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I.  Introduction

A phase-locked loop (PLL) exhibits a low-pass response to its input signal. The input signal dimension is in
phase angle, so it is a "radian low-pass filter" as opposed to a conventional "voltage low-pass filter." In
addition, unwanted input voltage is called "noise," while unwanted phase movement is called "jitter." Since
"voltage low-pass filters" use "voltage transfer function" to describe the input to output transfer
characteristics, there is an equivalent "jitter transfer function" for PLL measurements.

It is worth noting that these transfer functions are simply input to output transfer characteristics. There is no
differentiation between real signal and noise components. Thus, the jitter transfer function is equivalent to
the PLL low-pass response.

If the PLL has a poor jitter transfer characteristic, its output may contain jitter components due to
inadequate filtering effect. If the application requires cascading several of these PLLs, such as in the
SONET line-timing mode [9, pp.5-22], the "jitter leak-through" will create severe jitter accumulation
problems. The reason is the line-timing mode uses the recovered clock for transmission, and then the last
PLL sees the accumulated jitter from all of the previous transmitters.

For clock-multiplying synthesizers, the reference clock jitter, including jitter from other sources, such as
charge-pump phase detectors, will also pass through the PLL. Thus, the "jitter leak-through" will create
jitter at the output of the PLL. The output jitter spectrum usually has a high frequency response similar to
their filter transfer characteristics. Therefore, good jitter transfer characteristics are essential when
designing PLLs.

An ideal PLL response should have a brick-wall, low-pass transfer characteristic. Within the pass-band, the
gain should be unity; outside the pass-band, the gain should be zero. With this kind of transfer
characteristic, the PLL should track all low frequency variations and reject all high frequency input jitters at
its output.

The subject IS-PLL filter scheme approaches these ideal characteristics with a third-order filter. It has an
integrator for tracking low frequency changes and a separate low-pass filter for controlling the loop stability
and high-frequency attenuation. These two filter elements, the "integrator" and the "stability filter," together
with other system components form an IS-PLL.

For performance comparison reasons, many plots are utilized to show the differences between classical
PLLs and the IS-PLL. These plots were simulation results from a software program. A high-level common
model has been developed for uniquely defining and specifying these PLL examples. The model allows a
common definition and test platform for comparison.

II.  The IS-PLL Circuit model

A PLL contains a phase detector (PD), a loop filter (LF) and a voltage-controlled oscillator (VCO). Perhaps
the most dominating factor that affects the low-pass response of the PLL is the loop filter. There are many
types of loop filter designs developed for different applications, for example, timing recovery loops, clock
synthesizers, modulators, demodulators, etc& . The differences among these filters are their frequency
response characteristics. A multi-order filter may be required to achieve the proper frequency response for
tracking application-specific signal phase or frequency changes.

Figure 1 shows a high-level IS-PLL model. We can use it to construct many PLLs that require proportional
and integral controls. The loop order has a third-order maximum. The model does not include a



differentiator, so it is not for PLLs that need derivative control.

Figure 1. A High-Level IS-PLL Model

The first block in Figure 1 is the conventional phase detector (PD). For high-level simulation purposes, the
transfer function of this block can be represented simply by a gain factor Kd. For closed-loop phase
correction purpose, Kd is negative.

The Integrator block (I block) is the conventional integrator. The transfer function is w I/s, where w I is the
integrating time constant and "s" is the standard Laplace operator.

The Stability block (S block) can be modeled as a passive low-pass filter having a transfer function of w
S/(s + w S). For the IS-PLL, this block is designed to provide a dominant pole w S that sets the stability of
the IS-PLL.

The fourth block is simply a gain block. The transfer function Kg is a gain factor that includes gain elements
contributed by miscellaneous blocks in a practical PLL. This quantity also includes a factor that makes the
DC gain of the "S" block unity (explanation follows).

The fifth block is the voltage-controlled oscillator (VCO), which has a transfer function of Ko/s.

To specify a PLL uniquely for circuit simulation purposes, we need only three frequency-dependent
parameters: w K, w I and w S. The values of w I and w S are defined by the filter parameters mentioned
above. The value w K is the product of the K elements:

w K = Kd * Kg * Ko

The addition of the Gain Scalar Kg has two purposes:

To provide a function-holder for all miscellaneous gain blocks used in a practical PLL (e.g., clock
pre-scalars, operational-amplifiers, etc& .)

1.

To provide gain compensation when the DC gain of the physical implementation of the "S" block is
not unity. For simulation purposes, forcing the DC gain of the "S" block to unity eliminates
interactions among the filter parameters. The value of Kg is then adjusted to absorb the gain
redistribution. In addition, the actual value of w I also needs adjustment.

2.

For practical purposes, these three parameters are converted from angular velocity "w " to frequency "f" in
Hz. The following equation shows the conversion relationship:

fX = w X / 2p , where X can be K, I or S.

For scale normalization and ease of parameter comparison purposes, a fourth parameter fmul is
introduced. This parameter is simply a frequency-multiplying factor such that the actual frequencies of the
PLL parameters are fK*fmul, fI*fmul and fS*fmul. When specifying a filter, the value of fK is normalized to
unity and fmul contains a factor for scaling fK to its actual value. Therefore the ratios fK/fI and fS/fK can be



directly represented by the values of 1/fI and fS respectively.

Example for specifying an IS-PLL: fK=1, fI=1/256, fS=2, fmul=1

III.  Parameters for Some Classical PLLs and the IS-PLL

The IS-PLL combines two classical PLL types, PI-PLL and S-PLL, to achieve excellent transfer
characteristics. These three PLL types have the following properties:

1.  PI-PLL (fK=1, fI=1/2, fS=¥ , fmul=1)

Classical name: Active-lag-lead PLL, (other name: Second-order Proportional-Integral PLL)

Description:
The loop has an integrator for tracking low frequency changes (fI=1/2).

The loop does not use low pass filtering, although it has a proportional path
for controlling the loop stability that can be modeled as a passive low-pass
filter having a very high roll-off frequency (fS=¥ ). Thus, the effective gain of
this block is unity for all frequencies (i.e., If w S=¥ , then w S/(s + w S)=1).

When fI=1/2, the loop damping factor is z = 0.5 * sqrt(fK/fI) = 0.707

2.  S-PLL (fK=1, fI=0, fS=2, fmul=1)

Classical name:
Simple RC lag PLL, (other name: 1.5 order PLL)

Description:
The loop does not contain any Integrator (I Block) for tracking low frequency
changes (fI=0).

The loop uses passive low-pass filtering for controlling the loop stability
(fS=2).

When fS=2, the loop damping factor is z = 0.5 * sqrt(fS/fK) = 0.707

3.  IS-PLL (fK=1, fI=1/256, fS=2, fmul=1)

Classical name:
No classical equivalent type. (See comparisons between a classical Active-
lag-lead-lag-PLL and the IS-PLL in Section VII)

Description:
The loop has an integrator for tracking low frequency changes (fI=1/256).

The loop has a passive low-pass filter for controlling the loop stability (fS=2).

When fS=2, the loop damping factor is z = 0.5 * sqrt(fS/fK) = 0.707

IV.  The PI-PLL (Active-lag-lead PLL: fK=1, fI=1/2, fS=¥ , fmul=1)

This is probably the most common loop used in many applications. This type of loop has an ideal integrator
(fI=1/2) for tracking low frequency changes. Since the loop has very large DC gain, the loop can track out



any changes of input phase. There is no steady-state error resulting from a step change in frequency.

The loop transfer function is given by

H(s) = (sfK + fKfI) / (s2 + sfK + fKfI)

where

fn2 º fKfI (fn is the loop natural frequency)

2z fn º fK (z is the damping factor)

\ z = 0.5 * sqrt(fK/fI)

The loop relies on the ratio of fK/fI to determine its stability. The stability is quantified by z which is referred
to as the damping factor of the loop. Common values for z range from 0.707 to 20.

However, this type of PLL has the following disadvantages:

1.  Poor Jitter peaking response:

The numerator of the transfer function contains the term "sfK." This term creates a response peaking near
the loop s natural frequency fn. Figure 2 (30kb pdf) shows this effect by decomposing the PLL output into
two components: sfK and fKfI. The combined output exhibits a peak response of 2.1dB. Figure 3 (27kb
pdf) shows the time-domain phase step response which exhibits a 20% magnitude overshoot.

For some timing recovery applications where very low jitter accumulation is required, the magnitude of the
peaking must be less than 0.1dB [9, pp.5-47]. Traditional methods can achieve this by setting fI smaller
than 1/256. Figure 4 (29kb pdf) shows the amount of jitter peaking versus different loop damping values.
Figure 5 (38kb pdf) is a close-up of Figure 4. There are eight traces with the following parameters:

fK=1, fI=1/2, fS=¥ ,
fK=1, fI=1/4, fS=¥ ,
fK=1, fI=1/8, fS=¥ ,
fK=1, fI=1/16, fS=¥ ,
fK=1, fI=1/32, fS=¥ ,
fK=1, fI=1/64, fS=¥ ,
fK=1, fI=1/128, fS=¥ ,
fK=1, fI=1/256, fS=¥ ,

fmul= 1.414:
fmul= 2.000:
fmul= 2.828:
fmul= 4.000:
fmul= 5.657:
fmul= 8.000:
fmul= 11.314:
fmul= 16.000:

z =0.707, f-3dB= 2.1, peak=2.09dB
z =1.000, f-3dB= 2.5, peak=1.25dB
z =1.414, f-3dB= 3.2, peak=0.72dB
z =2.000, f-3dB= 4.2, peak=0.40dB
z =2.828, f-3dB= 5.8, peak=0.22dB
z =4.000, f-3dB= 8.1, peak=0.12dB
z =5.657, f-3dB=11.4, peak=0.06dB
z =8.000, f-3dB=16.0, peak=0.03dB

Decreasing fI also increases the loop s damping factor z . High damping factor makes the loop sluggish,
which affects low frequency tracking performance and acquisition speed.

2.  Poor high frequency roll-off characteristic:

The high frequency roll-off rate is -6dB/Octave instead of -12dB/Octave (see Figure 2 & 4). This rate is
similar to that of a first-order loop. Obviously, the poor roll-off rate is due to sfK in the transfer equation,
which is created by the proportion-path within the loop filter. This term has a roll-off rate of -6dB/Octave,
which dominates the loop response when input frequencies are higher than the natural frequency fn of the
loop.

In PLL designs, where dominating jitter sources are from input reference signals, charge-pumps, or loop
filters, then having a -12dB/Octave roll-off rate is appropriate for meeting a tight PLL jitter specification. On
the contrary, for systems with high VCO noise, this will create adverse effects.



V. The S-PLL (Simple RC-lag PLL: fK=1, fI=0, fS=2, fmul=1)

This is the simplest way to build a second-order PLL. Unfortunately, this method does not include an
integrator to track low frequency changes (fI=0,) so it cannot satisfy most applications needs. Although it is
not widely used, it is still found in applications where this special tracking characteristic becomes an
advantage (e.g., modulator and demodulator circuits).

The loop transfer function is given by

H(s) = fKfS / (s2 + sfS + fKfS)

where

fn2 º fKfS (fn is the loop natural frequency)

2z fn º fS (z is the damping factor)

\ z = 0.5 * sqrt(fS/fK)

The loop relies on the ratio of fS/fK to determine the loop stability. The stability is quantified by z which is
referred to as the damping factor of the loop. Common values for z range from 0.707 to 20.

However, this type of PLL has the following disadvantage:

1.  Poor low frequency tracking characteristic:

Since the DC gain of the loop is finite (lack of an integrator, fI=0), it creates steady-state phase tracking
errors and exhibits poor low frequency tracking performance. Furthermore, it cannot compensate for
frequency offsets due to device parameter variations during volume manufacturing. Due to these
impairments, this class of PLLs is not widely used in modern large-scale integrated circuits.

Gardner [14, pp. 17] indicated that the denominator of the transfer function is of second degree, so the loop
can be considered as a second-order loop; even the loop has no integrator. However, he also mentioned
that there are restrictions when selecting parameters for desired loop responses. The loop will be badly
under-damped and transient response will be poor when there is a large DC gain and small bandwidth
utilized in the loop.

VI. The IS-PLL (fK=1, fI=1/256, fS=2, fmul=1)

The proposed IS-PLL represents a new class of PLLs that utilizes a composite filter which comprises a
passive low-pass filter w S/(s + w S) and an ideal integrator w I/s.

The loop transfer function is given by a third order equation:

H(s) = ( sfK { fS+fI } + fKfSfI ) / ( s3 + s2fS + sfK { fS+fI } + fKfSfI )

If fS » fI, then { fS+fI } » fS, so the transfer function becomes

H(s) » ( sfK + fKfI ) / ( s3/fS + s2 + sfK + fKfI )

For input frequencies « fS, the transfer function is identical to that of a PI-PLL:

H(s) » ( sfK + fKfI ) / ( s2 + sfK + fKfI )

For input frequencies » fI, the transfer function is identical to that of a S-PLL:

H(s) » fKfS / ( s2 + sfS + fKfS )



Since there are two transfer functions for two different frequency bands, there are two natural frequencies
and two damping factors in the system:

For input frequencies « fS : fn_low2 = fKfI, z _low = 0.5 * sqrt(fK/fI)

For input frequencies » fI : fn_high2 = fKfS, z _high = 0.5 * sqrt(fS/fK)

For jitter peaking and high frequency roll-off reasons, the ratio of fK/fI (typical range: 32 to 512) has a much
larger value than that of fS/fK (typical range: 2 to 5), so the loop is more sensitive to fn_high and z _high.
Therefore, fn_high and z _high are the primary loop parameters and fn_low and z _low are the secondary
loop parameters. It is also valid to say that the passive low-pass filter w S/(s + w S) is the primary loop filter
while the integrator w I/s is the secondary loop filter.

VI.1 Criteria for Selecting the Secondary Low Frequency Parameter (fK/fI) for the IS-PLL:

The selection of this parameter is much simpler than the high frequency counterpart fS/fK (Section VI.2).
The value of fK/fI can range from 32 to 512 for obtaining different levels of jitter peaking response (from
0.22dB to 0.03dB, z =2.828 to 8.0 respectively, see Section IV). Although this tweaking technique cannot
eliminate the peaking effect totally, it is proven to be the most practical solution [1-7].

Nevertheless, there are disadvantages using this technique. As mentioned in Section IV, the first
disadvantage is the degradation of high frequency roll-off rate. Fortunately, this is no longer a design
concern because the primary filter w S/(s + w S) dominates the high-frequency roll-off rate. Section VI.2
provides more insight to this topic.

The second disadvantage is the degradation of the loop s low-frequency tracking performance. In effect,
the high ratio of fK/fI reduces the loop s integrating capability causing the loop s tracking rate to slow down.
It is appropriate to inspect the phase error term (q e = Input phase Output phase) to ensure an adequate
tracking rate when the input reference signal contains modulation. Modifying the value of fK/fI can fix this
problem. However, it is unnecessary in most designs.

The third disadvantage is the increase in the loop s acquisition time. But still, this is not a design concern
since most modern loops have "multi-speed acquisition circuits" to alleviate the performance conflicts.

In summary, although there are several minor low-frequency design considerations, the selection of this
parameter is still simple. In any respect, there is insignificant interaction between the secondary and the
primary filters because of the large distance between the two frequency poles (at least 32 x 2 = 64 times;
more than 200 times in most applications).

VI.2 Criteria for Selecting the Primary High Frequency Parameter (fS/fK) for the IS-PLL:

The selection criteria are based on the classical "All-pole low-pass filter" design topology. A typical
second-order low-pass transfer equation is given by:

H(s) = freq2 / ( s2 + sfreq / Q_factor + freq2 )

This equation has the same form as the equation for IS-PLL when input frequencies » fI. Using the
common PLL modeling scheme, we can specify some classical filters:

a. A second-order Butterworth low-pass filter (maximally flat amplitude response):

fK=1, fI=0, fS=2, fmul=0.707: z =0.707, f-3dB=1.0

b.  A second-order Bessel low-pass filter (maximally flat delay response):

fK=1, fI=0, fS=3, fmul=0.735: z =0.866, f-3dB=1.0



These filter responses are monotonic and exhibit no jitter peaking effect. If the value of fS is set less than 2,
then the filter response has peaking and the filter class is of the Chebyshev type. If the value of fS is higher
than 3, then the filter response is still monotonic and exhibits no jitter peaking effect. However, when the
value of fS is very large or close to infinity, the filter loses all of its second-order effect. Thus, the filter
becomes a first-order filter.

In general, these filters have a roll-off rate of -12dB/Octave. Figure 6 (34kb pdf) shows a series of curves,
which have the values of fS ranging from 2 to ¥ (simulation uses 1e50 instead of ¥ ), i.e.,

fK=1, fI=0, fS=2,
fK=1, fI=0, fS=3,
fK=1, fI=0, fS=4,
fK=1, fI=0, fS=5,
fK=1, fI=0, fS=¥ ,

fmul=0.707:
fmul=0.735:
fmul=0.778:
fmul=0.814:
fmul=1.000:

z =0.707,
z =0.866,
z =1.000,
z =1.118,
z =¥ ,

f-3dB=1.0
f-3dB=1.0
f-3dB=1.0
f-3dB=1.0
f-3dB=1.0

When fS has a value higher than 5, the high frequency attenuation characteristic degrades more rapidly.
For systems where minimum peak-to-peak phase jitter is of importance, such as in a timing recovery loop,
then the value of fS should be less than 5. This is based on the assumption that the output jitter is
dominated by components less than 5 (in Hz, note that the f-3dB frequency of the filter is normalized to 1
Hz). When frequencies are higher than 5, attenuation is high (more than 20dB). As a result, these
frequency components do not contribute much to the total jitter output.

The following provides an attenuation comparison chart on these filters (fS=2,3,4,5 and ¥ ). The frequency
data points range from 1 to 5Hz, and the attenuation numbers are in dB.

frequency (Hz) fS = 2 3 4 5 ¥

1     -3.0 -3.0 -3.0 -3.0 -3.0

2     -12.3 -9.8 -8.5 -7.8 -7.0

3     -19.1 -15.7 -13.5 -12.2 -9.9

4     -24.1 -20.3 -17.7 -15.9 -12.3

5     -28.0 -24.0 -21.1 19.1 -14.1

When frequency=2Hz and fS=2, the attenuation is -12.3dB. The attenuation drops to -7.8dB when fS=5,
while it is almost equivalent to the -7.0dB attenuation when fS=¥ . Note that as fS approaches ¥ , the filter
behaves like a first-order filter. Hence, in order to achieve high rejection at high frequencies,
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