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The architecture of a switched-capacitor 
charger with fast charging and high efficiency

Introduction
Consumers are constantly demanding their smartphones 
last longer between charging times and charge more 
quickly. Because of this, smartphone batteries are increas-
ing in both size and charging rates. A 3,000-mAh battery 
may be capable of charging at 6 A, but charger efficiency 
and the power dissipation in the phone has been a limiting 
factor to charging at this high rate.

Table 1 offers a brief history of faster charging from 
Texas Instruments.

Table 1. Improvements of charging topologies

Charging 
topology

Charging 
rate

1-W power-
loss charging 

current
Supporting standard

Standard 
buck 
charger

2 to 3 A 2 A USB 2.0, Battery Charging 
Specification (BCS) 1.2

Dual buck 
charger 3 to 4 A 2.5 A

USB 3.1, BCS 1.2 with High 
Voltage Direct Charge 
Protocol

Flash 
charge 4 to 5 A 4.5 A

USB Power Delivery (PD) 
3.0 with programmable 
power supply (PPS)

Switched-
capacitor 
current 
doubler

4 to 8 A 6.5 A

With the introduction of USB PD and PPS, the safe and 
quick charging of large-capacity smartphone batteries is 
possible with a new switched-capacitor charging system. 
There are several challenges to overcome in order to 
deliver high current to a large-capacity battery and the 
switched-capacitor architecture addresses all of them.

Figure 1 shows the key losses in a typical large-capacity 
smartphone.

Reducing the current across the cable minimizes I2R 
losses in RConA, RCable, RConD and RControl. The converter 
efficiency (η) must be very high to keep power loss and 
thermals under control. It is important to minimize the 
battery-connector resistance, RConB, as the current will be 
twice that of the USB cable current.

Protections ensure that the charger can monitor all key 
system aspects for overvoltage, overcurrent and tempera-
ture. All USB Type-C™ cables must support a minimum of 
3 A at 20 V, but high-power and more-expensive versions 
can support up to 5 A at 20 V.

The switched-capacitor architecture enables the deliv-
ery of high current to the battery while keeping USB cable 
current and voltage drops low. It’s possible to accomplish 
6-A battery charging with standard 3-A-capable USB 
Type-C cables, or up to 10 A with 5-A-capable cables when 
using switched-capacitor devices in parallel.

Architecture of a switched-capacitor charger
A typical buck-converter charger can achieve greater than 
90% efficiency at 6 A, but that means a dissipation of over 
2 W in the phone. A typical thermal budget for a smart-
phone allows less than 1 W of dissipation. A direct charge 
solution such as the bq25870 has lower losses in the 
phone, but the cable current and the charge current are 
the same.

The switched-capacitor charger can achieve up to 97% 
efficiency at 6 A delivered to the battery with only 3 A 
required on the USB Type-C cable. This which means less 
than 800 mW of dissipation in the phone, while requiring 
less than 3 A on a standard USB Type-C cable.

The switched-capacitor charger relies on a smart wall 
adapter to regulate the voltage and current at the input to 
the charger. The USB PD PPS protocol allows a sink-
directed source output. In this case, the sink is the phone 
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Figure 1. Typical losses in a high-capacity smartphone charging system
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and the source is the wall adapter. When the wall adapter 
is not in current foldback, the phone directs the voltage 
output in 20-mV steps, acting as a current-limited voltage 
source. When the wall adapter is in current foldback, the 
wall adapter maintains the voltage, and the phone directs 
the output current in 50-mA steps. The performance of 
the switched-capacitor solution will depend on the type of 
source.

The switched-capacitor charger uses four switches to 
alternately charge and discharge CFLY capacitors. Figure 2 
shows the simplified circuit, along with the equations for 
voltage and current during charging and discharging of 
CFLY capacitors.

In the charging phase (t1), Q1 and Q3 turn on and Q2 
and Q4 turn off. This enables CFLY to be in series with the 
battery, where CFLY charges while delivering current to the 
battery. During the discharge phase (t2), Q1 and Q3 turn 
off and Q2 and Q4 turn on. During this time, the CFLY 
capacitor is parallel to the battery and provides charging 
current to it. The duty cycle is 50%, the battery current is 
half of the input voltage and the current delivered to the 
battery is twice the input current.

Figure 3 shows the waveforms of the battery current 
and voltage. This figure models the equivalent series resis-
tance of the fly capacitor, as well as the resistances of the 
switches.

Figure 2. Simplified switched-capacitor circuit and equations
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Figure 3. Switched-capacitor voltage and current waveforms for a constant current source
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When using a constant-current source, the CFLY current 
is constant while CFLY charges. If using a constant-voltage 
source, the CFLY current follows the resistor-capacitor 
(RC) constant curve as shown in Figure 4. Although not 
significant, the effect of using a voltage source instead of a 
current source is increased ripple current, increased root-
mean-square (RMS) current, and reduced efficiency due 
to higher conduction losses.

Performance
The most important decision for a switched-capacitor 
charger is selection of the CFLY capacitor. A minimum of 
two CFLY capacitors are required per phase, with four 
being optimal. Additional CFLY capacitors can be used, but 
returns are diminished by added cost and board space.

Using fewer than four CFLY capacitors results in higher 
voltage and current ripple, and increased stress on each 
capacitor. The total effective capacitance should be 24 µF 
or greater for optimal efficiency. Using four 22-µF capaci-
tors with a 10-V rating will achieve a 24-µF capacitance, 
taking into account the bias-voltage derating of the 
ceramic capacitors. A slower switching frequency can 
increase efficiency, but this also comes at the expense of 
high current ripple and increased stress on each capacitor.

Figures 5 and 6 show the efficiency for the bq25970 
switched-capacitor battery charger. The effects of the 
number of capacitors and switching frequency are clearly 
evident.

Smart control
To use the switched-capacitor architecture as a battery 
charger, a PPS wall adapter must control and monitor the 
battery voltage and current. The USB PD specification has 
incorporated support for direct-charge adapters with PPS. 
The PPS protocol enables switched capacitor chargers, 
while also supporting legacy USB 2.0, USB 3.1, USB 
Type-C current or BCS 1.2 voltage and currents.

The wall adapter (source) must protect itself and not 
rely on the battery charger (sink) for protection. Similarly, 
the sink must protect itself and not rely on the source for 

Figure 4. Switched-capacitor voltage and current waveforms for a constant-current source
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Figure 5. Efficiency with four CFLY 
capacitors per phase
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Figure 6. Efficiency with three CFLY 
capacitors per phase
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protection. The source must also implement overcurrent 
protection, and for the switched-capacitor architecture, it 
needs to be adjustable based on the sink requirements. 
The source may adjust the output voltage in 20-mV incre-
ments and the current in 10-mA increments.

The switched-capacitor solution is designed for use with 
a standard charger for pre-charge and final termination. 
The combination of a PPS wall adapter source and a stan-
dard charger enables the system to accomplish the 
battery-charge profile shown in Figure 7.

If the battery being charged is below a predetermined 
voltage, such as 3.5 V, the standard charger is used during 
pre-charge and constant-current charging until reaching 
that voltage. At that time, the phone notifies the PPS 
source over the communication channels of the Type-C 
cable to increase the voltage/current to meet the charging 
requirements.

Once the battery voltage reaches a voltage near the final 
charging voltage, the PPS reduces the voltage/current in 
small increments to prevent a battery overvoltage 
condition.

Once the PPS reduces the voltage/current so that the 
charging current is below the undercurrent threshold for 
the switched-capacitor device, charging stops and the 
standard charger resumes charging for current tapering 
and final termination.

Example of a total system solution 
On the following page, Figure 8 shows a flowchart of the 
charging profile. Initially, only 5 V is present on the USB 
cable, which is then negotiated depending on the capabili-
ties and state of the sink. A single wall adapter (source) 
can charge many different types of phones (sinks).

A test system was constructed to implement this flow. 
The wall adapter used the UCC28740 flyback controller, 
the UCC24636 synchronous rectifier, the INA199 current 
shunt monitor, a USB PD controller and an MSP430™ 
microcontroller to execute the code. The phone side used 
the bq25970 switched-capacitor charger, the bq25890 
switching charger, the TUSB422 USB PD USB Type-C port 
controller interface (TCPCi) and an MSP430 microcon-
troller to execute the code.

Figure 7. Battery-charging profile for a switched-capacitor solution
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Figure 8. Simplified flow diagram for a smartphone that is switched-capacitor capable
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Figures 9 and 10 show the charge-cycle 
data and total charge-time data for the test 
system.

Conclusion
Much faster charging times with lower 
power dissipation and lower temperatures 
can be achieved when using USB PD PPS 
and a switched-capacitor charger for smart-
phones. The protection and alarm levels 
should be carefully selected to make sure 
that they meet the battery and system 
thermal constraints.

Related Web sites
www.usb.org/developers/powerdelivery/

Product information: 
bq25970
bq25890
TUSB422
TS3USB221
UCC28740
UCC24636
INA199

Figure 9. System charge time with 3,200-mAh 
battery charged at 6 A
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Figure 10. System charge cycle with 3,200-mAh 
battery charged at 6 A
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E2E and MSP430 are trademarks of Texas 
Instruments. USB Type-C is a trademark of the 
USB Implementers Forum. All other trademarks 
are the property of their respective owners.
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