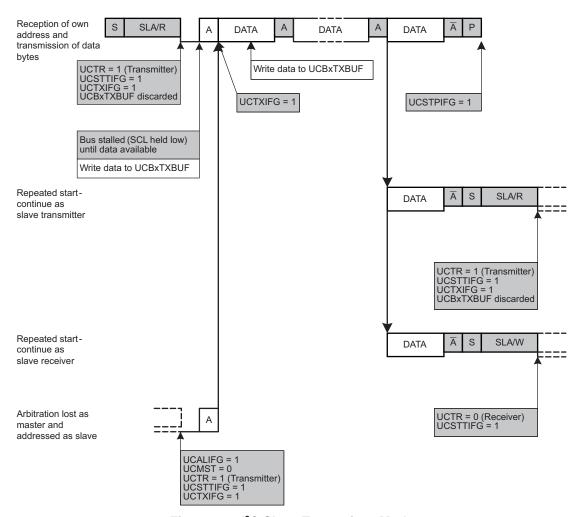


Figure 1-9. I²C Slave Transmitter Mode

1.3.5.1.2 PC Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the master is identical to its own address and a cleared R/\overline{W} bit is received. In slave receiver mode, serial data bits received on SDA are shifted in with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been received.

If the slave receives data from the master, the eUSCI_B module is automatically configured as a receiver and UCTR is cleared. After the first data byte is received, the receive interrupt flag UCRXIFG0 is set. The eUSCI_B module automatically acknowledges the received data and can receive the next data byte.

If the previous data was not read from the receive buffer UCBxRXBUF at the end of a reception, the bus is stalled by holding SCL low. As soon as UCBxRXBUF is read, the new data is transferred into UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received.

Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the UCTXNACK bit is set while SCL is held low, the bus is released, a NACK is transmitted immediately, and UCBxRXBUF is loaded with the last received data. Because the previous data was not read, that data is lost. To avoid loss of data, the UCBxRXBUF must be read before UCTXNACK is set.

When the master generates a STOP condition, the UCSTPIFG flag is set.

If the master generates a repeated START condition, the eUSCI_B I²C state machine returns to its address-reception state.

Figure 1-10 shows the I²C slave receiver operation.

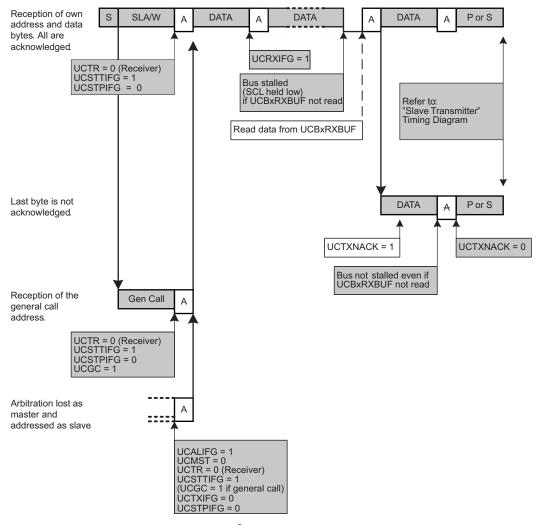


Figure 1-10. I²C Slave Receiver Mode

1.3.5.1.3 PC Slave 10-Bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 1-11. In 10-bit addressing mode, the slave is in receive mode after the full address is received. The eUSCI_B module indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into transmitter mode, the master sends a repeated START condition together with the first byte of the address but with the R/W bit set. This sets the UCSTTIFG flag if it was previously cleared by software, and the eUSCI_B modules switches to transmitter mode with UCTR = 1.

Slave Receiver Reception of own S 11110 xx/W SLA (2.) DATA DATA P or S Α Α address and data bytes. All are acknowledged UCRXIFG = 1 UCTR = 0 (Receiver) UCSTTIFG = 1 UCSTPIFG = 0 Reception of the Gen Call DATA DATA P or S Α general call address. UCTR = 0 (Receiver) UCSTTIFG = 1 UCRXIFG = 1 UCSTPIFG = 0 UCGC = 1 **Slave Transmitter** Reception of own 11110 xx/W SLA (2.) 11110 xx/R P or S S DATA address and transmission of data bytes UCTR = 0 (Receiver) UCSTTIFG = 1 UCSTPIFG = 0 UCTR = 1 (Transmitter) UCSTTIFG = 1 UCTXIFG = 1 UCSTPIFG = 0

Figure 1-11. I²C Slave 10-Bit Addressing Mode

1.3.5.2 Master Mode

The eUSCI_B module is configured as an I²C master by selecting the I²C mode with UCMODEx = 11 and UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must be set and its own address must be programmed into the UCBxI2COA0 register. Support for multiple slave addresses is explained in Section 1.3.9. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the eUSCI_B module responds to a general call.

NOTE: Addresses and multi-master systems

In master mode with own-address detection enabled (UCOAEN = 1)—especially in multi-master systems—it is not allowed to specify the same address in the own address and slave address register (UCBxI2CSA = UCBxI2COAx). This would mean that the eUSCI_B addresses itself.

The user software must ensure that this situation does not occur. There is no hardware detection for this case, and the consequence is unpredictable behavior of the eUSCI_B.

1.3.5.2.1 fC Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for transmitter mode, and setting UCTXSTT to generate a START condition.

The eUSCI_B module waits until the bus is available, then generates the START condition, and transmits the slave address. The UCTXIFG0 bit is set when the START condition is generated and the first data to be transmitted can be written into UCBxTXBUF. **The UCTXSTT flag is cleared as soon as the complete address is sent.**

The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave address. UCTXIFG0 is set again as soon as the data is transferred from the buffer into the shift register. If there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is held, as long as:

- No automatic STOP is generated
- The UCTXSTP bit is not set
- · The UCTXSTT bit is not set

Setting UCTXSTP generates a STOP condition after the next acknowledge from the slave. If UCTXSTP is set during the transmission of the slave address or while the eUSCI_B module waits for data to be written into UCBxTXBUF, a STOP condition is generated, even if no data was transmitted to the slave. In this case, the UCSTPIFG is set. When transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted or any time after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the address is transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG0 is set, indicating data transmission has begun, and the UCTXSTP bit may be set. When UCASTPx = 10 is set, the byte counter is used for STOP generation and the user does not need to set the UCTXSTP. This is recommended when transmitting only one byte.

Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA, if desired.

If the slave does not acknowledge the transmitted data, the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition. If data was already written into UCBxTXBUF, it is discarded. If this data should be transmitted after a repeated START, it must be written into UCBxTXBUF again. Any set UCTXSTT or UCTXSTP is also discarded.

Figure 1-12 shows the I²C master transmitter operation.

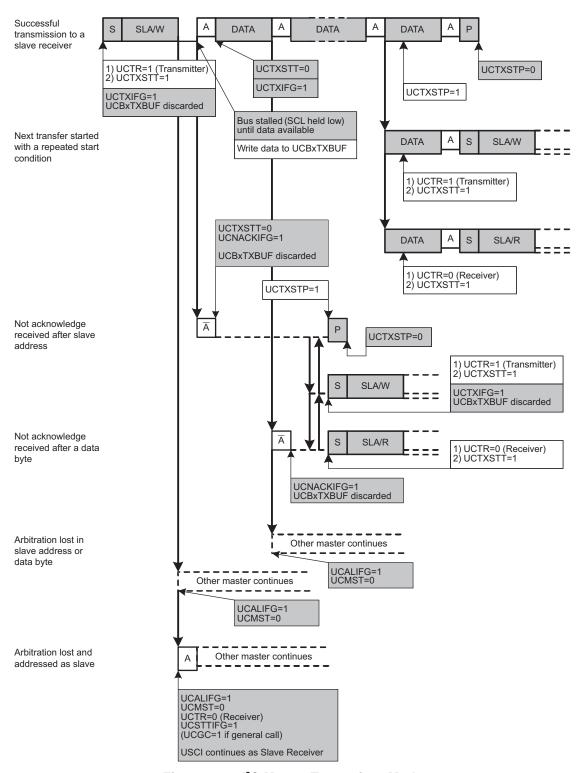


Figure 1-12. I²C Master Transmitter Mode

1.3.5.2.2 PC Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting UCTXSTT to generate a START condition.

The eUSCI_B module checks if the bus is available, generates the START condition, and transmits the slave address. The UCTXSTT flag is cleared as soon as the complete address is sent.

After the acknowledge of the address from the slave, the first data byte from the slave is received and acknowledged and the UCRXIFG flag is set. Data is received from the slave, as long as:

- No automatic STOP is generated
- The UCTXSTP bit is not set
- · The UCTXSTT bit is not set

If a STOP condition was generated by the eUSCI_B module, the UCSTPIFG is set. If UCBxRXBUF is not read, the master holds the bus during reception of the last data bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address, the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.

A STOP condition is either generated by the automatic STOP generation or by setting the UCTXSTP bit. The next byte received from the slave is followed by a NACK and a STOP condition. This NACK occurs immediately if the eUSCI B module is currently waiting for UCBxRXBUF to be read.

If a RESTART is sent, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

Figure 1-13 shows the I²C master receiver operation.

NOTE: Consecutive master transactions without repeated START

When performing multiple consecutive I^2C master transactions without the repeated START feature, the current transaction must be completed before the next one is initiated. This can be done by ensuring that the transmit STOP condition flag UCTXSTP is cleared before the next I^2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction might be affected.

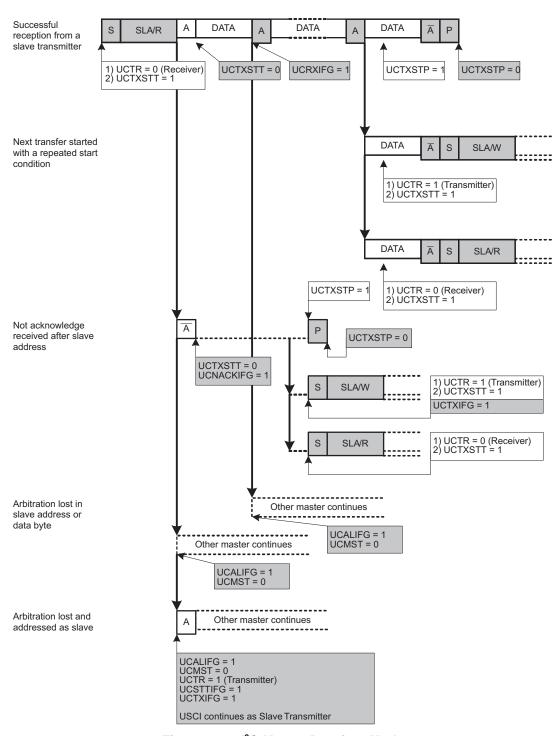


Figure 1-13. I²C Master Receiver Mode

1.3.5.2.3 PC Master 10-Bit Addressing Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 1-14.

Master Transmitter Successful 11110xx/W SLA(2.) DATA DATA S transmission to a slave receiver 1) UCTR = 1 (Transmitter) 2) UCTXSTT = 1 UCTXSTT = 0 UCTXSTP = 0 UCTXIFG = 1 UCTXSTP = 1 UCTXIFG = 1 Master Receiver Successful DATA DATA 11110xx/W SLA(2.) 11110xx/R S Α reception from a slave transmitter UCRXIFG = 1 UCTXSTP = 0 UCTXSTT = 0 1) UCTR = 0 (Receiver) 2) UCTXSTT = 1 UCTXSTP = 1

Figure 1-14. I²C Master 10-Bit Addressing Mode

1.3.5.3 Arbitration

If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure is invoked. Figure 1-15 shows the arbitration procedure between two devices. The arbitration procedure uses the data presented on SDA by the competing transmitters. The first master transmitter that generates a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest binary value. The master transmitter that lost arbitration switches to the slave receiver mode and sets the arbitration lost flag UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes.

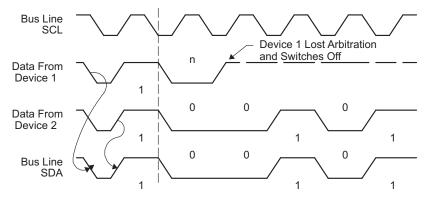


Figure 1-15. Arbitration Procedure Between Two Master Transmitters

There is an undefined condition if the arbitration procedure is still in progress when one master sends a repeated START or a STOP condition while the other master is still sending data. In other words, the following combinations result in an undefined condition:

- Master 1 sends a repeated START condition and master 2 sends a data bit.
- Master 1 sends a STOP condition and master 2 sends a data bit.
- Master 1 sends a repeated START condition and master 2 sends a STOP condition.

1.3.6 Glitch Filtering

According to the I²C standard, both the SDA and the SCL line need to be glitch filtered. The eUSCI_B module provides the UCGLITx bits to configure the length of this glitch filter:

Table 1-1. Glitch Filter Length Selection Bits

UCGLITx	Corresponding Glitch Filter Length on SDA and SCL	According to I ² C Standard
00	Pulses of max 50-ns length are filtered	yes
01	Pulses of max 25-ns length are filtered.	no
10	Pulses of max 12.5-ns length are filtered.	no
11	Pulses of max 6.25-ns length are filtered.	no

1.3.7 fC Clock Generation and Synchronization

The I²C clock SCL is provided by the master on the I²C bus. When the eUSCI_B is in master mode, BITCLK is provided by the eUSCI_B bit clock generator and the clock source is selected with the UCSSELx bits. In slave mode, the bit clock generator is not used and the UCSSELx bits are don't care.

The 16-bit value of UCBRx in register UCBxBRW is the division factor of the eUSCI_B clock source, BRCLK. The maximum bit clock that can be used in single master mode is f_{BRCLK}/4. In multi-master mode, the maximum bit clock is f_{BRCLK}/8. The BITCLK frequency is given by:

$$f_{BitClock} = f_{BRCLK}/UCBRx$$

The minimum high and low periods of the generated SCL are:

 $t_{LOW,MIN} = t_{HIGH,MIN} = (UCBRx/2)/f_{BRCLK}$ when UCBRx is even

 $t_{\text{LOW,MIN}} = t_{\text{HIGH,MIN}} = ((\text{UCBRx} - 1)/2)/f_{\text{BRCLK}}$ when UCBRx is odd

The eUSCI_B clock source frequency and the prescaler setting UCBRx must to be chosen such that the minimum low and high period times of the I²C specification are met.

During the arbitration procedure the clocks from the different masters must be synchronized. A device that first generates a low period on SCL overrules the other devices, forcing them to start their own low periods. SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be released before starting their high periods. Figure 1-16 shows the clock synchronization. This allows a slow slave to slow down a fast master.

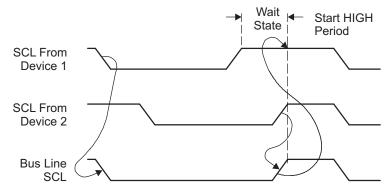


Figure 1-16. Synchronization of Two I²C Clock Generators During Arbitration

1.3.7.1 Clock Stretching

The eUSCI_B module supports clock stretching and also makes use of this feature as described in the Operation Mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low while the eUSCI_B module already released SCL due to the following conditions:

eUSCI B is acting as master and a connected slave drives SCL low.

• eUSCI_B is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the eUSCI_B holds SCL low because it is waiting as transmitter for data being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF. The UCSCLLOW bit might be set for a short time with each rising SCL edge because the logic observes the external SCL and compares it to the internally generated SCL.

1.3.7.2 Avoiding Clock Stretching

Even though clock stretching is part of the I2C specification, there are applications in which clock stretching should be avoided.

The clock is stretched by the eUSCI_B under the following conditions:

- The internal shift register is expecting data, but the TXIFG is still pending
- The internal shift register is full, but the RXIFG is still pending
- The arbitration lost interrupt is pending
- UCSWACK is selected and UCBxI2COA0 did cause a match

To avoid clock stretching, all of these situations for clock stretch either need to be avoided or the corresponding interrupt flags need to be processed before the actual clock stretch can occur.

Using the DMA (on devices that contain a DMA) is the most secure way to avoid clock stretching. If no DMA is available, the software must ensure that the corresponding interrupts are serviced in time before the clock is stretched.

In slave transmitter mode, the TXIFG is set only after the reception of the direction bit; therefore, there is only a short amount of time for the software to write the TXBUF before a clock stretch occurs. This situation can be remedied by using the early Transmit Interrupt (see Section 1.3.11.2).

1.3.7.3 Clock Low Time-out

www.ti.com eUSCI_B Operation - f C Mode

The UCCLTOIFG interrupt allows the software to react if the clock is low longer than a defined time. It is possible to detect the situation, when a clock is stretched by a master or slave for a too long time. The user can then, for example, reset the eUSCL B module by using the UCSWRST bit.

The clock low time-out feature is enabled using the UCCLTO bits. It is possible to select one of three predefined times for the clock low time-out. If the clock has been low longer than the time defined with the UCCLTO bits and the eUSCI B was actively receiving or transmitting, the UCCLTOIFG is set and an interrupt request is generated if UCCLTOIE and GIE are set as well. The UCCLTOIFG is set only once, even if the clock is stretched a multiple of the time defined in UCCLTO.

1.3.8 Byte Counter

The eUSCI_B module supports hardware counting of the bytes received or transmitted. The counter is automatically active and counts up for each byte seen on the bus in both master and slave mode.

The byte counter is incremented at the second bit position of each byte independently of the following ACK or NACK. A START or RESTART condition resets the counter value to zero. Address bytes do not increment the counter. The byte counter is also incremented at the second bit position, if an arbitration lost occurs during the first bit of data.

1.3.8.1 Byte Counter Interrupt

If UCASTPx = 01 or 10 the UCBCNTIFG is set when the byte counter threshold value UCBxTBCNT is reached in both master- and slave-mode. Writing zero to UCBxTBCNT does not generate an interrupt.

Because the UCBCNTIFG has a lower interrupt priority than the UCBTXIFG and UCBRXIFG. TI recommends using it only for protocol control together with the DMA handling the received and transmitted bytes. Otherwise, the application must have enough processor bandwidth to ensure that the UCBCNT interrupt routine is executed in time to generate for example a RESTART.

1.3.8.2 Automatic STOP Generation

When the eUSCL B module is configured as a master, the byte counter can be used for automatic STOP generation by setting the UCASTPx = 10. Before starting the transmission using UCTXSTT, the byte counter threshold UCBxTBCNT must be set to the number of bytes that are to be transmitted or received. After the number of bytes that are configured in UCBxTBCNT have been transmitted, the eUSCI_B automatically generates a STOP condition.

UCBxTBCNT cannot be used if the user wants to transmit the slave address only without any data. In this case, TI recommends setting UCTXSTT and UCTXSTP at the same time.

1.3.9 Multiple Slave Addresses

The eUSCI B module supports two different ways of implementing multiple slave addresses at the same time:

- Hardware support for up to 4 different slave addresses, each with its own interrupt flag and DMA trigger
- Software support for up to 2¹⁰ different slave addresses all sharing one interrupt

eUSCI B Operation - f C Mode www.ti.com

1.3.9.1 Multiple Slave Address Registers

The registers UCBxl2COA0, UCBxl2COA1, UCBxl2COA2, and UCBxl2COA3 contain four slave addresses. Up to four address registers are compared against a received 7- or 10-bit address. Each slave address must be activated by setting the UCAOEN bit in the corresponding UCBxl2COAx register. Register UCBxl2COA3 has the highest priority if the address received on the bus matches more than one of the slave address registers. The priority decreases with the index number of the address register, so that UCBxl2COA0 in combination with the address mask has the lowest priority.

When one of the slave registers matches the 7- or 10-bit address seen on the bus, the address is acknowledged. In the following the corresponding receive- or transmit-interrupt flag (UCTXIFGx or UCRXIFGx) to the received address is updated. The state change interrupt flags are independent of the address comparison result. They are updated according to the bus condition.

1.3.9.2 Address Mask Register

The address mask register can be used when the eUSCI_B is configured in slave or in multiple-master mode. To activate this feature, at least one bit of the address mask in register UCBxADDMASK must be cleared.

If the received address matches the own address in UCBxI2COA0 on all bit positions that are not masked by UCBxADDMASK, the eUSCI_B module considers the received address as its own address. If UCSWACK = 0, the module sends an acknowledge automatically. If UCSWACK = 1, the user software must evaluate the received address in register UCBxADDRX after the UCSTTIFG is set. To acknowledge the received address, the software must set UCTXACK to 1.

The eUSCI_B module also automatically acknowledges a slave address that is seen on the bus if the address matches any of the enabled slave addresses defined in UCBxI2COA1 to UCBxI2COA3.

NOTE: UCSWACK and slave-transmitter

If the user selects manual acknowledge of slave addresses, TXIFG is set if the slave is addressed as a transmitter. If the software decides not to acknowledge the address, TXIFG0 must be reset.

1.3.10 Using the eUSCI_B Module in fC Mode With Low-Power Modes

The eUSCI_B module provides automatic clock activation for use with low-power modes. When the eUSCI_B clock source is inactive because the device is in a low-power mode, the eUSCI_B module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the eUSCI_B module returns to its idle condition. After the eUSCI_B module returns to the idle condition, control of the clock source reverts to the settings of its control bits.

In I^2C slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the eUSCI_B in I^2C slave mode while the device is in LPM4 and all internal clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low-power mode.

1.3.11 eUSCI_B Interrupts in fC Mode

The eUSCI_B has only one interrupt vector that is shared for transmission, reception, and the state change.

NSTRUMENTS

eUSCI_B Operation - I C Mode www.ti.com

Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled and the GIE bit is set, the interrupt flag generates an interrupt request. DMA transfers are controlled by the UCTXIFGx and UCRXIFGx flags on devices with a DMA controller. It is possible to react on each slave address with an individual DMA channel.

All interrupt flags are not cleared automatically, but they need to be cleared together by user interactions (for example, reading the UCRXBUF clears UCRXIFGx). If the user wants to use an interrupt flag he needs to ensure that the flag has the correct state before the corresponding interrupt is enabled.

1.3.11.1 I²C Transmit Interrupt Operation

The UCTXIFG0 interrupt flag is set whenever the transmitter is able to accept a new byte. When operating as a slave with multiple slave addresses, the UCTXIFGx flags are set corresponding to which address was received before. If, for example, the slave address specified in register UCBxI2COA3 did match the address seen on the bus, the UCTXIFG3 indicates that the UCBxTXBUF is ready to accept a new byte.

When operating in master mode with automatic STOP generation (UCASTPx = 10), the UCTXIFG0 is set as many times as defined in UCBxTBCNT.

An interrupt request is generated if UCTXIEx and GIE are also set. UCTXIFGx is automatically reset if a write to UCBxTXBUF occurs or if the UCALIFG is cleared. UCTXIFGx is set when:

- Master mode: UCTXSTT was set by the user
- Slave mode: own address was received (UCETXINT = 0) or START was received (UCETXINT = 1)

UCTXIEx is reset after a PUC or when UCSWRST = 1.

1.3.11.2 Early I²C Transmit Interrupt

Setting the UCETXINT causes UCTXIFG0 to be sent out automatically when a START condition is sent and the eUSCI B is configured as slave. In this case, it is not allowed to enable the other slave addresses UCBxl2COA1-UCBxl2COA3. This allows the software more time to handle the UCTXIFG0 compared to the normal situation, when UCTXIFG0 is sent out after the slave address match was detected. Situations where the UCTXIFG0 was set and afterward no slave address match occurred need to be handled in software. TI recommends using the byte counter to handle this.

1.3.11.3 I²C Receive Interrupt Operation

The UCRXIFG0 interrupt flag is set when a character is received and loaded into UCBxRXBUF. When operating as a slave with multiple slave addresses, the UCRXIFGx flag is set corresponding to which address was received before.

An interrupt request is generated if UCRXIEx and GIE are also set. UCRXIFGx and UCRXIEx are reset after a PUC signal or when UCSWRST = 1. UCRXIFGx is automatically reset when UCxRXBUF is read.

1.3.11.4 I²C State Change Interrupt Operation

Table 1-2 describes the I²C state change interrupt flags.

Table 1-2. I²C State Change Interrupt Flags

Interrupt Flag	Interrupt Condition
UCALIFG	Arbitration lost interrupt. Arbitration can be lost when two or more transmitters start a transmission simultaneously, or when the eUSCI_B operates as master but is addressed as a slave by another master in the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set, the UCMST bit is cleared and the I ² C controller becomes a slave.
UCNACKIFG	Not acknowledge interrupt. This flag is set when an acknowledge is expected but is not received. UCNACKIFG is used in master mode only.
UCCLTOIFG	Clock low time-out. This interrupt flag is set, if the clock is held low longer than defined by the UCCLTO bits.
UCBIT9IFG	This interrupt flag is generated each time the eUSCI_B is transferring the ninth clock cycle of a byte of data. This gives the user the ability to follow the I ² C communication in software if wanted. UCBIT9IFG is not set for address information.
UCBCNTIFG	Byte counter interrupt. This flag is set when the byte counter value reaches the value defined in UCBxTBCNT and UCASTPx = 01 or 10. This bit allows to organize following communications, especially if a RESTART will be issued.
UCSTTIFG	START condition detected interrupt. This flag is set when the I ² C module detects a START condition together with its own address ⁽¹⁾ . UCSTTIFG is used in slave mode only.
UCSTPIFG	STOP condition detected interrupt. This flag is set when the I ² C module detects a STOP condition on the bus. UCSTPIFG is used in slave and master mode.

⁽¹⁾ The address evaluation includes the address mask register if it is used.

1.3.11.5 UCBxIV, Interrupt Vector Generator

The eUSCI_B interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCBxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the PC to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCBxIV value.

Read access of the UCBxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

Write access of the UCBxIV register clears all pending Interrupt conditions and flags.

Example 1-3 shows the recommended use of UCBxIV. The UCBxIV value is added to the PC to automatically jump to the appropriate routine. The example is given for eUSCI0_B.

Example 1-3. UCBxIV Software Example

```
#pragma vector = USCI_B0_VECTOR __interrupt void USCI_B0_ISR(void) {
    switch(__even_in_range(UCB0IV,0x1e))
        case 0x00:
                      // Vector 0: No interrupts
                   break;
        case 0x02: ... // Vector 2: ALIFG
                   break;
        case 0x04: ... // Vector 4: NACKIFG
                   break;
        case 0x06: ... // Vector 6: STTIFG
                   break;
        case 0x08: ... // Vector 8: STPIFG
                   break;
        case 0x0a: ... // Vector 10: RXIFG3
                   break;
        case 0x0c: ... // Vector 12: TXIFG3
                   break;
        case 0x0e: ... // Vector 14: RXIFG2
                   break;
        case 0x10: ... // Vector 16: TXIFG2
                   break;
        case 0x12: ... // Vector 18: RXIFG1
                   break;
        case 0x14: ... // Vector 20: TXIFG1
                   break;
        case 0x16: ... // Vector 22: RXIFG0
        case 0x18: ... // Vector 24: TXIFG0
                   break;
        case 0x1a: ... // Vector 26: BCNTIFG
                   break;
        case 0x1c: ... // Vector 28: clock low time-out
                   break;
        case 0x1e: ... // Vector 30: 9th bit
                   break;
        default:
                   break;
    }
}
```

www.ti.com

1.4 eUSCI_B I2C Registers

eUSCI_B I2C Registers

The eUSCI_B registers applicable in I^2C mode and their address offsets are listed in Table 1-3. The base address can be found in the device-specific data sheet.

Table 1-3. eUSCI_B Registers

Offset	Acronym	Register Name	Туре	Access	Reset	Section
00h	UCBxCTLW0	eUSCI_Bx Control Word 0	Read/write	Word	01C1h	Section 1.4.1
00h	UCBxCTL1	eUSCI_Bx Control 1	Read/write	Byte	C1h	
01h	UCBxCTL0	eUSCI_Bx Control 0	Read/write	Byte	01h	
02h	UCBxCTLW1	eUSCI_Bx Control Word 1	Read/write	Word	0000h	Section 1.4.2
06h	UCBxBRW	eUSCI_Bx Bit Rate Control Word	Read/write	Word	0000h	Section 1.4.3
06h	UCBxBR0	eUSCI_Bx Bit Rate Control 0	Read/write	Byte	00h	
07h	UCBxBR1	eUSCI_Bx Bit Rate Control 1	Read/write	Byte	00h	
08h	UCBxSTATW	eUSCI_Bx Status Word	Read	Word	0000h	Section 1.4.4
08h	UCBxSTAT	eUSCI_Bx Status	Read	Byte	00h	
09h	UCBxBCNT	eUSCI_Bx Byte Counter Register	Read	Byte	00h	
0Ah	UCBxTBCNT	eUSCI_Bx Byte Counter Threshold Register	Read/Write	Word	00h	Section 1.4.5
0Ch	UCBxRXBUF	eUSCI_Bx Receive Buffer	Read/write	Word	00h	Section 1.4.6
0Eh	UCBxTXBUF	eUSCI_Bx Transmit Buffer	Read/write	Word	00h	Section 1.4.7
14h	UCBxI2COA0	eUSCI_Bx I2C Own Address 0	Read/write	Word	0000h	Section 1.4.8
16h	UCBxI2COA1	eUSCI_Bx I2C Own Address 1	Read/write	Word	0000h	Section 1.4.9
18h	UCBxI2COA2	eUSCI_Bx I2C Own Address 2	Read/write	Word	0000h	Section 1.4.10
1Ah	UCBxI2COA3	eUSCI_Bx I2C Own Address 3	Read/write	Word	0000h	Section 1.4.11
1Ch	UCBxADDRX	eUSCI_Bx Received Address Register	Read	Word		Section 1.4.12
1Eh	UCBxADDMASK	eUSCI_Bx Address Mask Register	Read/write	Word	03FFh	Section 1.4.13
20h	UCBxI2CSA	eUSCI_Bx I2C Slave Address	Read/write	Word	0000h	Section 1.4.14
2Ah	UCBxIE	eUSCI_Bx Interrupt Enable	Read/write	Word	0000h	Section 1.4.15
2Ch	UCBxIFG	eUSCI_Bx Interrupt Flag	Read/write	Word	0002h	Section 1.4.16
2Eh	UCBxIV	eUSCI_Bx Interrupt Vector	Read	Word	0000h	Section 1.4.17

1.4.1 UCBxCTLW0 Register

eUSCI_Bx Control Word Register 0

Figure 1-17. UCBxCTLW0 Register

15	14	13	12	11	10	9	8
UCA10	UCSLA10	UCMM	Reserved	UCMST	UCM	ODEx	UCSYNC
rw-0	rw-0	rw-0	rO	rw-0	rw-0	rw-0	r1
7	6	5	4	3	2	1	0
UCS	SELx	UCTXACK	UCTR	UCTXNACK	UCTXSTP	UCTXSTT	UCSWRST
rw-1	rw-1	rw-0	rw-0	rw-0	rw-0	rw-0	rw-1

Can be modified only when UCSWRST = 1.

Table 1-4. UCBxCTLW0 Register Description

Bit	Field	Туре	Reset	Description
15	UCA10	RW	Oh	Own addressing mode select. Modify only when UCSWRST = 1. 0b = Own address is a 7-bit address. 1b = Own address is a 10-bit address.
14	UCSLA10	RW	0h	Slave addressing mode select 0b = Address slave with 7-bit address 1b = Address slave with 10-bit address
13	UCMM	RW	Oh	Multi-master environment select. Modify only when UCSWRST = 1. 0b = Single master environment. There is no other master in the system. The address compare unit is disabled. 1b = Multi-master environment
12	Reserved	R	0h	Reserved
11	UCMST	RW	Oh	Master mode select. When a master loses arbitration in a multi-master environment (UCMM = 1), the UCMST bit is automatically cleared and the module acts as slave. 0b = Slave mode 1b = Master mode
10-9	UCMODEX	RW	0h	eUSCI_B mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. Modify only when UCSWRST = 1. 00b = 3-pin SPI 01b = 4-pin SPI (master or slave enabled if STE = 1) 10b = 4-pin SPI (master or slave enabled if STE = 0) 11b = I2C mode
8	UCSYNC	RW	1h	Synchronous mode enable. For eUSCI_B always read and write as 1.
7-6	UCSSELx	RW	3h	eUSCI_B clock source select. These bits select the BRCLK source clock. These bits are ignored in slave mode. Modify only when UCSWRST = 1. 00b = UCLKI 01b = ACLK 10b = SMCLK 11b = SMCLK
5	UCTXACK	RW	0h	Transmit ACK condition in slave mode with enabled address mask register. After the UCSTTIFG has been set, the user needs to set or reset the UCTXACK flag to continue with the I2C protocol. The clock is stretched until the UCBxCTL1 register has been written. This bit is cleared automatically after the ACK has been send. 0b = Do not acknowledge the slave address 1b = Acknowledge the slave address

eUSCI_B I2C Registers www.ti.com

Table 1-4. UCBxCTLW0 Register Description (continued)

Bit	Field	Туре	Reset	Description
4	UCTR	RW	0h	Transmitter/receiver 0b = Receiver 1b = Transmitter
3	UCTXNACK	RW	Oh	Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted. Only for slave receiver mode. 0b = Acknowledge normally 1b = Generate NACK
2	UCTXSTP	RW	0h	Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode, the STOP condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated. This bit is a don't care, if automatic UCASTPx is different from 01 or 10. 0b = No STOP generated 1b = Generate STOP
1	UCTXSTT	RW	0h	Transmit START condition in master mode. Ignored in slave mode. In master receiver mode, a repeated START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and address information is transmitted. Ignored in slave mode. 0b = Do not generate START condition 1b = Generate START condition
0	UCSWRST	RW	1h	Software reset enable. 0b = Disabled. eUSCI_B released for operation. 1b = Enabled. eUSCI_B logic held in reset state.

1.4.2 UCBxCTLW1 Register

eUSCI_Bx Control Word Register 1

Figure 1-18. UCBxCTLW1 Register

15	14	13	12	11	10	9	8
			Reserved				UCETXINT
r0	rO	r0	r0	r0	r0	r0	rw-0
7	6	5	4	3	2	1	0
UCCLTO		UCSTPNACK	UCSWACK	UCAS	STPx	UCG	SLITx
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when UCSWRST = 1.

Table 1-5. UCBxCTLW1 Register Description

Bit	Field	Туре	Reset	Description
15-9	Reserved	R	0h	Reserved
8	UCETXINT	RW	Oh	Early UCTXIFG0. Only in slave mode. When this bit is set, the slave addresses defined in UCxI2COA1 to UCxI2COA3 must be disabled. Modify only when UCSWRST = 1. 0b = UCTXIFGx is set after an address match with UCxI2COAx and the direction bit indicating slave transmit 1b = UCTXIFG0 is set for each START condition
7-6	UCCLTO	RW	Oh	Clock low time-out select. Modify only when UCSWRST = 1. 00b = Disable clock low time-out counter 01b = 135000 MODCLK cycles (approximately 28 ms) 10b = 150000 MODCLK cycles (approximately 31 ms) 11b = 165000 MODCLK cycles (approximately 34 ms)
5	UCSTPNACK	RW	Oh	The UCSTPNACK bit allows to make the eUSCI_B master acknowledge the last byte in master receiver mode as well. This does not conform to the I2C specification and should only be used for slaves that automatically release the SDA after a fixed packet length. Modify only when UCSWRST = 1. 0b = Send a not acknowledge before the STOP condition as a master receiver (conform to I2C standard) 1b = All bytes are acknowledged by the eUSCI_B when configured as master receiver
4	UCSWACK	RW	Oh	This bit selects whether sending an ACK of the address is triggered by the eUSCI_B module or is controlled by software. 0b = The address acknowledge of the slave is controlled by the eUSCI_B module 1b = The user needs to trigger the sending of the address ACK by issuing UCTXACK
3-2	UCASTPX	RW	Oh	Automatic STOP condition generation. In slave mode, only settings 00b and 01b are available. Modify only when UCSWRST = 1. 00b = No automatic STOP generation. The STOP condition is generated after the user sets the UCTXSTP bit. The value in UCBxTBCNT is a don't care. 01b = UCBCNTIFG is set with the byte counter reaches the threshold defined in UCBxTBCNT 10b = A STOP condition is generated automatically after the byte counter value reached UCBxTBCNT. UCBCNTIFG is set with the byte counter reaching the threshold. 11b = Reserved

eUSCI_B I2C Registers www.ti.com

Table 1-5. UCBxCTLW1 Register Description (continued)

Bit	Field	Туре	Reset	Description
1-0	UCGLITx	RW	0h	Deglitch time
				00b = 50 ns
				01b = 25 ns
				10b = 12.5 ns
				11b = 6.25 ns

1.4.3 UCBxBRW Register

eUSCI_Bx Bit Rate Control Word Register

Figure 1-19. UCBxBRW Register

15	14	13	12	11	10	9	8		
	UCBRx								
rw	rw	rw	rw	rw	rw	rw	rw		
7	6	5	4	3	2	1	0		
UCBRx									
rw	rw	rw	rw	rw	rw	rw	rw		

Can be modified only when UCSWRST = 1.

Table 1-6. UCBxBRW Register Description

Bit	Field	Туре	Reset	Description
15-0	UCBRx	RW	0h	Bit clock prescaler.
				Modify only when UCSWRST = 1.

1.4.4 UCBxSTATW

eUSCI_Bx Status Word Register

Figure 1-20. UCBxSTATW Register

15	14	13	12	11	10	9	8
			UCBO	CNTx			
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
7	6	5	4	3	2	1	0
Reserved	UCSCLLOW	UCGC	UCBBUSY		Rese	rved	
r0	r-0	r-0	r-0	r-0	r0	r0	r0

Table 1-7. UCBxSTATW Register Description

Bit	Field	Туре	Reset	Description
15-8	UCBCNTx	R	0h	Hardware byte counter value. Reading this register returns the number of bytes received or transmitted on the I2C-Bus since the last START or RESTART. There is no synchronization of this register done. When reading UCBxBCNT during the first bit position, a faulty read back can occur.
7	Reserved	R	0h	Reserved
6	UCSCLLOW	R	Oh	SCL low 0b = SCL is not held low 1b = SCL is held low
5	UCGC	R	0h	General call address received. UCGC is automatically cleared when a START condition is received. 0b = No general call address received 1b = General call address received
4	UCBBUSY	R	Oh	Bus busy 0b = Bus inactive 1b = Bus busy
3-0	Reserved	R	0h	Reserved

TEXAS INSTRUMENTS

eUSCI_B I2C Registers www.ti.com

1.4.5 UCBxTBCNT Register

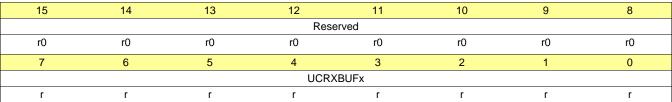
eUSCI_Bx Byte Counter Threshold Register

Figure 1-21. UCBxTBCNT Register

15	14	13	12	11	10	9	8
			Rese	erved			
rO	r0	rO	r0	r0	r0	r0	rO
7	6	5	4	3	2	1	0
			UCTE	BCNTx			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when UCSWRST = 1.

Table 1-8. UCBxTBCNT Register Description


Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCTBCNTx	RW	Oh	The byte counter threshold value is used to set the number of I2C data bytes after which the automatic STOP or the UCSTPIFG should occur. This value is evaluated only if UCASTPx is different from 00. Modify only when UCSWRST = 1.

1.4.6 UCBxRXBUF Register

eUSCI_Bx Receive Buffer Register

Figure 1-22. UCBxRXBUF Register

Table 1-9. UCBxRXBUF Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCRXBUFx	R	Oh	The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCBxRXBUF resets the UCRXIFGx flags.

1.4.7 UCBxTXBUF

eUSCI_Bx Transmit Buffer Register

Figure 1-23. UCBxTXBUF Register

15	14	13	12	11	10	9	8
			Rese	erved			
rO	r0	r0	r0	rO	r0	r0	r0
7	6	5	4	3	2	1	0
			UCTX	BUFx			
rw	rw	rw	rw	rw	rw	rw	rw

Table 1-10. UCBxTXBUF Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCTXBUFx	RW		The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears the UCTXIFGx flags.

eUSCI_B I2C Registers www.ti.com

1.4.8 UCBxI2COA0 Register

eUSCI_Bx I2C Own Address 0 Register

Figure 1-24. UCBxI2COA0 Register

15	14	13	12	11	10	9	8
UCGCEN		Rese	erved		UCOAEN	I2C	OA0
rw-0	rO	rO	rO	r0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
			1200	OAC			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when UCSWRST = 1.

Table 1-11. UCBxI2COA0 Register Description

Bit	Field	Туре	Reset	Description
15	UCGCEN	RW	Oh	General call response enable. This bit is only available in UCBxI2COA0. Modify only when UCSWRST = 1. 0b = Do not respond to a general call 1b = Respond to a general call
14-11	Reserved	R	0h	Reserved
10	UCOAEN	RW	Oh	Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA0 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA0 is disabled 1b = The slave address defined in I2COA0 is enabled
9-0	I2COAx	RW	0h	I2C own address. The I2COA0 bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1.

1.4.9 UCBxI2COA1 Register

eUSCI_Bx I2C Own Address 1 Register

Figure 1-25. UCBxI2COA1 Register

15	14	13	12	11	10	9	8
		Reserved	UCOAEN	I2C	OA1		
rw-0	r0	r0	rO	r0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
			I2C	OA1			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when UCSWRST = 1.

Table 1-12. UCBxI2COA1 Register Description

Bit	Field	Туре	Reset	Description
15-11	Reserved	R	0h	Reserved
10	UCOAEN	RW	0h	Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA1 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA1 is disabled 1b = The slave address defined in I2COA1 is enabled
9-0	I2COA1	RW	0h	I2C own address. The I2COAx bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1.

1.4.10 UCBxI2COA2 Register

eUSCI_Bx I2C Own Address 2 Register

Figure 1-26. UCBxI2COA2 Register

15	14	13	12	11	10	9	8
		Reserved	UCOAEN	I2C	OA2		
rw-0	rO	rO	r0	r0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
			I2C0	OA2			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when UCSWRST = 1.

Table 1-13. UCBxI2COA2 Register Description

Bit	Field	Туре	Reset	Description
15-11	Reserved	R	0h	Reserved
10	UCOAEN	RW	0h	Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA2 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA2 is disabled 1b = The slave address defined in I2COA2 is enabled
9-0	I2COA2	RW	0h	I2C own address. The I2COAx bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1.

eUSCI_B I2C Registers www.ti.com

1.4.11 UCBxI2COA3 Register

eUSCI_Bx I2C Own Address 3 Register

Figure 1-27. UCBxI2COA3 Register

15	14	13	12	11	10	9	8
		Reserved	UCOAEN	I2C	OA3		
rw-0	r0	r0	rO	r0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
			I2C	DA3			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when UCSWRST = 1.

Table 1-14. UCBxI2COA3 Register Description

Bit	Field	Туре	Reset	Description
15-11	Reserved	R	0h	Reserved
10	UCOAEN	RW	Oh	Own Address enable register. With this register it can be selected if the I2C slave-address related to this register UCBxI2COA3 is evaluated or not. Modify only when UCSWRST = 1. 0b = The slave address defined in I2COA3 is disabled 1b = The slave address defined in I2COA3 is enabled
9-0	I2COA3	RW	0h	I2C own address. The I2COA3 bits contain the local address of the eUSCIx_B I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB. Modify only when UCSWRST = 1.

1.4.12 UCBxADDRX Register

eUSCI_Bx I2C Received Address Register

Figure 1-28. UCBxADDRX Register

15	14	13	12	11	10	9	8	
	Reserved							
r-0	rO	rO	rO	rO	r0	r-0	r-0	
7	6	5	4	3	2	1	0	
			ADD)RXx				
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0	

Table 1-15. UCBxADDRX Register Description

Bit	Field	Туре	Reset	Description
15-10	Reserved	R	0h	Reserved
9-0	ADDRXx	R	0h	Received Address Register. This register contains the last received slave address on the bus. Using this register and the address mask register it is possible to react on more than one slave address using one eUSCI_B module.

1.4.13 UCBxADDMASK Register

eUSCI_Bx I2C Address Mask Register

Figure 1-29. UCBxADDMASK Register

15	14	13	12	11	10	9	8
		ADDN	MASKx				
r-0	r0	r0	r0	r0	r0	rw-1	rw-1
7	6	5	4	3	2	1	0
			ADDN	ЛАSKx			
rw-1	rw-1	rw-1	rw-1	rw-1	rw-1	rw-1	rw-1

Can be modified only when UCSWRST = 1.

Table 1-16. UCBxADDMASK Register Description

Bit	Field	Туре	Reset	Description
15-10	Reserved	R	0h	Reserved
9-0	ADDMASKx	RW	3FFh	Address Mask Register. By clearing the corresponding bit of the own address, this bit is a don't care when comparing the address on the bus to the own address. Using this method, it is possible to react on more than one slave address. When all bits of ADDMASKx are set, the address mask feature is deactivated. Modify only when UCSWRST = 1.

1.4.14 UCBxI2CSA Register

eUSCI_Bx I2C Slave Address Register

Figure 1-30. UCBxI2CSA Register

			•		•		
15	14	13	12	11	10	9	8
		I2C	SAx				
r-0	r0	r0	r0	r0	rO	rw-0	rw-0
7	6	5	4	3	2	1	0
			I2C	SAx			
rw-0							

Table 1-17. UCBxI2CSA Register Description

Bit	Field	Туре	Reset	Description
15-10	Reserved	R	0h	Reserved
9-0	I2CSAx	RW		I2C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by the eUSCIx_B module. It is only used in master mode. The address is right justified. In 7-bit slave addressing mode, bit 6 is the MSB and bits 9-7 are ignored. In 10-bit slave addressing mode, bit 9 is the MSB.

1.4.15 UCBxIE Register

eUSCI_Bx I2C Interrupt Enable Register

Figure 1-31. UCBxIE Register

15	14	13	12	11	10	9	8
Reserved	UCBIT9IE	UCTXIE3	UCRXIE3	UCTXIE2	UCRXIE2	UCTXIE1	UCRXIE1
r0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
7	0	_		•	0	4	•
/	6	5	4	3	2	1	0
UCCLTOIE	UCBCNTIE	UCNACKIE	UCALIE	UCSTPIE	UCSTTIE	UCTXIE0	UCRXIE0

Table 1-18. UCBxIE Register Description

Bit	Field	Туре	Reset	Description
15	Reserved	R	0h	Reserved
14	UCBIT9IE	RW	Oh	Bit position 9 interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled
13	UCTXIE3	RW	0h	Transmit interrupt enable 3 0b = Interrupt disabled 1b = Interrupt enabled
12	UCRXIE3	RW	0h	Receive interrupt enable 3 0b = Interrupt disabled 1b = Interrupt enabled
11	UCTXIE2	RW	0h	Transmit interrupt enable 2 0b = Interrupt disabled 1b = Interrupt enabled
10	UCRXIE2	RW	Oh	Receive interrupt enable 2 0b = Interrupt disabled 1b = Interrupt enabled
9	UCTXIE1	RW	Oh	Transmit interrupt enable 1 0b = Interrupt disabled 1b = Interrupt enabled
8	UCRXIE1	RW	Oh	Receive interrupt enable 1 0b = Interrupt disabled 1b = Interrupt enabled
7	UCCLTOIE	RW	Oh	Clock low time-out interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled
6	UCBCNTIE	RW	Oh	Byte counter interrupt enable. 0b = Interrupt disabled 1b = Interrupt enabled
5	UCNACKIE	RW	Oh	Not-acknowledge interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled
4	UCALIE	RW	Oh	Arbitration lost interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled
3	UCSTPIE	RW	Oh	STOP condition interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled

Table 1-18. UCBxIE Register Description (continued)

Bit	Field	Туре	Reset	Description
2	UCSTTIE	RW	0h	START condition interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled
1	UCTXIE0	RW	0h	Transmit interrupt enable 0 0b = Interrupt disabled 1b = Interrupt enabled
0	UCRXIE0	RW	0h	Receive interrupt enable 0 0b = Interrupt disabled 1b = Interrupt enabled

1.4.16 UCBxIFG Register

eUSCI_Bx I2C Interrupt Flag Register

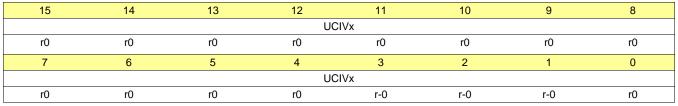
Figure 1-32. UCBxIFG Register

15	14	13	12	11	10	9	8
Reserved	UCBIT9IFG	UCTXIFG3	UCRXIFG3	UCTXIFG2	UCRXIFG2	UCTXIFG1	UCRXIFG1
r0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
UCCLTOIFG	UCBCNTIFG	UCNACKIFG	UCALIFG	UCSTPIFG	UCSTTIFG	UCTXIFG0	UCRXIFG0
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-1	rw-0

Table 1-19. UCBxIFG Register Description

Bit	Field	Туре	Reset	Description
15	Reserved	R	0h	Reserved
14	UCBIT9IFG	RW	Oh	Bit position 9 interrupt flag 0b = No interrupt pending 1b = Interrupt pending
13	UCTXIFG3	RW	Oh	eUSCI_B transmit interrupt flag 3. UCTXIFG3 is set when UCBxTXBUF is empty in slave mode, if the slave address defined in UCBxI2COA3 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending
12	UCRXIFG3	RW	Oh	Receive interrupt flag 3. UCRXIFG3 is set when UCBxRXBUF has received a complete byte in slave mode and if the slave address defined in UCBxI2COA3 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending
11	UCTXIFG2	RW	Oh	eUSCI_B transmit interrupt flag 2. UCTXIFG2 is set when UCBxTXBUF is empty in slave mode, if the slave address defined in UCBxI2COA2 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending
10	UCRXIFG2	RW	Oh	Receive interrupt flag 2. UCRXIFG2 is set when UCBxRXBUF has received a complete byte in slave mode and if the slave address defined in UCBxI2COA2 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending
9	UCTXIFG1	RW	Oh	eUSCI_B transmit interrupt flag 1. UCTXIFG1 is set when UCBxTXBUF is empty in slave mode, if the slave address defined in UCBxI2COA1 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending
8	UCRXIFG1	RW	Oh	Receive interrupt flag 1. UCRXIFG1 is set when UCBxRXBUF has received a complete byte in slave mode and if the slave address defined in UCBxI2COA1 was on the bus in the same frame. 0b = No interrupt pending 1b = Interrupt pending
7	UCCLTOIFG	RW	Oh	Clock low time-out interrupt flag 0b = No interrupt pending 1b = Interrupt pending
6	UCBCNTIFG	RW	Oh	Byte counter interrupt flag. When using this interrupt the user needs to ensure enough processing bandwidth (see the Byte Counter Interrupt section). 0b = No interrupt pending 1b = Interrupt pending

Table 1-19. UCBxIFG Register Description (continued)


Bit	Field	Туре	Reset	Description
5	UCNACKIFG	RW	0h	Not-acknowledge received interrupt flag. This flag only is updated when operating in master mode.
				0b = No interrupt pending
				1b = Interrupt pending
4	UCALIFG	RW	0h	Arbitration lost interrupt flag
				0b = No interrupt pending
				1b = Interrupt pending
3	UCSTPIFG	RW	0h	STOP condition interrupt flag
				0b = No interrupt pending
				1b = Interrupt pending
2	UCSTTIFG	RW	0h	START condition interrupt flag
				0b = No interrupt pending
				1b = Interrupt pending
1	UCTXIFG0	RW	0h	eUSCI_B transmit interrupt flag 0. UCTXIFG0 is set when UCBxTXBUF is empty in master mode or in slave mode, if the slave address defined in UCBxI2COA0 was on the bus in the same frame.
				0b = No interrupt pending
				1b = Interrupt pending
0	UCRXIFG0	RW	0h	eUSCI_B receive interrupt flag 0. UCRXIFG0 is set when UCBxRXBUF has received a complete character in master mode or in slave mode, if the slave address defined in UCBxI2COA0 was on the bus in the same frame.
				0b = No interrupt pending
				1b = Interrupt pending

eUSCI_B I2C Registers www.ti.com

1.4.17 UCBxIV Register

eUSCI_Bx Interrupt Vector Register

Figure 1-33. UCBxIV Register

Table 1-20. UCBxIV Register Description

Bit	Field	Туре	Reset	Description
15-0	UCIVx	R	0h	eUSCI_B interrupt vector value. It generates an value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending interrupt flags.
				00h = No interrupt pending
				02h = Interrupt Source: Arbitration lost; Interrupt Flag: UCALIFG; Interrupt Priority: Highest
				04h = Interrupt Source: Not acknowledgment; Interrupt Flag: UCNACKIFG
				06h = Interrupt Source: Start condition received; Interrupt Flag: UCSTTIFG
				08h = Interrupt Source: Stop condition received; Interrupt Flag: UCSTPIFG
				0Ah = Interrupt Source: Slave 3 Data received; Interrupt Flag: UCRXIFG3
				0Ch = Interrupt Source: Slave 3 Transmit buffer empty; Interrupt Flag: UCTXIFG3
				0Eh = Interrupt Source: Slave 2 Data received; Interrupt Flag: UCRXIFG2
				10h = Interrupt Source: Slave 2 Transmit buffer empty; Interrupt Flag: UCTXIFG2
				12h = Interrupt Source: Slave 1 Data received; Interrupt Flag: UCRXIFG1
				14h = Interrupt Source: Slave 1 Transmit buffer empty; Interrupt Flag: UCTXIFG1
				16h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG0
				18h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG0
				1Ah = Interrupt Source: Byte counter zero; Interrupt Flag: UCBCNTIFG
				1Ch = Interrupt Source: Clock low time-out; Interrupt Flag: UCCLTOIFG
				1Eh = Interrupt Source: 9th bit position; Interrupt Flag: UCBIT9IFG; Priority: Lowest

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated