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Modeling the output impedance of an op amp 
for stability analysis

Introduction
The interaction between the output stage of an opera-
tional amplifier (op amp) and capacitive loads can impact 
the stability of the circuit. Throughout the industry, 
op-amp output-stage requirements have changed greatly 
since their original creation. Classic output stages with the 
class-AB common-emitter bipolar junction transistor (BJT) 
have now been replaced with common-collector BJT and 
common-drain complementary metal-oxide semiconductor 
(CMOS) devices. Both of these technologies enable rail-to-
rail output voltages for single-supply and battery-powered 
applications.

A result of changing these output-stage structures is 
that the op-amp open-loop output impedance (ZO) 
changed from the largely resistive behavior of early BJT 
op amps to a frequency-dependent ZO that features 
capacitive, resistive, and inductive portions. Proper under-
standing of ZO over frequency is crucial for the under-
standing of loop gain, bandwidth, and stability analysis. 
This article develops a passive-component model of the ZO 
curve for a three-stage op amp. This enables a deeper 
understanding of the different regions of a modern op-amp 
ZO curve that will simplify op-amp stability analysis when 
designing circuits.

Op-amp output impedance
Output stages with the classic common-emitter BJTs 
feature flat resistive ZO curves as shown in Figure 1a. 
Many CMOS rail-to-rail output amplifiers feature two-stage 
ZO curves (Figure 1b). Three-stage BJT and CMOS-output 
topologies that create rail-to-rail outputs while achieving 
open-loop gains greater than 120 dB, often feature the 
three-stage ZO curve shown in Figure 1c. The ZO curves 
shown here should not be confused with the closed-loop 
output impedance (ZOUT) curves that are also shown in 
op-amp data sheets.
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Figure 1. ZO for different op-amp output stages
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The test circuit to measure the open-loop output imped-
ance of op amps in circuit-simulation programs (SPICE) is 
shown in Figure 2. The circuit uses a very large 1-TH 
inductor (LT) and a 1-TF capacitor (CT) as the feedback 
components. The LT inductor provides a closed-loop unity-
gain feedback path at very low frequencies near DC to 
define the circuit operating point, while opening the feed-
back loop for AC. This allows for an open-loop measure-
ment of the output impedance for all frequencies of 
interest. The CT capacitor is open at DC and then 
connects the inverting input to the same potential as the 
non-inverting input for all frequencies of interest. A 
current source can then be injected directly into the 
output while measuring the output voltage, VOUT. The 
voltage probe on the output will be equal to ZO in dB. The 
results must be converted from dB to a logarithmic scale 
in V/A to obtain ZO in Ω.

Calculating ZO curve values
The ZO simulation results for a typical 
three-stage op amp are shown in Figure 3. 
While each op amp will have different 
magnitudes of output impedance, the shape 
shown in this curve will typically exist.

The resistive, capacitive, and inductive 
portions of the ZO curve from Figure 3 
have been labeled to develop a more intui-
tive understanding of the ZO behavior over 
frequency. Resistive regions are the easiest 
to identify as the flat regions of the curve. 
A three-stage output impedance typically 
has three resistive regions marked as RLOW, 
RMID, and RHIGH. Capacitive regions result 
in an equivalent –20-dB/decade decrease in 
ZO with frequency as shown in the regions 
marked CLOW and CHIGH. The inductive 
region causes an equivalent 20-dB/decade 
increase in ZO over frequency as shown in 
the LO region of the curve.

The values of the resistive regions of the 
curve can be read directly from the flat 
regions of the curve. Table 1 shows the resistive values 
from the curve in Figure 3.

Table 1. Resistance values in the resistive regions of the ZO curve

Designator Value Units

RLOW 4.87 MΩ

RMID 4.09 Ω

RHIGH 1.03 kΩ

The inductance and capacitance equations, Equations 1 
and 2, can be used to calculate the values in those regions 
of the curve.
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Depending on the shape of the ZO magnitude, it can be 
difficult to determine the correct frequency and imped-
ance values to use in the calculations. This is especially 
true if there is little separation between the R, L, and C 
regions. The best frequency to use for the impedance 

Figure 2. Simulation circuit for open-loop 
output impedance (ZO) 
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Figure 3. Typical ZO magnitude response of a three-stage op amp
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calculations is the frequency as a logarithmic 
scale that is in the middle of the poles and 
zeroes, which define the component’s region 
of operation. The ZO phase-response curve 
shown in Figure 4 can be used to determine 
the location of the poles and zeros by identi-
fying frequencies that correspond to ±45° 
phase shifts. A pole will have –45° of phase-
shift from the initial value at the pole frequency, 
while a zero will have +45° of phase-shift from 
the initial value at the zero frequency.

The poles and zeros are marked in Figure 4 
and their frequencies are listed in Table 2.

Table 2. Frequencies of the poles and zeros from 
the ZO phase curve shown in Figure 4

Name Value Units

fP1 20.77 µHz

fZ1 24.74 Hz

fZ2 492.73 Hz

fP2 143.33 kHz

fP3 7.68 MHz

To calculate the value for the CLOW region, first deter-
mine the average frequency (fC_LOW) between the pole 
and zero frequencies that define the capacitive region, fP1 
and fZ1, using Equation 3.
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The impedance of the curve at 22.67 mHz,  
ZC_LOW(fC_LOW), is equal to 4.47 kΩ. Equation 4 uses these 
values to calculate the 1.57 mF value of CLOW.
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The middle frequency for the LO inductance calculation 
(fLo) can be calculated in a similar way using fZ2 and fP2 
(Equation 3). With a fLo of 8.403 Hz, the impedance is 
equal to 64.94 Ω, which can be used with fLo to calculate 
the LO inductance (Equation 5).

f f f Hz kHz Hz

Z f
Lo Z P

Lo Lo

= × = × =

=

. . ,

( )
2 2 492 73 143 33 8 403

22

2

64 94

2
1 2

π

π π

( ) .
.

f L

L
Z f

f

Lo O

O
Lo Lo

Lo

×

= =
×

=

or

8,403 Hz

Ω
33mH

	

(5)

The zero associated with CHIGH is typically outside of 
the frequency range included in a ZO curve and, therefore, 
is unknown. CHIGH can be calculated using the impedance 
at the maximum frequency shown in the graph (100 MHz) 
and adjusted later if required. Slight inaccuracies in the 
value of CHIGH are not as critical as some of the other 
values because the CHIGH region is typically outside of the 
op-amp’s bandwidth. The values calculated from the ZO 
curve shown in Figure 3 are listed in Table 3.

Table 3. Values for all regions of the ZO curve

Designator Value Units

RLOW 4.87 MΩ

CLOW 1.57 mF

RMID 4.09 Ω

LO 1.23 mH

RHIGH 1.03 kΩ

CHIGH 20.14 pF

Figure 4. Typical ZO phase response over frequency for 
the three-stage op amp shown in Figure 3
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Lines representing the calculated passive R, 
L, and C impedances have been overlaid on 
the original ZO curve in Figure 5. The imped-
ance lines lay directly over the respective 
portions of the ZO curve, confirming that the 
component value calculations are accurate.

Passive-component ZO model of the 
three-stage op amp
A passive model of the three-stage op-amp ZO 
curve using the calculated R, L, and C values 
is shown in Figure 6. Note that there are 
many ways to represent and model op-amp 
ZO curves. Depending on the type of simula-
tion being run, other methods may work 
better. However, the passive model presented 
here makes it easier to gain an intuitive 
understanding of the ZO curve, which is 
critical for stability analysis.

While the component names and values 
from the calculations can be identified in the 
passive model, the arrangement of the 
components requires explanation. First, keep in mind that 
capacitors are open circuits at DC. Therefore, the only DC 
path through the passive model can be identi-
fied as the series path through RLOW and LO, 
labeled as the first stage in Figure 6. The 
second stage, CLOW and RMID, are in parallel 
with RLOW. When the impedance of CLOW 
begins to encroach upon the value of RLOW, 
the output impedance will decrease. The 
impedance stops decreasing once the imped-
ance of CLOW drops below the value of the 
series RMID resistance.

Once the impedance of the LO inductor 
increases above the level of RMID, the curve 
will increase. The curve continues to increase 
until the impedance reaches the RHIGH resis-
tance in the third stage, which is in parallel 
with the first two stages. The CDAMP capacitor 
is required to prevent RHIGH from interfering 
with the ZO curve at low frequencies. CDAMP 
will be selected such that the R, L, C circuit 
formed from RHIGH, LO, and CDAMP has a 
damping factor (ζ) greater than one, which prevents 
undesired peaking in the ZO curve. The CHIGH impedance 
in the fourth stage is in parallel with the entire model and 
will cause the curve to decrease at high frequencies once 
its impedance is lower than the RHIGH resistance. The 
RVHIGH resistance is included to flatten the curve back to a 
known resistance at frequencies much higher than the 
bandwidth of the op amp. Its value is not critical because 
it will have an effect well outside of the bandwidths  
of interest. 

Figure 5. Simulated ZO with equivalent R, L, and C 
impedances overlaid
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Figure 6. A passive-component ZO model for a typical 
three-stage op amp
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Verifying the passive model 
The simulation results of the passive model 
are compared to the original simulated results 
from the full op-amp transistor-level model in 
Figure 7. As expected from the calculations, 
the passive-model output impedance lies 
directly on top of the results of the op-amp 
transistor-level model simulation.

A comparison of the phase results from the 
passive model and the op-amp transistor-level 
model are shown in Figure 8. Comparing the 
phase results is often a more rigorous verifi-
cation because slight deviations in the magni-
tude are often easier to identify in the phase 
response. The passive-model results once 
again lie directly on top of the results for the 
op-amp transistor-level model simulated. This 
confirms that the passive model presented 
here is an accurate representation of the ZO 
curve of a typical three-stage op amp.

Conclusion
Op-amp output stages have evolved from 
classic BJT output stages with resistive 
output impedances to the RLC three-stage 
output impedances found in many rail-to-rail 
output stages with high open-loop gain. To 
help develop a more intuitive understanding 
of these output impedance structures, a 
model of an example op-amp output imped-
ance was created out of passive components. 
The passive model helped to intuitively deter-
mine what effects output loading have on the 
circuit performance in the different regions of 
the curve. The results for this passive model 
exactly matched the results from the original 
op-amp transistor-level simulation model. This 
proved that the passive RLC model is an 
accurate representation of the three-stage 
output impedance that can be used for stabil-
ity analysis.
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Figure 7. Comparing the ZO magnitude results of the 
passive model to the op-amp transistor-level model
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Figure 8. Comparing the ZO phase response of the 
passive model to the op-amp transistor-level model
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