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Selecting output caps for buck converters 
based on Zout and load slew rates

Introduction
With a growing demand for mobile 
devices, servers, storage and telecommu-
nication equipment, and cloud-computing 
infrastructures, there is a need for more 
computing power, greater efficiency and 
higher power densities. Microprocessors 
inside the equipment determine the 
power requirements and buck converters 
for powering these microprocessors are 
key to improving load-transient 
performance.

Figure 1 shows the load-transient 
profiles for an Intel processor under 
different operating conditions. The vari-
able load frequencies and fast load slew 
rates normally require high-frequency 
decoupling capacitors for a multiphase 
buck converter, as shown in Figure 2. In 
the traditional design approach, the 
required total output capacitance can be 
roughly estimated based on the overshoot 
requirements.[1] However, different types of 
capacitors have different equivalent series 
resistance (ESR), cost and size, so there are 
many possible implementations that give the 
same capacitance, but have different perfor-
mance. To date, there are no clear design 
guidelines to explain how to select the 
combinations of different types of output 
capacitors based on the load-transient 
profiles. This article explains how the load-
transient performance unique to fast load 
slew rates can be impacted with different 
output-capacitor choices and how to arrive at 
an optimal solution. 
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Bob Neidorff, TI Fellow, DC-DC Converter IC Design

Figure 2. Combinations of output capacitor and the Zout of a 
multiphase converter powering a microprocessor
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Figure 1. Dynamic operation modes for an Intel processor 
generating different loads to multiphase buck converters
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Frequency analysis of a load profile with 
different load slew rates
Adopting a trapezoidal load profile will emulate the load 
currents from a microprocessor during operations, as 
shown in Figure 3. By applying Fourier transformations to 
the trapezoidal load waveform, the load profile can be 
represented as Equation 1, with Figure 3b illustrating its 
spectrum. As shown in Figure 3b, in addition to the funda-
mental load frequency, there are many harmonic compo-
nents caused by different load frequencies, duty ratios and 

Figure 3. Trapezoidal load profile and spectrum
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(a) Trapezoidal load profile (b) Trapezoidal load spectrum

slew rates. These harmonics may cause additional voltage 
deviations during load transients based on the output 
impedance at high-frequencies.

Figure 4a shows two load profiles with the same load 
frequency (10 kHz) and duty ratios (50%), but with differ-
ent slew rates (450 A/µs and 22.5 A/µs). Based on 
Equation 1, Figure 4b shows the spectrums of the two 
load profiles. These curves show that the high-frequency 
harmonic components are well attenuated, with the slower 
load slew rate due to a second pole at a lower frequency.
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Figure 4. 10-kHz load transients with a 225-A step at fast and slow slew rates
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Selecting output capacitors based on output 
impedance
There are several types of capacitors, such as an OS-CON, 
polymer aluminum or ceramic, each with different charac-
teristics.[2] Figure 5 shows the impedance curves of differ-
ent capacitor types and ratings. Note that different 
capacitors can provide different impedances over 
frequency, so it is important to understand the output-
impedance requirements of a buck converter to select the 
corresponding capacitor types and ratings.

For example, if the plot for impedance versus frequency 
shows an impedance that’s too high between 100 kHz and 
500 kHz, then the most effective way to lower that imped-
ance is with a capacitor that has a resonant frequency of 
500 kHz, such as the 220-µF ceramic capacitor shown in 
Figure 5. On the other hand, if cost concerns make an 
OC-CON capacitor preferable, there are two options to 
reduce the impedance: 1) Use parallel multiple OS-CON 
capacitors to lower the overall equivalent series resistance, 
or 2) add ceramic capacitors with a lower resonant 
frequency, such as a 220-µF ceramic capacitor with a 
500-kHz resonant frequency.

Table 1 illustrates the critical design parameters and 
requirements of a multiphase buck converter powering a 
microprocessor.

Table 1. Design requirements and parameters

Design Requirements

Input voltage (V) 12 V ±10%

Output voltage (V) 0.885 V

Maximum load current (A) 450 A

Maximum load step (A) and slew rate (A/µs) 225 A at 
500 A/µs

Undershoot/overshoot requirements (mV) ±22.5 mV

Design Parameters

Selected phase numbers 12

Selected inductance (nH) 150 nH

Selected switching frequency (kHz) 400 kHz

Estimated minimum output capacitance based on 
charge balance calculations 24,000 µF

Figure 5. Impedance vs. frequency curves of different capacitor types
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Figure 6 shows a simplified power delivery network (PDN) 
comprised of different types of output capacitors and the 
printed circuit board parasitic.

Table 2 shows two design examples of Cout selections 
having a similar total capacitance but different open-loop 
output impedances.

Figure 6. Simplified PDN of a multiphase 
buck converter
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Figure 7 shows the closed-loop output impedance of 
both design examples with compensations. The low-
frequency (<100 kHz) and very-high-frequency (>2 MHz) 
closed-loop output impedances are similar for both design 

Figure 7. Comparison of output impedance for two design examples

Z
(m

)
o

u
t

Ω

60

10

1

0.1

0.01

Frequency (Hz)

1 k100 10 k 100 k 1 M 10 M

Open-Loop Zout

Design Example #1

Closed-Loop Zout

Design Example #2

Closed-Loop Zout

Design Example #1

Open-Loop Zout

Design Example #2

Table 2. Design examples of Cout selections

Design Example No. 1

Item Type Quantity

Effective 
Capacitance 

(µF)

CO1 470-µF/6-mΩ SP capacitor 24 11,160

CO2 220-µF ceramic capacitor 48 10,080

CO3 100-µF ceramic capacitor 36 2,916

Total capacitance (µF) 24,156

Design Example No. 2

Item Type Quantity

Effective 
Capacitance 

(µF)

CO1 560-µF/9-mΩ OS-CON capacitor 20 11,200

CO2 560-µF/9-mΩ OS-CON capacitor 21 11,760

CO3 22-µF ceramic capacitor 68 1,224

Total capacitance (µF) 24,184

examples. However, the mid- to high-frequency (between 
100 kHz to 1 MHz) output impedances are quite different, 
which will lead to different load-transient performance, 
even when the load frequency is low; recall the harmonic 
components of the load profile shown in Figure 4. 
Equation 2 estimates the output-voltage deviations due to 
load transients as:

	 ∆V f I f Z fout load out( ) ( ) ( )= × 	
(2)

Therefore, the load profile shown in Figure 4 and the 
closed-loop output impedance shown in Figure 7 will 
determine the output-voltage deviations at different load 
frequencies.
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Figure 8 shows the load-transient 
performance of two design examples with 
10-kHz repetitive load transients, 225-A 
load steps and two load slew rates  
(450 A/µs and 22.5 A/µs). The load-
transient performance is worse with 
design example No. 2 even though the 
total capacitances are almost the same for 
both cases. This is because of the harmonic 
components of the load profile in the mid 
frequency ranges (100 kHz to 1 MHz), as 
was explained for Figure 4b. The load-
transient performance of the two design 
examples are almost identical when 
reducing the load slew rate as shown in 
Figure 8b. This is not surprising given the 
attenuated harmonic components of the 
load profile shown in Figure 4b.

Conclusion
There are clear relationships between the 
frequency spectrum of the load-transient 
profile, the load-transient performance 
and the output impedance. For powering 
different microprocessors, the load-
transient profile (load steps, frequency 
ranges, duty ratios and slew rates) as well 
as the load-transient requirements 
(undershoot and overshoot) can differ. It 
is important to know how to select output 
capacitors based on analysis of the load-
transient profile and output impedance. 
This relationship is critical to fulfill the 
undershoot/overshoot specifications, 
especially for the advanced processors 
with very-fast load slew rates.
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Figure 8. 10-kHz repetitive load-transient 
performance of two design examples
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